

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS ESCUELA DE POSTGRADO

"TRANSICIONES RADIATIVAS EN ELPASOLITAS ESTEQUIOMETRICAS"

ANDRES ROBERTO SOTO BUBERT

Profesor Guía y Patrocinante	Sr. Roberto Acevedo.
Profesores Comisión	Sr. Joaquín Cortés.
	Sr. Ricardo Letelier.
	Sr. Jaime Rössler.

Profesor Invitado

Sr. Eugenio Vogel.

TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS DE LA INGENIERIA CON MENCION EN CIENCIAS DE LOS MATERIALES

Santiago de Chile, Marzo de 2006

Tabla de Contenidos

Capítu	Io I: Introducción.	1
I.1. Pa	labras Preliminares.	2
I.2. Re	ferencias.	13
Capítu	Ilo II: Potenciales de interacción en cristales iónicos. Aplicaciones	
	en termodinámica de elpasolitas estequiométricas.	16
II.1	Introducción.	17
II.2	Obtención de la Constante de Madelung.	18
II.2.1	Potencial Coulómbico y Constantes de Madelung para	
	cristales binarios	18
II.2.2	Cristal monodimensional.	21
II.2.3	Cristal binario: NaCl(s).	22
II.2.4	Breve reseña histórica de métodos empleados para	
	evaluar las Constantes de Madelung.	24
II.2.5	Método de Ewald.	26
II.2.6	Suma de Ewald el espacio directo.	36
II.2.7	Función error.	37
II.2.8	Método del potencial coulómbico atenuado.	38
II.2.9	Algunas relaciones matemáticas de interés.	42
II.3	Potencial de repulsión de Born.	46
II.4	Potenciales de Born – Mayer – Bückingham.	48
II.5	Potenciales de Bückingham. Adición del potencial de	
	Van der Waals.	49

II.6	Cálculo de las constantes de Madelung para cristales ternarios,	
	cuaternarios o multicomponentes. Metodología para la generalización	
	de la definición de la constante de Madelung.	51
II.7	Algunos datos útiles para elpasolitas estequiométricas.	56
II.8	Cálculos de la energía de Born - Mayer aplicados en	
	elpasolitas del tipo $K_2 NaScF_6$ y $K_2 NaGaF_6$.	61
II.9	Cálculos de la energía de Van der Waals aplicados	
	en elpasolitas del tipo $K_2 NaScF_6$ y $K_2 NaGaF_6$.	64
II.10	Resultados obtenidos para el cálculo de potenciales en	
	elpasolitas estequiométricas compuestas por iones lantánidos.	66
II.11	Conclusiones.	83
II.12	Referencias.	90
Capitu	Ilo III: Interacción Radiación – Materia. Procesos	
	Monofotónicos y Bifotónicos.	93
III.1	Introducción.	94
III.2	Interacción Radiación – Materia.	94
III.3	Transiciones electrónicas. Regla de oro de Fermi. Número Dos.	109
111.4	Procesos Monofotónicos.	116
III.5	Procesos Bifotónicos. Dispersión.	127
III.6	Referencias.	140
Capítu	Ilo IV: Aspectos Formales de la espectroscopia molecular.	141
IV.1	Introducción.	142

IV.2 Energías electrónicas y aproximación de Born – Oppenheimer. 143

IV.3	Teorema de Janh - Teller.	165
IV.4	Transiciones electrónicas.	169
IV.5	Referencias.	183

Capitulo V: Análisis de coordenadas normales en cristales del

	tipo Elpasolitas.	185
V.1	Palabras Preliminares.	186
V.2	Introducción.	187
V.3	Análisis de coordenadas normales.	192
V.4	Ecuaciones de movimiento. Vibraciones.	196
V.5	Modelo de 10 átomos para sistemas del tipo	
	elpasolitas A_2BLnX_6 .	203
V.6	Conclusiones.	232
V.7	Referencias.	237

Capítulo VI: Intensidades Espectrales de las elpasolitas Cloradas

	de Dy (+3) y Ho (+3)	241
VI.1	Palabras preliminares.	242
VI.2	Introducción.	249
VI:3	Elpasolitas $Cs_2NaDyCl_6$ y $Cs_2NaHoCl_6$.	258
VI.4	Intensidades Espectrales. Modelo de 7-átomos.	260
VI.4.1	Espectro electrónico y análisis de campo cristalino para el	
	ión $DyCl_6^{-3}$ en cristales del tipo elpasolitas.	262
VI.4.2	Intensidades vibrónicas. $Cs_2NaDyCl_6$. Modelo de 7-átomos.	272

VI.4.2.1 Energías para Transiciones Electrónicas.	277
VI.4.2.2 Intensidades espectrales.	279
VI.4.3. Intensidades vibrónicas. $Cs_2NaHoCl_6$. Modelo de 7-átomos.	285
VI.4.3.1 Sub-conjunto mínimo de funciones propias para el ión $Ho^{+3}(4f^{10})$.	288
VI.4.3.2 Estimaciones de intensidades espectrales. Modelo de 7-átomos.	293
VI.5 Resumen.	300
VI.6 Referencias.	303
Anexo I: Datos, parámetros y ajustes usados en capítulo II.	306
Anexo I.1 – Radios iónicos de lantánidos.	307
Anexo I.2 - Funciones para estimar parámetros de red (a)	
en función del radio iónico (r), para algunas series	
de elpasolitas.	308
Anexo I.3 - Datos experimentales para parámetros de red en elpasolitas	
estequiométricas.	309
Anexo I.4 Parámetros de red calculados en [pm] usando anexo I.2.	311
Anexo I.5 - Parámetro "x" del cristal.	312
Anexo I.6 - Polarizabilidades eléctricas de iones [A ³]	314
Anexo I.7 - Parámetros de Born – Mayer.	315
Anexo I.8 - Parámetros de Born Mayer para pares	
lantánido - halogenuro.	316
Anexo I.9 - Potenciales de ionización (primer, segundo y tercer	
potencial) para lantánidos.	319

Anexo I.10 - Potenciales de ionización (primer potencial) de	
metales alcalinos.	320
Anexo I.11 - Electroafinidades de Halógenos.	320
Anexo I.12 - Calores de disociación o de enlace.	321
Anexo I.13 - Calores de sublimación de metales.	321
Anexo I.14 - Cálculos de valores N _{eff} .	322
Anexo I.15 - Estimación de parámetros de Born – Mayer	
para el par lantánido – halogenuro.	323
Anexo I.16 - Referencias.	325

Anexo II: Coordenadas, Matrices y Cálculos

desarrollados para Capítulo V.	327
Anexo II.1 Definición de Coordenadas Internas.	328
Anexo II.2 Figuras representativas de constantes de Fuerzas.	331
Anexo II.3 Matrices representativas del subgrupo de las rotaciones.	344
Anexo II.4 Operaciones de Simetría sobre coordenadas internas.	346
Anexo II.5 Especies de simetría usando grupo de rotaciones,	
en coordenadas internas y cartesianas.	351
Anexo II.6 Tabla de Operaciones de Simetría.	374
Anexo II.7 Ejemplo de cálculo usando coordenadas " Δr " para T_1 .	375
Anexo II.8 Especies de simetría calculadas usando el Grupo de	
Generadores de Griffith.	378
Anexo II.9 Coordenadas generadas a partir de especies de simetría.	386
Anexo II.10 Coordenadas r' que generan matriz "Mp" de pasaje.	388

Anexo II.11.- Coordenadas de simetría usando coordenadas

r', normalizadas.	391
Anexo II.12 Coordenadas de Simetría usando coordenadas cartesianas.	392
Anexo II.13 Matrices necesarias para el calculo de F_{sym} y G_{sym} .	393
Anexo II.13a Matriz U en coordenadas internas (10x38).	393
Anexo II.13b Matriz de pasaje para coordenadas	
internas (Mp) (38x72).	394
Anexo II.13c Matriz F (72x72).	398
Anexo II.13d Matriz B (72x30).	402
Anexo II.13e Matriz G ⁻¹ (30x30).	403
Anexo II.13f Matrix UB (10x30).	403
Anexo II.14 Cálculos necesarios para obtener F_{sym} y G_{sym}	404
Anexo II.15 Matrices G_{sym} para distintas elpasolitas	
del tipo $Cs_2NaLnCl_6$.	405
Anexo II.16 Anexo de Matriz "F" simetrizada (F_{sym}),	
enumerando sus elementos.	410
Anexo II.17 Datos experimentales necesarios para la obtención	
de las matrices de Energía Potencial.	413
Anexo II.17a Tabla de datos de número de onda (cm ⁻¹)	
en elpasolitas $Cs_2NaLnCl_6$.	413
Anexo II.17b Tabla de datos de valores propios de	
$GF = H$ en elpasolitas $Cs_2NaLnCl_6$.	414

Anexo II.18.- Matrices de Energía potencial. 415

Anexo II.19 Cálculo de valores de L.	422
Anexo II.20 Consideraciones para el cálculo de PED	
para sistemas de dimensión dos o cuatro.	429
Anexo II.21 Cálculos PED para simetría T _{2g} .	431
Anexo II.22 Cálculos PED para simetría T _{1u} .	438
Anexo II.23 Cálculo elementos "L" para bloques de 1 x 1	
(Simetrías A_{1g} , E_g , T_{1g} y T_{2u}).	461
Anexo II.24 Cálculo de diferencias de constantes de fuerza.	462
Anexo III: Álgebra tensorial para átomos e iones libres.	474
Palabras Preliminares.	475
Anexo III.1- Introducción.	476
Anexo III.2 Operadores de Rotación y Spinores.	477
Anexo III.2.1- Operadores de Rotación.	477
Anexo III.2.2 Spinores.	485
Anexo III.3 Tensores Irreductibles y evaluación de	
elementos matriciales.	490
Anexo III.3.1 - Operadores Tensoriales unitarios de Racah u ^k .	496
Anexo III.3.2 Coeficientes de parentesco fraccionario	
y número de señoridad.	500
Anexo III.3.3 – Operadores y productos tensoriales.	508
Anexo III.4 Diagonalización de la matriz de Energía.	515
Anexo III.4.1 Hamiltoniano no relativista.	515
Anexo III.4.4.1 Operadores monoelectrónicos.	515
Anexo III.4.1.2 Operadores bielectrónicos.	518

Anexo III.4.2 Interacción spin –órbita.	519
Anexo III.5 Referencias.	530
Anexo IV: Un modelo vibrónico combinado de campo	
cristalino – polarización de ligandos.	532
Palabras Preliminares.	533
Anexo IV.1 Método Vibrónico de campo cristalino – Sin clausura.	534
Anexo IV.1.1 Introducción.	534
Anexo IV.1.2 Modelo Vibrónico.	540
Anexo IV.1.2.1 Componente de Campo Cristalino.	543
Anexo IV.1.2.2 Reducción de los elementos matriciales.	545
Anexo IV.1.2.3 Componente de polarización de ligandos.	548
Anexo IV.2 Intensidades vibrónicas en iones complejos	
Lantánidos centrosimétricos. Método Vibrónico	
de Campo cristalino – clausura.	551
Anexo IV.2.1 Introducción.	551
Anexo IV.2.2 Método de cálculo. Aproximación vibrónica	
campo cristalino – clausura.	553
Anexo IV.2.2.1 Esquema simetrizado.	557
Anexo IV.2.2.2 Esquema no simetrizado.	561
Anexo IV.3 Referencias.	564

Anexo V: Referencias

Publicacion 1: "Metodos Vibronicos Generalizados: Aplicaciones	
a sistemas del tipo elpasolitas estequiométricas	
$Cs_2NaLnCl_6$ ", R.Acevedo, <u>A.Soto-Bubert</u> , T.Meruane,	
Rev.Mex.Fís, 54 (1), 330 (2005).	621

Publicación 2: "Síntesis y caracterización estructural de las elpasolitas estequiométricas de Dy^{3+} y Ho^{3+} ", G.Navarro, R.Acevedo, <u>A.Soto-Bubert</u>, V.Martín, Rev.Méx.Fís, **51**(1), 5-13 (2005) 640

Publicación 3: "Spectral intensities for the emissions $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle$

in the *Cs*₂*NaErCl*₆", R.Acevedo<u>, A.Soto-Bubert</u>, G.Navarro, T.Meruane, W.Strek, Acta Physica Polonica A, **105**(3), 233-251 (2004).

Anexo VII: Artículos en progreso, 2006.

668

Publicación 1: "A New Approach and Some Criteria to deal with the Theory	
of the Normal Modes of Vibrations in the Elpasolite Stroichiometric	
type Systems. Short Range Intramolecular Interactions",	
Roberto Acevedo, Andrés Soto-Bubert, Paul Bosch, W. Strek	669
Anexos Publicación 1.	692
Apéndice I: Symmetrized crystal field coupling constants,	
in units of $R_0^{-(J+2)}$	758

Apéndice II: Ligand Polarisation Vibronic Coupling Constants

$$B_{kt}^{\Gamma\gamma,\alpha}(i,\tau)$$
 in units of $-\overline{\alpha}_L R_0^{-(i+3)}$ 761

Apéndice III: The crystal field parameters $P_{qk}^{\overline{\Gamma}\overline{\gamma}}\left(T_{1}\Gamma \,|\, i, \tau\right)$

in unit of
$$\left[\frac{e^2 r^{(i+1)}}{\sqrt{3(2i+1)}}\right]$$
772

Apéndice IV: Elementos de matriz reducido no nulos para

transiciones electrónicas
$$f \rightarrow f$$
. 785

Índice de Ilustraciones y cuadros.

Capitulo II.

Figura 1. Cristal en una dimensión	21
Figura 2. Cristal NaCl	23
Figura 3. Suma de Ewald en el cristal de CsCl.	34
Figura 4. Número efectivo de electrones versus número atómico.	51
Figura 5. Cristal en dos dimensiones.	53
Figura 6. Parámetros "x" y "a" en Elpasolitas estequiométricas.	58
Figura 7. Energía de Madelung versus "x" y "a".	60
Figura 8. Constante de Madelung obtenida usando el método de	
Ewald y su dependencia de " α " para el cristal $Cs_2NaDyCl_6$.	67
Figura 9. Tiempo versus alfa.	68
Figura 10. Ciclo termoquímico de Born – Haber para	
elpasolitas estequiométricas.	70
Figura 11. $A_{cristal}[x]$ para elpasolitas.	82

Capítulo V.

Figura (a). Número atómico (Z) versus diferencia de constantes

de Fuerza (Dif. F).

Figura (b). Número atómico efectivo (Z _{eff}) versus diferencias de	
constantes de Fuerza (Dif F)	235
Figura (c). Radio Iónico en elpasolita (R.I.) versus diferencias de	
constantes de fuerzas (Dif. F.)	235
Figura (d): Radio iónico (R.I.) (sistema periódico) versus diferencias	
de constantes de fuerzas (Dif. F.)	236

Capítulo VI

Figura1. Diagrama de correlación energético para el caso de tierras

raras trivalentes en $LaCl_3$. El ancho de un nivel representa la ruptura

Figura 2. Elpasolita. Grupo espacial. $Fm3m(O_h^5)$ 248

Figura 3. Elpasolita en disposición octaédrica. 250

Figura 4: Temperaturas de transición de fases para elpasolitas del

tipo
$$Cs_2NaLnX_6$$
, $X = Cl, Br$ 253

Figura 5. Espectro de luminiscencia a
$$20K$$
, $Cs_2NaGdCl_6$: $DyCl_6^{-3}$. 278

Figura 6: Espectro
$$Cs_2NaGdCl_6$$
 : $HoCl_6^{-3}$ a 13 K. 299

RESUMEN

En este trabajo de tesis, hemos abordado el problema general relacionado con la formulación de modelos, métodos y estrategias de solución de sistemas de N - cuerpos en espectroscopia del estado sólido. Para estos efectos, hemos seleccionado esencialmente los sistemas $Cs_2NaDyCl_6$ y $Cs_2NaGdCl_6:HoCl_6^{-3}$, los cuales pertenecen al grupo espacial $Fm3m(O_h^5)$. Para estos sistemas y otros relacionados, disponemos de una masa de datos experimentales de calidad (alta resolución y reproducibilidad), no obstante, necesariamente incompleta. El material trabajado en el transcurso de esta tesis, responde a un barrido amplio tanto en la caracterización e identificación estructural de los materiales como también en las bases teóricas de modelos generalizados de intensidades espectrales.

La experiencia previa en estos sistemas, sugiere la necesidad de incorporar en forma explícita las interacciones de corto, mediano y largo alcance en la matriz dinámica $D(\vec{k})$, lo cual supone un arduo trabajo en la puesta a punto de potenciales, del tipo Born - Mayer - Buckingham y en la modelación y descripción de los modos normales para el cristal. Nuestro análisis comprende un estudio y trabajo crítico en potenciales de interacción para cristales iónicos, aspectos formales de la interacción radiación - materia, teoría y espectroscopia molecular, modos normales de vibración para un cristal del tipo elpasolita y finalmente estudios acuciosos de intensidades espectrales, en sistemas particularmente complejos. Hemos seleccionado transiciones electrónicas, las cuales no son puras y corresponden a superposiciones de dos o más de ellas, con una estructura vibrónica complicada cercana a los orígenes del tipo dipolo magnético. Nuestro estudio concluye con una serie de propuestas científicas, a nuestro entender relevantes, en diversos aspectos tanto en termodinámica de cristales del tipo elpasolitas, criterios para la obtención de la matriz de energía potencial, con un análisis riguroso de las condiciones de borde tanto físicas como matemáticas, concluyendo con cálculos de alta complejidad y sugerencias mecanísticas para la comprensión y racionalización de las intensidades espectrales observadas. Se señalan estrategias a seguir para acomodar estos procesos complejos, en un modelo físico - matemático razonable para estos sistemas.

CAPITULO I

INTRODUCCION

I.1- PALABRAS PRELIMINARES

Existe un conjunto de materiales con propiedades luminiscentes importantes, base de nuevos dispositivos de luminosidad, en particular nos referimos a familias de cristales constituidos por iones lantánidos y subsistemas de origen y naturaleza fosforados. Este trabajo de tesis, está diseñado para avanzar nuestro conocimiento en la comprensión de fenómenos ópticos, los cuales son abordados utilizando técnicas en óptica lineal (electrónico, infrarrojo y vibracional) y no lineal (espectroscopía Raman y espectroscopía de dos fotones en experimentos de uno y de dos colores). Se trata de un área de las Ciencias, particularmente importante por su interés tanto académico como en el área de las aplicaciones tecnológicas. En consideración a estos antecedentes y a la exigencia intelectual inherente a problemas en óptica lineal y no lineal en materia condensada, se ha decidido dar un paso más hacia la comprensión de estos fenómenos de decaimiento radiativo y no radiativo, en sistemas para los cuales existe una masa interesante (aunque insuficiente) de datos experimentales de alta precisión y reproducibilidad.

Se desea abordar esta temática, generalizando los modelos y los métodos de cálculo, intentando seleccionar sistemas con propiedades

luminiscentes importantes. Por razones prácticas, este trabajo, será debidamente acotado, sin que esto signifique pérdida de rigurosidad como tampoco de generalidad. Los sistemas en particular escogidos para este estudio son del tipo $Cs_2NaLnCl_6$, con iones lantánidos trivalentes (Ln^{+3}) , tales como: $Dy^{3+}(f^9)$ y $Ho^{3+}(f^{10})$, en sitios de simetría esencialmente octaédricos, hexa-coordinados con iones cloruros y con contraiones del tipo Cs^+ (tetraédricos con respecto a los clusters $LnCl_6^{-3}$) y Na^+ (octaédricos con respecto a los clusters $LnCl_6^{-3}$).

Desde un punto de vista experimental, la síntesis y caracterización estructural de estas elpasolitas ha sido reportada en diversos trabajos **[1, 2, 3]**. A nivel experimental, y con relación a las elpasolitas cloradas de $Dy^{3+}(f^9)$ y de $Ho^{3+}(f^{10})$, hemos informado la síntesis de estas estructuras cristalinas. Estos procesos han sido llevados a cabo por medio de una reacción de estado sólido, obteniendo las temperaturas óptimas de cristalización para estas muestras policristalinas **[1, 4, 5]**.

El análisis estructural de estas muestras, se realizó por medio de técnicas de difracción de rayos X y de neutrones. De igual forma, se cuenta con perfiles de Rietveld de los cuales con el empleo de métodos y algoritmos conocidos, se procedió a la obtención de una masa de datos estructurales de alta precisión y reproducibilidad.

Adicionalmente para estos sistemas, existe en la literatura información espectroscópica de alta resolución, para diversos sistemas de interés en espectroscopía del sólido **[6 - 9].** Para los cristales (a) $Cs_2NaGdCl_6:DyCl_6^{3-}$ y (b) $Cs_2NaDyCl_6$ se dispone de espectros de absorción, en el rango de temperaturas entre 5-300 K. Como resultado de estos esfuerzos experimentales, es posible mencionar que para el sistema de $Dy^{3+}(f^9)$, se dispone de un conjunto de 40 niveles de energías, asignados e identificados con una precisión razonable. La situación es, en principio, más auspiciosa para el sistema $Cs_2NaHoCl_6$, para el cual disponemos de un conjunto de 61 niveles de energía de alta precisión **[10 - 15].** Las desviaciones cuadráticas medias reportadas para las elpasolitas de Dy^{3+} y Ho^{3+} del orden de 14,60 cm^{-1} y 13,20 cm^{-1} respectivamente **[16].**

El interés y motivación de este trabajo de investigación, se fundamenta, básicamente en la racionalización de las intensidades espectrales observadas para estos sistemas, cuyos espectros de luminiscencia están dominados por un número muy significativo de transiciones vibrónicas.

Estas excitaciones se observan en las tres zonas principales: (a) baja energía (fonones), (b) energía intermedia (acoplamiento ión – fonón) y (c) alta energía (excitaciones del ión complejo; $LnCl_6^{-3}$). A la fecha de este trabajo de investigación, es posible anticipar que lo realizado ha estado dominado por el

estudio de la zona de alta energía, por cuanto los picos espectrales más intensos corresponden a excitaciones electrónicas asociadas al cluster $LnCl_6^{-3}$, permitidas por un mecanismo vibrónico (con la participación explícita de los modos normales de vibración impares del ión complejo).

Diversas manifestaciones experimentales y desviaciones del comportamiento espectral esperado nos conducen a una reformulación de los modelos y métodos de cálculo **[17 - 20]**, siendo necesario la introducción de una variedad de términos de acoplamiento **[21 - 29]**, provenientes básicamente de la zona de energías intermedias., es decir, resultantes del acoplamiento ión-fonón.

Estamos enfrentados a una etapa superior de esfuerzo y rigor, siendo el objetivo maestro la racionalización de fenómenos físicos en diversas áreas de interés en espectroscopia del estado sólido y sus diversas manifestaciones, experimentales y teóricas.

Adicionalmente es del caso mencionar que nuestra proyección contempla en forma natural, actividades temáticas y protocolos regulares y expeditos para sentar las bases hacia una colaboración científico-tecnológica, cuyos objetivos potenciales sean la fabricación y ensayo de nuevos materiales (interés básico y aplicado), introducción de nuevos modelos físicos y nuevos desarrollos en esquemas de cálculo.

Resulta interesante avanzar en el estudio formal de sistemas variados del tipo: $M_2BB'Z_6, M_2B_XB'_{1-X}Z_6, M_2BZ_6: B'Z_6$ y BX_3 , donde B, B' son lantánidos (estado de oxidación +3), M^{+1} es un metal alcalino, Z^{-1} es un ión halogenuro y X^{-1} corresponde a un ligando bi-dentado de origen orgánicofosforado.

En el transcurso de este trabajo, se realizarán cálculos explícitos, incluyendo interacciones de corto y de largo alcance para sistemas del tipo estequiométricas, tales $Cs_2NaLnCl_6$, elpasolitas como: donde $Ln^{3+} = Dy^{3+}, Ho^{3+}$. Durante el transcurso de la investigación y a propósito de la construcción de la matriz dinámica D(k), las interacciones de largo alcance fueron consideradas como la suma de tres contribuciones: Born, Van der Waals y Coulómbicas. Con estos datos se realizó un barrido por familias de elpasolitas con ligandos del tipo Fluoruro, Cloruro y Bromuro y con lantánidos caracterizados por valores del número atómico en el rango $57 \le Z \le 71$. Las familias estudiadas son: (a) Cs_2NaLnF_6 , (b) Cs_2KLnF_6 , (c) Rb_2NaLnF_6 , (d) $Cs_2NaLnCl_6$ y (e) $Cs_2NaLnBr_6$. Motivados por los resultados obtenidos, se procedió al cálculo de las energías reticulares asociadas a estos sistemas. Adicionalmente, a partir de valores de energía de disociación, potenciales de ionización, electro-afinidades y los valores calculados de energías reticulares, se procedió a establecer un ciclo termoquímico del tipo Born-Haber y al cálculo de los calores de formación para estos sistemas cristalinos. Los valores obtenidos, en nuestra mejor comprensión del tema y conocimiento no han sido reportados, lo cual constituye un aporte de importancia relativa interesante en este trabajo.

Una próxima etapa consiste en la introducción de las interacciones de corto alcance. La experiencia previa en este grupo de investigación, estuvo focalizada en el sistema cristalino Cs_2UBr_6 [24], el cual pertenece al grupo espacial $Fm3m(O_h^5)$. Para este sistema, la elección más apropiada de campo de fuerzas vibracional, compatible con la masa disponible de datos experimentales, correspondió a un campo mixto del tipo MUBFF-MVFF (Modified Urey-Bradley y Modified Valence Force Fields). Estos desarrollos, tanto a nivel de formulación de modelos como de estrategias de cálculo, precisa de una generalización de envergadura para el caso de cristales estequiométricos del tipo elpasolitas. Esta tarea, nos permitirá indagar en los complejos mecanismos de decaimiento radiativo, asociados a emisiones desde estados excitados al fundamental y proponer cascadas de decaimiento, de manera de dar una interpretación física a aspectos mecanísticos. Se trata, en consecuencia, de avanzar en los factores electrónicos y vibracionales, cuyo módulo al cuadrado determina las velocidades de decaimiento.

Al respecto, resulta vital modelar campos de fuerzas vibracionales, lo suficientemente flexibles y generales, capaces de considerar en forma explícita interacciones mixtas de corto alcance (en la primera, segunda y tercera esfera de coordinación) con una consideración explícita al estado electrónico en cuestión. Para estos efectos, es preciso ser cuidadoso en el nivel de aproximación a ser introducido por cuanto, consideraremos excitaciones electrónicas entre estados separados por una diferencia energética importante. Resulta directo, aseverar que esta tarea no es trivial y es preciso tener en cuenta, el efecto Duschinky, el cual puede ser detectado comparando los espectros de absorción y de emisión del cristal y experimentalmente sabemos que cuando la imagen especular entre estos dos espectros se pierde, entonces este efecto es operativo. Duschinsky (1937) sugirió que sí existen dos o más coordenadas normales de igual simetría y referidas al estado fundamental (caracterizadas por las frecuencias: $v_1, v_2,$).

En estas condiciones, las coordenadas normales del estado excitado corresponderán a rotaciones y translaciones de las correspondientes al estado basal y en la práctica observaremos frecuencias del estado excitado correspondientes a "mezclas", todo lo cual complica las asignaciones de los diversos picos espectrales. A nivel de las interacciones de largo alcance, deseamos establecer un nuevo criterio de convergencia para las sumas cristalinas en el espacio directo y recíproco, de modo de preservar la electro-

neutralidad de los cristales en estudio. En síntesis, podemos resumir las ideas anteriores de la forma que se indica:

Se trata en consecuencia de avanzar en la comprensión de los mecanismos de intensidades para procesos radiativos, en absorción y en estequiométricas emisión para las elpasolitas $Cs_2NaLnCl_6$, donde $Ln^{3+} = Dy^{3+}, Ho^{3+}$. De igual forma, revisar algunos objetivos específicos como los que se mencionan a continuación: (a) Cálculos en dinámica de cristales y diagonalización de la matriz dinámica, con inclusión de un campo de fuerzas vibracional mixto (Urey-Bradley y Valencial Generalizado) y de las interacciones de largo alcance, y (b) Generalización de los modelos de cálculo, introduciendo en la diagonalización de la matriz de energías para el cúmulo: $LnCl_{6}^{-3}$ ($Ln^{3+} = Dy^{3+}$, Ho^{3+}), configuraciones excitadas del ión lantánido.

La metodología a ser utilizada en el transcurso de esta tesis de grado es la que se esboza a continuación; desde un punto de vista teórico, será necesario proponer modelos físicos generales y lo suficientemente flexibles, capaces de acomodar una serie de correcciones relativistas, intrínsecas a los sistemas en estudio. Adicionalmente, se sugerirá modificaciones importantes para la descripción de las interacciones de corto y de largo alcance, todo lo cual supone la disponibilidad de un conjunto bastante completo de datos experimentales, provenientes de técnicas espectroscópicas (electrónica, vibracional, Raman, absorción de dos fotones y de análisis estructural). En esta área de Ciencia de los Materiales, existe una gran potencialidad, lo cual en el pasado reciente ha permitido llevar a cabo un seguimiento acucioso, de los diversos parámetros multipropósitos de control y de evaluación, en una área importante del conocimiento la cual dice relación con la obtención de nuevas rutas de síntesis, caracterización estructural y espectroscópica de estos nuevos materiales. Adicionalmente, y por razones de completitud se debe mencionar, el trabajo a ser realizado de modo de monitorear los procesos de síntesis y de caracterización estructural de estos materiales, para lo cual hemos realizado un conjunto significativo de esfuerzos en técnicas, tales como: análisis térmico diferencial (DTA/TGA), difracción de rayos X y difracción de neutrones, scaterring difuso de neutrones.

El esquema de trabajo y estrategia seguida, en el desarrollo de esta tesis es el que se esboza a continuación:

 (a) técnicas de diseño de tratamientos térmicos: análisis térmico diferencial y termogravimétrico.

(b) preparación y caracterización de nuevos materiales del tipo: $Cs_2NaLnCl_6$, donde $Ln^{3+} = Dy^{3+}$, Ho^{3+} .

(c) espectroscopia de materiales: IR, Raman y Luminiscencia.

(d) estudios de formas de líneas, intensidades y aspectos mecanísticos.

(e) efecto de la presión y de la concentración sobre los espectros de estos materiales, medidos en distintas condiciones de operación.

Algunas de estas tareas han sido realizadas exhaustivamente y otras, no obstante importantes, serán motivo de estudios posteriores, muy en particular lo referido al efecto de la concentración y de la presión. Esta área de la física de altas presiones, es muy motivadora y esfuerzos en este sentido se están haciendo en el grupo de investigación en el cual se inserta este trabajo de tesis.

Algunos resultados esperados son los siguientes:

Desde un punto de vista teórico, hemos logrado ciertos avances en temas diversos, entre los cuales podemos mencionar los siguientes:

(a) Análisis cuidadoso de las asignaciones espectrales realizadas por diversos autores y optimización de la elección de los datos, en conformidad con un criterio simple de reproducibilidad de éstos. Asignaciones alternativas y discusión de éstas en función de modelos teóricos a ser desarrollados e implementados para estos efectos, en etapas posteriores del proyecto. (b) Elección de los sistemas óptimos para el trabajo, básicamente en los casos de sistemas cristalinos cúbicos o ligeramente distorsionados. Modelación del hamiltoniano electrónico relativista, con inclusión de parámetros radiales, a ser ajustados de la base de datos experimentales.

(c) Técnicas de optimización (minimización de la desviación cuadrática media) y diagonalización de las matrices de energías, por especie de simetría para cada uno de los sistemas en estudio. Uso intensivo de las técnicas de tensores irreductibles y álgebras de Lie, para la clasificación inequívoca de los estados permitidos.

(d) Modelación de las interacciones de corto y de largo alcance. Construcción de la Matriz Dinámica.

(e) Evaluación de los elementos de matriz reducidos, en sistemas acoplados y relativistas, en función de parámetros a ser determinados por métodos semiempíricos.

(f) Estudio acucioso del acoplamiento entre las vibraciones internas y las externas en sistemas cristalinos cúbicos y complejos. Zona de interacción iónfonón e implicancias en el rol jugado por los modos normales promotores y aceptores correspondiente a los factores electrónicos y vibracionales, que determina los valores de las probabilidades en absorción y en emisión por unidad de tiempo y de volumen. (g) Interacciones del tipo Pseudo Jahn - Teller, en el caso de niveles energéticos no degenerados, cercanos energéticamente y de igual simetría. Efectos en los espectros y análisis de estos acoplamientos.

I.2 Referencias.

- [1] L. R. Morss, J. Fuger. Inorg. Chem, 8, 1433 (1969).
- [2] L.R.Morss, M.Siegal, L.Stenger, N.Edelstein. Inorg. Chem, 9(7), 1771(1970)
- [3] K.W.Bagnall, J.B.Laidler, M.A.A.Stewart. J.Chem.Soc. A, 133(1968)
- [4] R. Acevedo, B. Poblete, Powder Diffraction, **10**(4), 241(1995).
- [5] G.Navarro, R.Acevedo, A.Soto-Bubert, V.Martín. Rev.Méx.Fís, 51(1),5 (2005)
- [6] P. A.Tanner, Chem. Phys. Letters, 99(2,3), 213 (1985).
- [7] P. A.Tanner, J. Phys.Chem., 90, 5605 (1986).
- [8] P. A.Tanner, Chem. Phys. Letters, **132**(2), 116 (1986).
- [9] P. A.Tanner, Chem. Phys. Letters, 132(2), 106 (1986).
- [10] P. A.Tanner, J. Phys. Chem., Faraday Transaction 2, 82(8), 1367 (1987).

- [11] P. A.Tanner, J. Phys. Soc., Faraday Transaction 2, 83, 553 (1987).
- [12] P. A. Tanner, Chem. Phys. Letters, 145, 134 (1988).
- [13] M. Chua, P. A. Tanner, M. F. Ried, J. Luminescence, 58, 356 (1994).
- [14] M. Chua, P. A. Tanner, M. F. Ried, J. Luminescence, 60/61, 838 (1994).
- [15] P. A. Tanner, M. Chua, M. F. Ried, J. Alloys and Compounds, 225, 20 (1995).
- [16] P.A.Tanner, V.V.Ravi Kanth Kumar, C.K. Jayasankar, M.F.Reid. J. Alloys and Compounds, <u>215</u>, 349 (1994).
- [17] T. R. Faulkner, F. S. Richardson. Mol. Phys, 35, 1141 (1978).
- [18] T. R. Faulkner, F. S. Richardson. Mol. Phys, 36, 193 (1978).
- [19] T. R. Faulkner, F. S. Richardson. Mol. Phys, 38,1165 (1979).
- [20] M. F. Reid, F. S. Richardson. Mol. Phys, 51, 1077 (1984).
- [21] R. Acevedo, P. A.Tanner, T. Meruane, V. Poblete. Phys.Rev.B, 54(6), 3976 (1996).
- [22] R. Acevedo, G. Navarro, T. Meruane, P. A. Tanner, Y. Y. Zhao. Rev.Mex.Fis, 47(3), 245 (2001).

- [23] P. A. Tanner, R. Acevedo, O. F. Hurtado, T. Meruane. J.Alloys and Compounds, 323-324, 718 (2001).
- [24] R. Acevedo, E. Cortés, Theoretical Chemistry Accounts, 107, 187 (2002).
- [25] R.Acevedo. PhD.Thesis. University of London, 1981
- [26] R.Acevedo, S.O.Vásquez. An. Quím, 91 (7,8), 526 (1995)
- [27] R.Acevedo, Investigación y Ciencias (Edición en Español del Scientific American): pgs: 54-61. Enero, 2003. Prensa Científica.SA.
- [28] R.Acevedo, C.Portillo, G.Navarro, T.Meruane, Quantum Chemistry, 44, 509(2003).
- [29] R.Acevedo, A.Soto-Bubert, G.Navarro, T.Meruane, W.Strek, Acta Physica Polonica A, 105(3), 233(2004)

CAPITULO II

Potenciales de interacción en cristales iónicos.

Aplicaciones en termodinámica de elpasolitas estequiométricas.

II.1 - Introducción.

Para cristales iónicos, la energía de cohesión puede ser estimada sumando las energías, derivadas de las interacciones de largo alcance (C), energías del tipo Madelung. Este potencial de origen y naturaleza coulómbica depende básicamente del arreglo geométrico de las cargas electrostáticas y de las distancias relativas entre éstas. Otros modelos existentes contemplan términos adicionales originando modelos de cálculo físicamente razonables, con la inclusión explícita de términos del tipo Born-Mayer (B-M) y van der Waals De esta forma, en el caso de elpasolitas estequiométricas (VdW). C: B - M: VdW = (1/1): (1/6): (1/13)),cuociente demostraremos que el mostrando la necesidad de incorporar términos adicionales y distintos al Coulómbico, sí se desea calcular valores para las energía reticulares y calores de formación.

Con relación al potencial de campo cristalino, el cual es relevante al momento de estudiar la ruptura de la degeneración orbital accidental de las auto-funciones del hamiltoniano electrónico para l = 2(d) y l = 3(f), es posible utilizando argumentos simples de simetría y de paridad encontrar las combinaciones adecuadas de armónicas esféricas, debidamente ponderadas por valores de esperanza de la potencia k-ésima de r (módulo del vector relativo entre las distancias de los electrones y del núcleo). En principio, podríamos incluir estos términos en la partición y estimar en forma más acuciosa las

energías mencionadas en el párrafo anterior **[1, 2]**. Es relevante, en este punto de la discusión mencionar que un modelo más representativo debe necesariamente incorporar correcciones del tipo relativista. Este y otros temas relacionados con esquemas de cálculo más sofisticados no serán incorporados en los cálculos que desarrollaremos a lo largo de este Capítulo. Trabajaremos, en consecuencia con aquellos términos más representativos desde un punto de vista de la termodinámica clásica. En la sección a ser desarrollada, procederemos a particionar la función de hamilton en tres términos y procederemos a ilustrar la estrategia y los criterios de convergencias utilizados en cada uno de los casos. En función de estos cálculos, obtenemos valores de energías reticulares para familias variadas de elpasolitas y posteriormente, empleando un ciclo termoquímico del tipo Born-Haber, realizamos predicciones con relación a calores de formación.

II.2 Obtención de la Constante de Madelung

II.2.1 Potencial Coulómbico y Constantes de Madelung para cristales binarios.

Consideremos el esquema de cálculo para el potencial de largo alcance en el caso de un cristal iónico, bajo el supuesto básico que estamos trabajando

con cargas puntuales y que las interacciones entre estas cargas son de origen y naturaleza coulómbica. El potencial es de la forma:

$$V = \sum_{i < j} V_{ij} = \sum_{i < j} \frac{e^2}{4\pi\varepsilon_0} \frac{z_i z_j}{\rho_{ij}}$$
(2.1)

donde, z_i y z_j corresponden a las cargas asociadas a los iones i-ésimo y jésimo. De igual forma, ρ_{ij} , corresponde a la distancia relativa entre estos iones y ε_0 , se refiere a la permitividad en el vacío. Una expresión general, para el potencial coulómbico de un cristal binario, es de la forma:

$$V_{c} = \frac{e^{2} z_{+} z_{-}}{4\pi\varepsilon_{0} R} \sum_{i < j} \frac{1}{r_{ij}}$$
(2.2)

En la expresión anterior, R representa una suerte de distancia de referencia, respecto a la cual se evalúa la sumatoria a lo largo de las tres direcciones de polarización. Se trata de una constante con dimensiones de distancia, de forma tal que r_{ij} , resulta ser adimensional y es homologado con las coordenadas reducidas en el cristal. De este modo se cumple que $Rr_{ij} = \rho_{ij}$. Adicionalmente, el término A $= \sum_{i < j} \frac{1}{r_{ij}}$, representa la suma de la serie de términos en tres dimensiones, de todas las interacciones posibles de los iones involucrados, excluyendo la interacción del ión consigo mismo.

La expresión anterior es válida para cristales cuya fórmula empírica es del tipo AB(s). La sumatoria a lo largo de las tres direcciones de polarización de los recíprocos de los vectores reticulares es conocida como constante de Madelung. En su cálculo se utiliza un valor tal de R, correspondiente a la distancia más pequeña entre el catión y el anión en el cristal. Existen otras posibilidades, tales como el de emplear el parámetro de red de un cristal como unidad de distancia. Este camino, conduce a un valor distinto para la constante de Madelung, lo cual significaría redefinir los parámetros reticulares r_{ij} [3]. En definitiva, el criterio debe ser que, con independencia del método utilizado, el valor de la energía reticular debe ser invariante, cuestión que siempre se cumple en todos los cálculos teóricos realizados.

Introduzcamos una generalización de la constante de Madelung, de la sección anterior, válida para cualquier cristal.

$$V_c = \frac{e^2}{4\pi\varepsilon_0 R} \sum_{i < j} \frac{z_i z_j}{r_{ij}} = -\frac{e^2}{4\pi\varepsilon_0 R} A'$$
(2.3)

expresión en la cual: A' = $-\sum_{i < j} \frac{z_i z_j}{r_{ij}}$. La identidad anterior, es válida para cualquier cristal iónico y será empleada en cálculos en sistemas complejos del tipo elpasolitas estequiométricas de la forma: A_2BLnX_6 .

II.2.2 Cristal mono dimensional.

A modo ilustrativo consideremos una situación correspondiente a un cristal del tipo AB, a lo largo de un eje de coordenadas Cartesiano. El objetivo de este ejemplo, es ilustrar la metodología de cálculo para la constante de Madelung, situación que en este caso nos conduce a un cálculo exacto, ver fig.1. Se trata de una cadena lineal de dimensión infinita con un arreglo alternado de cargas positivas y negativas. En este ejemplo, R se refiere a la distancia óptima entre un catión y un anión a lo largo de la cadena.

Figura 1: Cristal en una dimensión.

Es directo, encontrar la contribución coulómbica a la energía reticular, la cual adopta la forma:

$$V_c = 2 \frac{e^2}{4\pi\varepsilon_0} \frac{z_+ z_-}{R} \left[\left(\frac{1}{1}\right) - \left(\frac{1}{2}\right) + \left(\frac{1}{3}\right) - \left(\frac{1}{4}\right) + \dots \right]$$

Las sumas reticulares, con respecto del átomo de referencia son exactamente iguales a la izquierda y a la derecha de éste, lo cual justifica la aparición del factor "2". La constante A adopta la forma:

$$A = 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) = 1,38629$$

donde, hemos utilizado la propiedad: $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$,

II.2.3 Cristal binario: NaCl (s).

Para el cristal halita, NaCl (ver fig.2), la serie para la constante de Madelung que describe este cristal, donde R corresponde a la distancia menor $Na^+ - Cl^-$, se obtiene la expresión:

$$V_c = -\frac{e^2}{4\pi\varepsilon_0 R}AN_0 \qquad (2.4)$$

En la expresión anterior, A es la constante de Madelung y N_0 es el número de Avogadro. En este sentido, la expresión anterior corresponde a la contribución coulómbica a la energía de cohesión en unidades de energía / mol.
Figura 2: Cristal de NaCl.

(Figura generada con ayuda del software Crystalline Solids)

Dada la estructura del cristal de NaCl, es directo encontrar la constante de Madelung, de acuerdo a la expresión que se indica a continuación:

$$A = \left(-\frac{6}{1} + \frac{12}{\sqrt{2}} - \frac{8}{\sqrt{3}} + \frac{6}{\sqrt{4}} - \frac{24}{\sqrt{5}} + \frac{24}{\sqrt{6}} - \dots\right) = 1.74756$$

Los datos experimentales de difracción de rayos X (DRX), nos indican que la distancia $Na^+ - Cl^-$ es $R = 2,798 \stackrel{0}{A}$, y el valor de la energía de cohesión es [1]:

$$E_{coulomb} = -868 \frac{kJ}{mol}$$

Existen algunas limitaciones al llevar a cabo sumas sobre cristales en los cuales se observa una alternancia de signos para las cargas. Este problema aparece para cristales distintos a la halita (NaCl). Un buen ejemplo es el correspondiente al cristal de Cloruro de Cesio (CsCl), en el cual el método utilizado para NaCl simplemente colapsa. Cálculos realizados en nuestro laboratorio, siguiendo la metodología empleada para la halita nos conducen a un valor erróneo del orden de 0.4 para el Cloruro de Cesio, no obstante el valor aceptado es 1,76267. En otras situaciones, la estrategia elegida para realizar las sumatorias sobre los cationes y aniones puede llegar a ser muy relevante, no excluyéndose la posibilidad de divergencias. Otro inconveniente, que hemos observado dice relación con el hecho que las sumatorias pueden converger muy lentamente, produciendo un costo computacional mayor, el cual puede ser evitado.

II.2.4 Breve reseña histórica de métodos empleados para evaluar las Constantes de Madelung.

Madelung, propuso un modelo para la determinación de la constante que lleva su nombre **[4]**. Adoptó como estrategia, el representar un cristal utilizando un arreglo periódico de cargas alternadas en dos o tres dimensiones, de

dimensión infinita. Otros métodos han sido desarrollados en la literatura, de los cuales, los más relevantes son los que se indican a continuación:

a) Ewald **[5]**, introdujo un potencial electrostático, usando la idea de estructura de redes de Bravais, en forma tal que cada una de las celdas puede ser considerada eléctricamente neutra con una distribución uniforme de cargas. En este enfoque, el espacio es particionado en dos sub-espacios; directo y recíproco.

b) Kendall [6], reordenó los términos constitutivos de la sumatoria de las series, de forma tal que éstas converjan en forma más rápida, para lo cual introdujo un modelo de capas eléctricamente neutras (esferas de coordinación cristalinas). Cuando se emplea este enfoque aumenta en forma importante, la convergencia de la serie en el espacio directo, con relación a la metodología propuesta por Madelung.

c) Vejen [7] y otros, particionaron el cristal en capas concéntricas eléctricamente neutras, en torno a un ión central (referencia).

d) Frank [8], dividió el cristal en celdas del tipo Wigner-Seitz y supuso los vértices de cada uno de los arreglos geométricos como cargas fraccionales ficticias, de modo de alcanzar la electroneutralidad, en el centro.
 Como los vértices de estos poliedros se comparten con celdas vecinas,

25

entonces la distribución de cargas, en un cristal infinito se mantiene inalterada. **[3]**. En las secciones venideras, desarrollaremos el método de Ewald y sus aplicaciones a cristales, tales como: *CsCl*. Este sistema, ilustra la mejor aproximación al cálculo de la constante de Madelung, por un método distinto al empleado en el caso del *NaCl*, para el cual se empleó un cálculo del tipo Madelung.

Adicionalmente, podemos argumentar que el cristal (halita), puede ser evaluado con la misma eficiencia y con una precisión mayor que el cálculo ilustrado en la sección II.2.3

II.2.5 Método de Ewald. [9, 10]

La determinación de la energía electrostática total en un cristal, requiere de un procedimiento por medio del cual, se sumen todas las interacciones atractivas y repulsivas entre los iones constituyentes. Supongamos que el cristal tiene un total de n- átomos por celda, existiendo particiones de "k" tipos de átomos de modo tal que $\sum_{i=1}^{k} n_i = n$. Acá, n_i corresponde al número de átomos del tipo i-ésimo, en una celda dada con cargas Z_i . La única restricción es que debe satisfacerse el Principio de electroneutralidad, es decir:

 $\sum_{i=1}^{k} n_i Z_i = 0$. Adicionalmente, sí existen N_L celdas representativas de la red y N_f fórmulas por celda, entonces el número total de fórmulas en el cristal será $N_L N_f$ y por lo tanto, el total de átomos nN_L . Es corriente, utilizar los vectores de Bravais \vec{R}_{K} para especificar cada celda cristalina, y los vectores \vec{r}_{ij} nos permiten explicitar las distancias relativas entre los átomos i-ésimo y j-ésimo en la misma celda. Procederemos a designar por R, la distancia más pequeña, entre los iones en cuestión, y designemos por ρ a un parámetro adicional, de modo de escribir una expresión general para la energía del cristal como se indica a continuación. En la expresión para la energía de Coulomb, es conveniente observar que el parámetro ρ depende paramétricamente de la distancia $\overrightarrow{R_k} + \overrightarrow{r_{ij}}$, es decir, escribimos: $\left| \overrightarrow{R_k} + \overrightarrow{r_{ij}} \right| \approx R \rho \left[\overrightarrow{R_k} + \overrightarrow{r_{ij}} \right]$. Considerando la argumentación anterior, es directo, no obstante relativamente complejo, encontrar una expresión general para la contribución coulómbica a la energía del cristal [9].

$$E_{coulomb} = \frac{N_L}{4\pi\varepsilon_0} \frac{e^2}{R} \left\{ \frac{1}{2} \sum_{i=1}^n \left[\sum_{\substack{j=1\\j\neq i}}^n \frac{Z_i Z_j}{\rho(\vec{r}_{ij})} + \sum_{k=1}^{N_L-1} \left[\sum_{j=1}^n \frac{Z_i Z_j}{\rho(\vec{R}_k + \vec{r}_{ij})} \right] \right] \right\}$$
(2.5)

27

En la expresión anterior, se multiplica por N_L por cuanto existe igual número de sumas idénticas en cada punto del cristal, en la representación de Bravais. El primer término, considera la sumatoria de todas las interacciones de los átomos en la celda de referencia, en cambio el otro término corresponde a una sumatoria global sobre todas las celdas restantes. En función de esta expresión, la constante de Madelung adopta la forma general **[9]**:

$$A = \frac{1}{2} \sum_{i=1}^{n} \left[\sum_{\substack{j=1\\j\neq i}}^{n} \frac{Z_i Z_j}{\rho(\vec{r}_{ij})} + \sum_{k=1}^{N_L - 1} \left[\sum_{j=1}^{n} \frac{Z_i Z_j}{\rho(\vec{R}_k + \vec{r}_{ij})} \right] \right]$$
(2.6)

La identidad anterior, es una expresión matemática de utilidad para el cálculo de estas constantes en cristales iónicos, sin embargo, la convergencia es lenta con un alto costo computacional. La suma directa puede aplicarse con éxito a situaciones relativamente simples en las cuales los cristales pertenecen a grupos espaciales de alta simetría.

A esta altura de la discusión es relevante introducir el método debido a Ewald, el cual proporciona, en general, una convergencia más rápida por el simple expediente que parte de la suma se realiza sobre la denominada red reciproca. De esta forma, en lugar de calcular sumatorias de términos en $\frac{1}{r}$, en cambio la suma se lleva a efecto sobre términos del tipo $\frac{1}{K^2}$. En este método, el cristal es representado como un conjunto de cargas puntuales discretas, resultantes de la superposición de dos distribuciones de cargas continuas.

En este modelo, la primera distribución se asocia a un cristal periódico de gausianas positivas, neutralizadas por una carga negativa homogénea y constante, en cambio la segunda distribución se asocia, de igual forma a un cristal periódico de cargas puntuales positivas, neutralizada por una representación del tipo gausiana con signo negativo y centrado en los puntos del cristal. Todo lo anterior, se traduce en la práctica a una partición del cristal en dos términos; uno de ellos definido en el espacio recíproco (transformada de Fourier) y el otro corresponde a una sumatoria en el espacio directo.

El término correspondiente al recíproco de la distancia, es escrito de la forma que se indica [9]:

$$\frac{1}{r} = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-r^{2}t^{2}} dt = \frac{2}{\sqrt{\pi}} \left[\int_{0}^{\alpha} e^{-r^{2}t^{2}} dt + \int_{\alpha}^{\infty} e^{-r^{2}t^{2}} dt \right]$$
(2.7)

La expresión anterior, introduce en forma natural los conceptos de espacio directo y recíproco. De esta forma, el segundo término del miembro de la derecha es expresable en forma compacta, realizando un cambio de variable del tipo s = rt, de modo que podemos escribir [9]:

$$\frac{2}{\sqrt{\pi}}\int_{\alpha}^{\infty}e^{-r^{2}t^{2}}dt = \frac{erfc(\alpha r)}{r}$$
(2.8)

De acuerdo al valor de α , es posible en una primera aproximación obtener una idea con respecto al peso relativo de los dos términos. Así un valor de α pequeño, se privilegia la sumatoria en el espacio directo, en cambio para valores grandes de este parámetro la sumatoria sobre el espacio recíproco es más importante.

Para proceder a la evolución del recíproco de la distancia $(\frac{1}{r})$, la primera integral del miembro de la derecha de la ec (2.7), se realiza por medio de una transformada de Fourier, de forma tal que empleando el cambio de variables:

 $s = -\frac{K^2}{4t^2}$, podemos escribir la identidad [9]:

$$\frac{2}{\sqrt{\pi}}\int_{0}^{\alpha}e^{-r^{2}t^{2}}dt = \frac{1}{2\pi^{2}}\int_{-\infty}^{\infty}d^{3}K\frac{\exp\left(-\frac{K^{2}}{4\alpha^{2}}\right)}{K^{2}}\exp\left(-i\vec{K}\cdot\vec{r}\right)$$
(2.9)

Usando lo anterior, la constante de Madelung (A) puede ser escrita como una partición de dos términos, uno en el espacio directo y otro en el espacio recíproco de la forma:

$$A = A_{real} + A_{reciproco}$$
(2.10)

Es necesario identificar las coordenadas espaciales cartesianas por medio de $r_{n,i_1,i_2,i_3} = (x_{n,i_1,i_2,i_3}, y_{n,i_1,i_2,i_3}, z_{n,i_1,i_2,i_3})$ del *n*- ésimo ion en la celda unitaria definida por los vectores unitarios (i_1, i_2, i_3) . Lo anterior puede ser definido en función de coordenadas fraccionales de la celda unitaria (u_{n1}, u_{n2}, u_{n3}) y los tres vectores de translación de la celda unitaria a_j , donde:

$$a_{j} = (a_{jx}, a_{jy}, a_{jz}), \quad j = 1, 2, 3$$

$$r_{n, i_{1}, i_{2}, i_{3}} = (u_{1,n} + i_{1})a_{1} + (u_{2,n} + i_{2})a_{2} + (u_{3,n} + i_{3})a_{3} \quad (2.11)$$

La suma realizada en el espacio directo A_{real} está dada por la siguiente expresión [10]:

$$A_{real} = \frac{1}{2} \sum_{k=1}^{n_{max}} q_k \sum_{n=1}^{n_{max}} q_n \sum_{i_1=i_{min}}^{i_{max}} \sum_{i_2=i_{min}}^{i_{max}} \sum_{i_3=i_{min}}^{i_{max}} \frac{erfc(\alpha | r_k - r_{n,i_1,i_2,i_3} |)}{|r_k - r_{n,i_1,i_2,i_3}|}$$
(2.12)

La suma anterior se realiza sobre todos los términos no despreciables y excluye la interacción del ion consigo mismo en la celda de referencia. Los índices k y n se refieren a la numeración de iones en la celda unitaria, mientras

que los índices i_1 , i_2 e i_3 describen translaciones periódicas de la celda periódica a través de los ejes principales.

La suma de Ewald en el espacio reciproco está dada por [10]:

$$A_{reciproco} = \frac{1}{2} \sum_{k=1}^{n_{\max}} \frac{-q_k}{\pi V} \sum_{n=1}^{n_{\max}} q_n \sum_{m_1=m_{\min}}^{m_{\max}} \sum_{m_2=m_{\min}}^{m_{\max}} \sum_{m_3=m_{\min}}^{m_{\max}} \frac{Exp\left(\frac{-\pi^2 \left|f_{m_1,m_2,m_3}\right|^2}{\alpha^2}\right)}{\left|f_{m_1,m_2,m_3}\right|^2} \cdot Cos\left[2\pi f_{m_1,m_2,m_3} \cdot \left(r_k - r_{n,0,0,0}\right)\right] + \left\{\sum_{l=1}^{n_{\max}} \frac{-\alpha q_l^2}{\sqrt{\pi}}\right\}$$

$$(2.13)$$

En la expresión anterior, el volumen de la celda unitaria está dado por $V = a_1 \cdot (a_2 \times a_3)$. El vector f_{m_1,m_2,m_3} está dado por la expresión:

$$f_{m_1,m_2,m_3} = (m_1, m_2, m_3) \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$
(2.14)

Donde los tres vectores de la red reciproca están dados por:

$$\vec{b}_{j} \leftrightarrow \begin{pmatrix} b_{j1} \\ b_{j2} \\ b_{j3} \end{pmatrix}$$

siendo
$$\vec{b}_1 = \frac{\vec{a}_2 \times \vec{a}_3}{V}$$
, $\vec{b}_2 = \frac{\vec{a}_1 \times \vec{a}_3}{V}$ y $\vec{b}_3 = \frac{\vec{a}_1 \times \vec{a}_2}{V}$

Las velocidades de convergencia de las sumas directa y reciproca es controlada por el parámetro α . Una relación para el parámetro α , conveniente es:

$$\alpha = \left(\frac{n_{\max}}{8V}\right)$$
 (2.15)

donde n_{\max} es el número máximo de iones presentes en la celda unitaria.

Los valores de los parámetros i_{min} e i_{max} , que actúan como valores de corte para las sumatorias empleadas en la red directa, varían con el reciproco del valor escogido para α (ver ec. 2.12).

En cambio, para los valores de corte de la suma recíproca m_{\min} y m_{\max} sus valores varían en forma proporcional con el parámetro α . Todos los parámetros de corte, que intervienen en el cálculo dependen de la precisión "*a*"

que se desee y exhiben una dependencia logarítmica, del tipo $(\ln(-a))^{\frac{1}{2}}$ o $(\ln(-a))^{\frac{3}{2}}$, donde "*a*" es del orden de 10^{-4} .

Empleando el método de Ewald, se han realizado una serie de cálculos para distintos valores del parámetro α . En el caso del cristal de Cloruro de Cesio [*CsCl*], los resultados se muestran en la figura 3, donde se exhibe como varían las sumatorias sobre el espacio directo, recíproco y total (constante de Madelung).

La teoría sugiere para este caso un valor del parámetro $\alpha = 0,80$, de modo que el tiempo empleado para realizar el cálculo sea el menor. Sin embargo, se privilegió trabajar con un valor para α menor, situación en la cual

se observa que la suma en el espacio directo, tiene un peso significativamente mayor que la correspondiente al espacio recíproco. De esta forma, ha sido posible simplificar el cálculo, por cuanto es posible despreciar una cantidad importante de términos correspondientes a la sumatoria en el espacio recíproco,

observando que el término $-\sum_{i} \frac{2Z_{i}^{2}\alpha}{\sqrt{\pi}}$ no es, en absoluto despreciable y para efectos prácticos, el resto de los términos de la sumatoria resultan ser despreciables.

En virtud de lo señalado anteriormente, se eligió $\alpha = 0.2$, lo cual nos permitió observar que el cálculo en el espacio directo, para un intervalo del orden de 5 minutos, produce un valor de la suma total, con tres a cuatro decimales (criterio adoptado). Existen cálculos, en la literatura, para el sistema *CsCl* **[3, 11]**, lo cual nos garantiza que nuestros resultados son análogos a éstos. Resulta conveniente en este nivel de la discusión, señalar que la sumatoria en el espacio recíproco, bajo estas condiciones converge en forma prácticamente instantánea.

II.2.6 Suma de Ewald en el espacio directo.

Otra posibilidad consiste en calcular valores de la suma directa de Ewald para valores de alfa pequeños, ya que si este parámetro tiende a cero, el valor de la suma directa tiende al valor de la constante de Madelung. En la figura 3, es posible constatar la validez de la aseveración anterior. A modo de ilustración, consideremos el cristal de Cloruro de Cesio y la representación del término correspondiente a la suma sobre el espacio directo (excluyendo el recíproco) versus el parámetro α . La metodología a seguir fue la siguiente: (a) se escogen valores pequeños del parámetro alfa, comprendidos entre 0,1 y 1,0 con un paso de 0,1. (b) Para cada uno de estos valores del parámetro, obtuvimos el valor de la sumatoria sobre el espacio directo, obteniendo pares ordenadas de la forma [valores de la suma sobre el espacio directo, alfa] y (c) construimos funciones, capaces de ajustar los valores anteriores y las representamos como polinomios del tipo $E_1 = \sum_{i=1}^{4} a_i x^i$. Para valores en los cuales "x" (alfa) es cero se tiene el valor de la constante de Madelung M[0]. A continuación se presentan cuatro ajustes distintos ampliando la base de la serie de potencias usada.

Funciones M[x]:

$$\begin{split} M_1[x] &= -1.762673553 + 1.128368559 \cdot x + 0.000016412 \cdot x^2 \\ M_2[x] &= -1.762674600 + 1.128384119 \cdot x - 0.000045402 \cdot x^2 + 0.000071051 \cdot x^3 \\ M_3[x] &= -1.762675042 + 1.128393219 \cdot x - 0.000104291 \cdot x^2 + 0.000220016 \cdot x^3 - 0.000128418 \cdot x^4 \\ M_4[x] &= -1.762674754 + 1.128385789 \cdot x - 0.000037422 \cdot x^2 - 0.000049799 \cdot x^3 + 0.000370604 \cdot x^4 - 0.000344153 \cdot x^5 \end{split}$$

Se observa que en todos los casos las funciones otorgan 5 decimales exactos ajustando perfectamente a lo esperado. El valor de la constante de Madelung es en todas estas funciones -1.76267...

II.2.7 Función error [12]:

La función error que se relaciona con las integrales de Fresnel descrita por:

$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} dt$$

$$erfc(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^{2}} dt = 1 - erf(z)$$
(2.16)

es posible aproximarla utilizando la ecuación:

$$(0 \le x < \infty)$$

$$erf(x) = 1 - (a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5)e^{-x^2} + \varepsilon(x),$$
(2.17)

donde:
$$t = \frac{1}{1 + px}$$

y adicionalmente:

$$p = 0.3275911 \qquad a_1 = 0.254829592 \qquad a_2 = -0.284496736 \\ a_3 = 1.421413741 \qquad a_4 = -1.453152027 \qquad a_5 = 1.061405429$$

de modo tal que se cumple: $|\varepsilon(x)| \le 1.5 \cdot 10^{-7}$

II.2.8 Método del potencial coulómbico atenuado.

Consideremos la constante de Madelung "A", en la forma que se indica a continuación:

$$A(\alpha) = \sum_{i \neq j} \frac{e^{-\alpha r_{ij}}}{r_{ij}}$$
(2.18)

La exponencial, es una función matemática que acelera la convergencia de la serie, en estudio. La idea central consiste en el estudio del límite cuando el parámetro alfa tiende a cero y de esta forma obtener la constante de Madelung (valor que es representativo de la sumatoria). Una dificultad del cálculo reside en que el número de iones a ser considerados (número de celdas involucradas) depende del valor recíproco de alfa.

A continuación, supongamos al cristal como una colección de cubos concéntricos respecto de la celda de referencia (donde la celda unitaria sería la celda de radio cero) y modelamos el cristal de modo que los cubos que rodean inmediatamente a la celda unitaria (26 cubos) serían la capa de radio uno y así sucesivamente hasta la capa "n". Este método consiste en obtener la suma para el primer punto, por ejemplo donde $\alpha = 1$, y suponer para éste, un radio de esfera (o de cubo) del orden de N/α , donde este último valor debe truncarse a un número entero. Por ejemplo podría considerarse un valor de "N" igual a 8, lo cual asegura tomar puntos lo suficientemente distanciados y graficar alfa versus la constante de Madelung, $A(\alpha)$. Observemos que para $\alpha = 0.9$, el radio de esfera es 8.88, es decir 9, y para $\alpha = 0.1$, el radio de esfera es 80.

De este modo al calcular $A(\alpha)$, sobre alfas más pequeños, requiere un tiempo de computación mayor, cuando se emplea esta estrategia de cálculo. Mientras se obtengan puntos más cercanos a cero (para alfa), mayor cantidad de decimales se obtendrán para la constante de Madelung.

39

Es importante señalar que el número de decimales a obtener puede ser relevante para el trabajo de matemáticos cuyo interés es estudiar estas series y posibles relaciones numéricas entre éstas. Sin embargo, desde un punto de vista de la física y de la química, los valores experimentales difícilmente reportan mas de dos decimales para estimaciones de energías en cristales. Los cálculos de potencial coulómbico atenuado, son una vía de cálculo para estimar el término coulómbico de energía, pero resulta poco eficiente si se compara con el método de Ewald. A modo de ejemplo, en el caso del Cloruro de Sodio, es posible obtener 2 a 3 decimales, empleando una esfera de radio igual a ochenta, lo que se traduce en muchas horas de costo computacional usando este potencial atenuado. De usarse Ewald, este cálculo se realiza en pocos minutos. Lo anterior constituye un primer resultado al elegir un método de cálculo, sugiriendo como herramienta de cálculo el método de Ewald, dada su mayor precisión numérica y su mayor rapidez. No obstante lo anterior, se realizaron algunos cálculos con el potencial coulómbico atenuado, de modo de ilustrar algunos resultados y potencialidades del método.

En la Tabla 1, se informa una serie de cálculos realizados para el Cloruro de Sodio, usando diversos valores del parámetro alfa.

alfa	$A(\alpha)$
1.0	0.9346
0.9	0.9997
0.8	1.0682
0.7	1.1402
0.6	1.2158
0.5	1.2950
0.4	1.3780
0.3	1.4647
0.2	1.5552
0.1	1.6487

Tabla 1: $A(\alpha)$ versus α .

Se busca el valor de $A(\alpha)$ cuando $\alpha \to 0$. Esto se logra graficando los datos de la tabla 1. Por ejemplo si se elige como función base $a\alpha^2 + b\alpha + c = M(\alpha)$, se obtiene:

$$a = 0.1183$$
 $b = -0.995$ $c = 1.7469$

y por lo tanto, la constante de Madelung es con 4 decimales : 1,7469 [1,74756], donde el valor entre paréntesis se toma como exacto en la literatura **[3, 13]**.

Es posible obtener "A" para otros cristales como se observa en la tabla 2.

Cristal	A
NaCl	1.748
CsCl	1.763
CaF ₂ (fluorita)	2.519
Cdl ₂	2.355
Al ₂ O ₃	4.172
ZnS (wurtzita)	1.641
ZnS (Blenda de Zinc)	1.638
MgO	1.748

Tabla 2: Algunos valores de la constante de Madelung para cristales:

II.2.9 Algunas relaciones matemáticas de interés.

a) Para NaCl se han desarrollado algunas fórmulas para evaluar la constante de Madelung de esta sal [3]:

a.1) Fórmula de Benson – Mackenzie:

$$12\pi \left[\sum_{m=1}^{10}\sum_{n=1}^{10}\sec h \left[\frac{\pi}{2}\sqrt{(2m-1)^2 + (2n-1)^2}\right]^2\right] = 1.747564594633$$

a.2) Fórmula de Hautot (1974):

$$-\left(\frac{\pi}{2} - \frac{9}{2}\ln(2) + 12\sum_{m=1}^{10}\sum_{n=1}^{10}(-1)^m \frac{\csc h\left(\pi\sqrt{m^2 + n^2}\right)}{\sqrt{m^2 + n^2}}\right) = 1.747564594633$$

a.3) Fórmula de Hautot – Tiagi (2004) [14]:

$$2A_{NaCl} = A_{CsCl} + 6\sum_{m_1,m_2} \frac{\csc\left(\pi\sqrt{(2m_1+1)^2 + m_2^2}\right)}{\sqrt{(2m_1+1)^2 + m_2^2}}$$

b) Relaciones entre constantes de Madelung (atribuidas a Naor) [3]:

b.1) Basados en separación internuclear:

$$2A(CaF_2) = 4A(CsCl) + \sqrt{3}A(NaCl)$$
$$4A(ZnS) = 2A(CsCl) + \sqrt{3}A(NaCl)$$

b.2) Basados en el largo de la celda unitaria:

$$A(a, CaF_2) = 4A(a, CsCl) + A(a.NaCl)$$

$$2A(a, ZnS) = 2A(a, CsCl) + A(a, NaCl)$$

$$A(a, Li_3Bi) = 4A(a, CsCl) + 4A(a, NaCl)$$

b.3) Si se desea saber el valor de la constante de Madelung $A(\delta)$ respecto a la raíz cúbica del volumen molecular, se tiene:

$$A(a) = (z)^{\frac{1}{3}} A(\delta)$$

considerando, "z" como el número de fórmula por celda unitaria. Por su parte A(a) es la constante de Madelung relativa al tamaño de la arista de la celda cúbica.

Por ejemplo para NaCl, z = 4, A(a) = 3.495 y $A(\delta) = 2.201$

b.4) Para estructuras hexagonales (ej, wurtzita) es posible obtener la relación:

$$A(a,hcp) = \left(\frac{c}{a}\right)A(hcp)$$

$$con \quad \left(\frac{c}{a}\right) = \sqrt{\frac{8}{3}}$$

donde A(hcp) es la constante de Madelung referida a la distancia mínima entre contra iones.

Una tabla que ilustra cálculos con varios decimales para la constante de Madelung referida a la distancia mínima de contra iones A(s), a la arista del cristal (celda unitaria), A(a) y respecto a la raíz cúbica del volumen molecular $A(\delta)$, es la siguiente:

Tabla 3: Valores de las distintas constantes de Madelung para algunoscristales, con 15 decimales.

Cristal	A(s)	A(a)	$A(\delta)$
CsCl	1.762674773070991	2.035361509452598	2.035361509452598
NaCl	1.747564594633182	3.495129189266364	2.201793418829347
MgO	1.747564594633182	3.495129189266364	2.201793418829347
$\beta - ZnS$	1.638055053388791	3.782926104085781	2.383094114367239
CaF ₂	2.519392439924286	5.818287613538379	3.665291519319805
Cu ₂ O	2.221237604919478	10.25945703307504	5.129728516537521
Li ₂ O	2.519392439924286	5.818287613538379	3.665291519319805
NH₄F	1.64132162737196	2.68026699390387	1.47500777024735
$\alpha - ZnS$	1.641321627378	2.68026699390387	1.47500777024735

II.3. Potencial de repulsión de Born. [2]

En el modelo de esferas rígidas, para un cristal del tipo MX, la distancia $M^+ - X^-$ queda, en una primera aproximación, determinada por la suma de los radios del catión y del anión. Si el cristal es perfectamente iónico, la covalencia es nula. Sabemos que los átomos constituyentes no son esferas rígidas y que la distancia de equilibrio entre dos iones en el sólido corresponde a un compromiso óptimo entre las fuerzas de carácter repulsivo y de atracción, en el mínimo global de energías. De igual forma, la interacción entre los iones en estudio. Al respecto, Born, propuso un modelo en el cual la fuerza de repulsión puede ser representada por un término del tipo $\left(\frac{B'}{r^n}\right)$ donde los parámetros B' y n son característicos del par de iones en cuestión. Sí en un cristal se considera exclusivamente las contribuciones a la energía de origen coulómbico y la debida a Born, se obtiene una expresión del tipo:

$$U = \frac{Nz^+ z^- Ae^2}{4\pi\varepsilon_0 r} + \frac{NB}{r^n} \qquad (2.19)$$

La relación entre B y n, se obtiene suponiendo que el cristal en equilibrio $(r = r_0)$, satisface la condición que la energía debe corresponder a un mínimo

global. Al emplear un procedimiento de búsqueda de los puntos críticos obtenemos:

$$\left(\frac{dU}{dr}\right)_{r=r_0} = 0 = -\frac{Nz^+ z^- Ae^2}{4\pi\varepsilon_0 r_0^2} - \frac{nNB}{r_0^{n+1}}$$
(2.20)

con lo cual, se cumple:
$$B = -\frac{Az^{+}z^{-}e^{2}}{n4\pi\varepsilon_{0}}r_{0}^{n-1}$$
 (2.21)

Finalmente, al reemplazar se obtiene la conocida expresión para la energía del sistema la expresión a continuación:

$$U = \frac{Nz^{+}z^{-}e^{2}A}{4\pi\varepsilon_{0}r_{0}} \left(1 - \frac{1}{n}\right)$$
(2.22)

El valor numérico de "n" puede ser obtenido a partir de mediciones de compresibilidad en sólidos **[2]**. En las tabla 3, se entregan los valores del parámetro de Born "n" determinados experimentalmente y valores calculados por Pauling para gases nobles.

Tabla 3: Ejemplo de valores de "n".

Determinados experimentalmente		Determinados teóricamente	
Compuesto	n	Configuración del gas noble	
		que corresponde al ión	
LiF	5.9	Не	5
LiCl	8.0	Ne	7
LiBr	8.7	Ar	9
NaCl	9.1	Kr	10
NaBr	9.5	Xe	12

II.4 Potenciales de Born – Mayer y de Born – Mayer – Bückingham. [15, 16]

Al graficar un potencial U, en escala logarítmica versus la separación internuclear "r", existe siempre un rango de valores, $r_{inf} \leq r \leq r_{sup}$, en que la gráfica U(r) es lineal y el potencial puede ser expresado de la forma:

$$U_{ij}(r) = A_{ij}e^{-b_{ij}r} = A_{ij}e^{-\frac{r}{\rho_{ij}}}$$
(2.23)

Este potencial se conoce como potencial de Born – Mayer.

Los valores " A_{ij} " y " b_{ij} " son constantes para los átomos involucrados i-ésimo y j-ésimo, separados a la distancia r_{ij} , siempre y cuando el rango en el cual fueron determinados los valores de estos parámetros sea respetado.

Muchos autores **[15, 21]**, obtienen los parámetros A_{ij} y b_{ij} , tabulando valores para los elementos en forma individual de modo que se tiene A_i y b_i , representativos del átomo i-ésimo y así sucesivamente. En este modelo, los valores se estiman utilizando las expresiones que se indican a continuación:

$$A_{ij} = \sqrt{A_i A_j}$$

$$b_{ij} = \frac{b_i + b_j}{2}$$
(2.24)

II.5 Potenciales de Bückingham. Adición del potencial de Van der Waals.

Una extensión de este potencial es adicionar un término al anterior, sumando interacciones de tipo Van der Waals:

$$U(r_{ij}) = \frac{z_i z_j e^2}{4\pi\epsilon_0 r_{ij}} + A_{ij} \exp\left[-\frac{r_{ij}}{\rho_{ij}}\right] - \frac{C_{ij}}{r_{ij}^6}$$
(2.25)

Este modelo es conocido como el potencial de Born – Mayer – Bückingham. **[17, 18]**. Los coeficientes C_{ij} , son obtenidos a partir de la propuesta de Slater - Kirkwood.

$$C_{ij} = \frac{3}{2} \sqrt{\frac{e^2 \hbar^2}{m_e}} \frac{\alpha_i \alpha_j}{\sqrt{\frac{\alpha_i}{N_i}} + \sqrt{\frac{\alpha_j}{N_j}}}$$
(2.26)

donde, " α " corresponde a la polarizabilidad dipolar eléctrica media correspondiente al átomo i-ésimo, " m_e " es la masa del electrón y "N" corresponde al número efectivo de electrones que participan (adimensional). [19, 20, 21, 22, 23]

Los valores de "N" para elementos hasta número atómico igual a 54 (Xe), pueden ser obtenidos del estudio realizado por K. S. Pitzer. **[21]** Este autor, trabaja con un "N" efectivo (N_{eff}), en lugar de N. En la figura 4, se explica la dependencia de N_{eff} con el número atómico "Z". Adicionalmente, y en mayor detalle se aborda la obtención de este gráfico, lo cual se ilustra en el **Anexo I.14**. Se explica una extensión de N_{eff} hasta un número atómico de 86.

Figura 4: Número efectivo de electrones versus número atómico.

II.6 Cálculo de las constantes de Madelung para cristales ternarios, cuaternarios o multicomponentes. Metodología para la generalización de la definición de la constante de Madelung.

En el artículo **[10]**, es posible encontrar reportado redes cristalinas con más de tres átomos de elementos constituyentes, para los cuales se tiene el valor de la constante de Madelung y los valores de energía de los cristales asociados a ella. Surge de inmediato como inquietud lo anterior, ya que no es explícito la definición de la constante de Madelung para estos casos, si no que sólo se define en la literatura para cristales binarios. Por tanto resulta interesante formular una estrategia de cálculo aprovechando lo que ya se sabe, ampliando la definición de la constante de Madelung.

En particular las elpasolitas estequiométricas son cristales que poseen cuatro átomos de distintos elementos y la celda que se define requiere al menos de 40 átomos para proyectar el cristal en las tres dimensiones. Por tanto el primer problema es determinar una estrategia de cálculo cuando se tiene más de dos átomos distintos. Un dato interesante es ver si los átomos que son del mismo elemento tienen el mismo entorno en el cristal. De ser así, se tienen átomos cuya energía es equivalente y basta describir el entorno de un sólo átomo para ese elemento constituyente del cristal, ya que calculando la energía referida a él, se sabe por simetría la energía de todos los átomos que tengan posiciones equivalentes entre si.

Supongamos para ejemplificar, un cristal en dos dimensiones tal como el de la figura 5. En este cristal es fácil escoger una celda unitaria en la cual se identifican tres átomos. Además se distinguen 4 átomos azules (del mismo elemento) uno verde y finalmente uno rosado. Si por ejemplo en la red posicionamos el origen en algún átomo verde, resulta evidente que por periodicidad que todos los átomos verdes tienen el mismo entorno. Lo mismo se puede afirmar para átomos rosados. Sin embargo para átomos azules, es discutible si C, D, E y F son equivalentes. Eso es válido si y sólo si el arreglo de

átomos posee una simetría de modo que las distancias de estos 4 átomos respecto a su entorno es el mismo. Si se cumple esto, todos los átomos azules ocuparían posiciones de energías equivalentes. Supondremos que el átomo "C" es representativo de todos los átomos azules. Por tanto es posible realizar 3 sumas que representan a cualquier átomo del cristal, una para cada átomo (A, B y C). La manera de sumar, es posicionarnos en el átomo y considerarlo como origen y realizar todas las sumas coulómbicas entre él y su entorno.

Figura 5: Cristal en dos dimensiones.

Para el cristal bidimensional anterior se definen tres constantes de Madelung de la forma:

$$A_{A} = \sum_{i=1}^{n} \frac{z_{A} z_{i}}{\left|\vec{r}_{A} - \vec{r}_{i}\right|} \qquad A_{B} = \sum_{i=1}^{n} \frac{z_{B} z_{i}}{\left|\vec{r}_{B} - \vec{r}_{i}\right|} \qquad A_{C} = \sum_{i=1}^{n} \frac{z_{C} z_{i}}{\left|\vec{r}_{C} - \vec{r}_{i}\right|}$$
(2.27)

donde "n" recorre todo el cristal excepto el átomo que hace de referencia.

Lo anterior nos permite calcular la energía de cualquier átomo en la red. Por ejemplo un átomo "A" (rosado) tiene energía:

$$E_A = \frac{A_A e^2}{4\pi\varepsilon_0 R} \qquad (2.28)$$

Este dato puede ser interesante, pero por lo general se reporta la energía por fórmula empírica del cristal. Para este caso la fórmula es del tipo ABC_4 . La energía se obtiene por medio de la ecuación:

$$E_{coulomb}\left(R\right) = \frac{1}{2} \frac{e^2 \cdot N_{Av}}{4\pi\varepsilon_0 R} \left[A_A \cdot 1 + A_B \cdot 1 + A_C \cdot 4\right]$$
(2.29)

donde las constantes de Madelung " A_j " se determinan para una distancia de referencia "R" dada.

La idea anterior se puede extender para 3D pensando en una fórmula empírica que describa la estequiometría del cristal, siempre y cuando los átomos de la misma naturaleza sean equivalentes.

Sea la fórmula empírica del cristal $A_a B_b C_c D_d \dots$, la energía coulómbica por mol, estaría dada por la ecuación:

$$E_{coulomb}(R) = \frac{1}{2} \frac{e^2 \cdot N_{Av}}{4\pi\epsilon_0 R} [aA_A + bA_B + cA_C + dA_D + \dots]$$
(2.30)

mediante lo cual podría definirse para este cristal una constante de Madelung que caracteriza la estructura, de la forma:

$$A_{cristal} = \left[aA_A + bA_B + cA_C + dA_D + \dots\right]$$
(2.31)

y finalmente llegamos a una expresión del tipo:

$$E_{coulomb}(R) = \frac{1}{2} \frac{e^2 \cdot N_{Av}}{4\pi\varepsilon_0 R} [A_{cristal}] \qquad (2.32)$$

Donde el factor de $\frac{1}{2}$ se introduce con el propósito de no incluir dos veces cada par de interacciones. Esta ecuación es una generalización del cálculo para la energía de coulomb **[24, 25]**.

La expresión anterior (ec. 2.32), parece ser novel de acuerdo a nuestra investigación bibliográfica. El uso de la simetría tiene como ventaja disminuir el costo computacional ya que no se trabaja en sistemas de N² sino que se reduce a "N" veces el número de átomos de distinta naturaleza. Además la expresión anterior es general para cualquier cristal y conserva la forma clásica que se propone en los libros para el caso de cristales binarios.

II.7 Algunos datos útiles para elpasolitas estequiométricas.

Para elpasolitas, es posible encontrar en la literatura un trabajo interesante del autor V. Marx **[19]**, quien determinó el potencial de Born – Mayer – Bückingham para las elpasolitas $K_2NaScF_6 y K_2NaGaF_6$. Los valores reportados para los parámetros de estructura y las energías asociadas a los potenciales, se presentan en la siguiente tabla:

Tabla 4: Datos para $K_2NaScF_6 y K_2NaGaF_6$ [19]

Datos	$K_2 NaScF_6$	$K_2 NaGaF_6$
a (parámetro de red, arista de Celda cúbica) [pm]	847.17	824.6
x (parámetro de estructura libre)	0.2342	0.2230
Energía coulómbica [kJ/mol]	-9168.4	-9681.2
Energía Born [kJ/mol]	1309.7	1366.1
Energía Van der Waals [kJ/mol]	-303.3	-397.7
Energía Born - Mayer - Buckingham [kJ/mol]	-8162.2	-8712.8

En la tabla anterior se presenta el parámetro "x", el que en este caso, da una referencia de la posición de Flúor respecto a Escandio o Galio si estos átomos se ubican en el origen. Ver figura 6.

Figura 6: Parámetros "x" y "a" en Elpasolitas estequiométricas.

En otro artículo V. Marx calculó la energía coulómbica (o de Madelung) para distintas elpasolitas lo cual se presenta por medio de la tabla 5.
Tabla 5: Energías de	Madelung	calculadas	usando	los	valores	de	"a"	y
"x" tomados de la literatura.[20	6].							

Sustancia	a [pm]	x	- E _{Madelung} [kJ/mol]
$K_2 NaScF_6$	847.17(5)	0.2342(5)	9113
$K_2 NaGaF_6$	824.6(3)	0.2230	9681
Cs ₂ LiYCl ₆	1048.57(5)	0.25046	7031
Cs ₂ LiLuCl ₆	1040.9	0.2483(4)	7125
$Cs_2NaBiCl_6$	1083.9(1)	0.246(2)	6883
Cs_2NaYCl_6	1073.96(7)	0.2439(3)	6992
Cs_2NaYBr_6	1130.47(6)	0.2446(2)	6629
$Cs_2NaHoBr_6$	1129.3	0.245	6629
Cs_2KScCl_6	1087.3(3)	0.2263	7268
Cs ₂ KEuCl ₆	1116.3(3)	0.2317(8)	6966
Cs ₂ KTbCl ₆	1112.2(3)	0.2257(11)	7119

El autor realizó un ajuste de datos y llegó a una expresión del tipo:

$$E_{madelung} = \frac{1}{a} \left(B + \frac{C}{x} + \frac{D}{x - 0.5} \right)$$
 (2.33)

donde:

$$B = (-4.0042 \pm 0.0013) \cdot 10^{-3} Jm \qquad C = (-1.0645 \pm 0.0001) \cdot 10^{-3} Jm$$
$$D = (-2.2005 \pm 0.0019) \cdot 10^{-4} Jm$$

el error relativo es $\pm 6.6 \cdot 10^{-3}$ % .

Figura 7: Energía de Madelung versus "x" y "a".

Los valores presentados en la tabla 5 fueron obtenidos por V. Marx en el artículo **[27]**, el cual propone una metodología de cálculo distinta para evaluar la constante de Madelung, a la descrita en este capítulo.

II.8 Cálculos de la energía de Born - Mayer aplicados en elpasolitas del tipo K_2NaScF_6 y K_2NaGaF_6 .

Al calcular las energías de Born – Mayer, es necesario estimar las interacciones entre iones próximos, debido a que tiene sentido el modelo utilizado a distancias pequeñas. En particular los cálculos que a continuación se muestran, se efectuaron para interacciones de iones que se encuentran a distancias inferiores a $4\overset{0}{A}$. Además es interesante notar que algunos de estos pares de interacciones pueden despreciarse si la distancia es grande entre los iones lo cual suele suceder en cristales iónicos si los átomos poseen la misma naturaleza electrostática (cargas del mismo signo).

Tabla 6: Energía de Born Mayer para	$K_2 NaScF_6$	[KJ/mol]
-------------------------------------	---------------	----------

Interacciones despreciadas	Energía
Sc-Na y Sc-Sc	1310,10
Sc-Na, Sc-Sc y Sc-K	1308,62
Sc-Na, Sc-Sc, Sc-K y Na-K	1307,54
Sc-Na, Sc-Sc, Sc-K, Na-K y F-F	1254,49

Tabla 7: Energía de Born Mayer para K_2NaGaF_6 [KJ/mol]

Interacciones despreciadas	Energía
Ga-Na y Ga-Ga	1366,27
Ga-Na, Ga-Ga y Ga-K	1366,17
Ga-Na, Ga-Ga, Ga-K y Ga-K	1364,43
Ga-Na, Ga-Ga, Ga-K, Na-K y F-F	1250,31

En las tablas 6 y 7 se observa la inconveniencia en despreciar para el caso de elpasolitas las interacciones Flúor – Flúor y por el contrario lo favorable que resulta despreciar aquellas entre átomos con carga positiva. Esta afirmación se apoya además en que los parámetros de Born Mayer necesarios para determinar esta clase de potencial en general no se encuentran reportados

en la literatura salvo excepciones. Por lo anterior, se concluye que es razonable despreciar interacciones entre iones positivos para cristales del tipo Elpasolitas.

Los cálculos anteriores coinciden bastante bien con valores calculados por V. Marx **[19]** quien reportó una energía de Born Mayer de 1309,7 [KJ/mol] para K_2NaScF_6 y 1366,1 [KJ/mol] para K_2NaGaF_6 , lo que puede ser comparado a los valores presentados en las tablas 6 y 7.

Se empleó para los cálculos un parámetro de red de 847,17 picómetros y "x" = 0,2322 en el caso de K_2NaScF_6 y un parámetro de red de 824,6 picómetros y "x" = 0,2230 para el cristal K_2NaGaF_6 , que son los valores usados por Marx [19]. Los parámetros de Born –Mayer se presentan en detalle en los **anexos I.7, I.8 y I.15**.

Un programa desarrollado con el software Mathematica fue empleado y el tiempo aproximado de cálculo es de 30 segundos usando un procesador Pentium 4.

El potencial de Born Mayer se calcula por la expresión siguiente:

$$\sum_{i < j} U_{ij}(r) = \sum_{i < j} A_{ij} e^{-b_{ij}r}$$
(2.34)

La sumatoria se efectúa sobre los átomos más próximos y la expresión anterior puede simplificarse haciendo uso de la simetría del cristal. En el caso de elpasolitas estequiométricas, se tiene un cristal que responde a la fórmula M_2NLnX_6 , donde M y N son metales alcalinos (+1), Ln es un metal trivalente (+3) y en el caso de este trabajo corresponde al estudio de iones lantánidos trivalentes y finalmente X (-1) representa a un anión correspondiente a los iones halogenuros. Los átomos M, N, Ln y X no son equivalentes entre si, pero si son equivalentes a cualquier átomo de su mismo en este cristal. Por lo anterior es posible evaluar el potencial bajo la expresión:

$$\sum_{i < j} U_{ij} = \frac{\left(2\sum_{i} U_{M,i} + \sum_{i} U_{N,i} + \sum_{i} U_{Ln,i} + 6\sum_{i} U_{X,i}\right)}{2} \cdot N_{Avogadro} \quad (2.35)$$

donde el potencial $\sum_{i} U_{atomo,i}$ efectúa la suma de todas las interacciones que tiene el átomo considerado con el resto de la red, excluyendo la interacción consigo mismo y estando el calculo restringido en este caso a distancias menores de 4 Amstrong como ya se señaló.

II.9 Cálculos de la energía de Van der Waals aplicados en elpasolitas del tipo K_2NaScF_6 y K_2NaGaF_6 .

Para estimar el potencial de Van der Waals es posible realizar un método de cálculo equivalente al que se presenta en el capítulo 7, donde se estudió un método de cálculo para determinar energías coulómbicas (Madelung). Del mismo modo en el punto anterior se desarrolla la misma estrategia de cálculo. Por tanto en este caso el desarrollo es análogo y es posible demostrar que el potencial puede calcularse tomando las interacciones respecto a un los átomos de la red que no son equivalentes.

El potencial de Van der Waals es del tipo:

$$E_{VW} = \sum_{i < j} E_{VW}(i, j) = \sum_{i < j} \frac{C_{ij}}{r_{ij}} \qquad (2.36)$$

Considerando la misma notación usada en el punto anterior, es posible con el uso de la simetría del cristal la siguiente expresión:

$$E_{VW} = \frac{\left(2\sum_{i} E_{VW}(M,i) + \sum_{i} E_{VW}(N,i) + \sum_{i} E_{VW}(Ln,i) + 6\sum_{i} E_{VW}(X,i)\right)}{2} \cdot N_{avogadro}$$
(2.37)

Esta metodología puede por tanto aplicarse a cualquier potencial de interacción.

En el artículo de Marx **[19]**, se presenta reportada la energía de Van der Waals para los cristales K_2NaScF_6 y K_2NaGaF_6 . Estos valores corresponden respectivamente a -303,3 [KJ/mol] y -397,7 [KJ/mol]. Cálculos realizados con el método sugerido usando un radio de esfera de 12 celdas unitarias dan como resultado –309,1 [Kcal/mol] y –408,6 [Kcal/mol] respectivamente. La diferencia es muy pequeña, siendo en ambos casos inferior al 3%. Los datos necesarios para realizar este cálculo se presentan en el **anexo I (I.1 – I.6, I.14).**

Se debe pensar en un cubo donde el átomo sobre el cual se evalúa está al centro de éste y por tanto radio 12 se traduce en un cubo de volumen 25 celdas x 25 celdas x 25 celdas y donde cada celda posee 40 átomos.

Usando un procesador Pentium 4, el tiempo empleado para cada cálculo es inferior a 10 minutos.

II.10 Resultados obtenidos para el cálculo de potenciales en elpasolitas estequiométricas compuestas por iones lantánidos.

Es posible aplicar las metodologías explicadas en los puntos II.7 al II.9 para calcular las energías de Coulomb (Madelung) ,Van der Waals y Born y estimar de este modo la energía reticular producto de la suma de las tres anteriores, como se muestra en la siguiente ecuación:

$$E_{reticular} = E_{Madelung} + E_{V.W.} + E_{Born}$$
(2.38)

Además haciendo uso de ciclos termodinámicos de Born – Haber es posible estimar la Entalpía de formación $\Delta H_{formación}$ para cada uno de los cristales considerados.

Un resultado interesante es la dependencia de la constante de Madelung con " α ". La figura 8, muestra que para $\alpha = 0.2$ se obtienen al menos 4 decimales de precisión para la constante de Madelung de este cristal.

Figura 8: Constante de Madelung obtenida usando el método de Ewald y su dependencia de " α " para el cristal $Cs_2NaDyCl_6$.

La figura 9 muestra una evolución temporal del resultado anterior en función del parámetro " α ", el tiempo se estimó con el uso de un procesador Pentium 4.

Figura 9: Tiempo versus alfa.

Esto muestra que con tiempos inferiores a 5 minutos se pueden obtener 4 decimales de precisión usando un alfa de 0.2 siempre y cuando se emplee el método de Ewald para el cálculo. La metodología de cálculo es la usada en el punto II.5 en la cual se despreció parte de la suma en el espacio reciproco dado el pequeño valor escogido para el parámetro " α ".

Por tanto el tiempo proyectado en la figura 9 solo hace referencia a la suma directa ya que la sumatoria no despreciada en el espacio reciproco es casi instantánea. En la figura 8, se observa que aumenta la precisión del cálculo

de la constante de Madelung mientras menor es el valor del parámetro alfa lo cual obedece a la simplificación al despreciar parte de la sumatoria en la red reciproca. A mayores valores de alfa, el término despreciado gana peso y por tanto esta simplificación no es válida.

El ciclo de Born Haber **[1, 19, 28]** utilizado para estimar las entalpías de formación de las elpasolitas, requiere de una serie de datos experimentales como son las energías de disociación de algunas moléculas (D), energías de sublimación de metales (S), electroafinidades de halógenos (E.A.) y potenciales de ionización. En los potenciales de ionización hay que diferenciar entre los metales alcalinos (monovalentes) que requieren por tanto tan solo del primer potencial de ionización (P.I.₁) para explicar el paso del átomo en estado gaseoso al ion en estado gaseoso del caso de los iones lantánidos que son trivalentes y por tanto para explicar el paso del átomo al estado (+3) se requiere en energía de la suma de los tres primeros potenciales de ionización (P.I.₃).

De este modo, para una elpasolita del tipo M_2NLnX_6 , la expresión que se emplea para obtener la entalpía de formación de ésta, es de la forma [19]:

$$-\Delta H_{form} = 2S(M) + S(N) + S(Ln) + 3D(X_2) + 2PI_1(M) + PI_1(N) + PI_3(Ln) - 6E.A.(X) - E_{reticular}$$
(2.39)

En la ecuación anterior el signo menos da cuenta de un proceso exergónico y el signo positivo da cuenta de procesos endergónicos. El ciclo termoquímico puede explicarse por medio de la figura 10.

Figura 10: Ciclo termoquímico de Born – Haber para elpasolitas estequiométricas.

Con lo anterior y usando los datos reportados en el **anexo I (I.9 – I.13),** es posible obtener ΔH_{form} para 5 series de elpasolitas. Estas series son Cs_2NaLnF_6 , Rb_2NaLnF_6 , $Cs_2NaLnCl_6$, $Cs_2NaLnBr_6$ y Cs_2KLnF_6 , donde "Ln" representa la serie de los lantánidos e incluye al elemento Lantano. Los resultados se detallan a continuación:

Lantánido	Born	V. Waals	Coulomb	E _{reticular}	$\Delta H_{formación}$
La	1185,5	-455,5	-8043,0	-7313,0	-3449,0
Се	1238,6	-479,1	-8150,6	-7391,1	-3460,9
Pr	1244,7	-492,8	-8208,5	-7456,6	-3491,4
Nd	1205,7	-493,3	-8216,5	-7504,1	-3498,3
Pm	1240,6 (*)	-505,1	-8271,8	-7536,3	-3468,9
Sm	1282,9	-523,4	-8349,4	-7589,9	-3535,3
Eu	1247,3	-535,5	-8401,3	-7689,5	-3500,6
Gd	1247,6	-536,2	-8411,9	-7700,5	-3575,1
Tb	1280,3	-546,7	-8452,9	-7719,3	-3561,8
Dy	1276,5	-559,6	-8505,7	-7788,8	-3622,0
Но	1281,5	-568,4	-8555,8	-7842,7	-3641,1
Er	1284,6	-575,0	-8575,1	-7865,5	-3636,4
Tm	1295,0	-581,6	-8606,4	-7893,0	-3639,2
Yb	1334,4	-595,9	-8660,8	-7922,3	-3598,1
Lu	1306,1	-595,9	-8671,9	-7961,7	-3669,7

Tabla 8: Energías para la serie Cs_2NaLnF_6 . [KJ/mol]

(*) valor obtenido por interpolación usando regresión lineal (R = 0.75).

Lantánido	Born	V. Waals	Coulomb	E _{reticular}	$\Delta H_{formación}$
La	1205,0	-409,2	-8082,4	-7286,6	-3360,0
Се	1260,0	-432,3	-8192,7	-7365,0	-3372,2
Pr	1271,6	-446,2	-8253,3	-7427,9	-3400,1
Nd	1236,9	-447,1	-8262,9	-7473,1	-3404,7
Pm	1272.6 (*)	-459,3	-8321,8	-7508,5	-3378,5
Sm	1317,3	-477,1	-8400,7	-7560,5	-3443,3
Eu	1283,2	-489,0	-8453,8	-7659,6	-3408,1
Gd	1285,8	-489,4	-8463,6	-7667,2	-3479,2
Tb	1326,2	-500,4	-8507,7	-7681,9	-3461,8
Dy	1326,4	-513,8	-8564,4	-7751,8	-3522,4
Но	1329,7	-521,9	-8601,6	-7793,8	-3529,6
Er	1340,9	-529,4	-8636,6	-7825,1	-3533,4
Tm	1355,0	-536,2	-8669,4	-7850,6	-3534,2
Yb	1398,8	-550,9	-8727,6	-7879,7	-3492,9
Lu	1373,3	-550,7	-8737,9	-7915,3	-3560,7

Tabla 9: Energías para la serie Rb_2NaLnF_6 . [KJ/mol]

(*) valor obtenido por interpolación usando regresión lineal (R = 0.86).

Lantánido	Born	V. Waals	Coulomb	E _{reticular}	$\Delta H_{formación}$
La	649,1	-597,9	-6598,9	-6547,7	-2567,9
Се	717,1	-618,0	-6673,1	-6574,0	-2528,0
Pr	682,3	-631,5	-6714,9	-6664,1	-2583.1
Nd	716,0	-636,6	-6724,1	-6644,7	-2523,1
Pm	727,6	-648,4	-6763,4	-6684,2	2501,0
Sm	793,8	-663,6	-6816,8	-6686,6	-2516,2
Eu	763,1	-674,6	-6852,3	-6763,8	-2459,1
Gd	755,6	-677,8	-6860,4	-6782,6	-2541,4
Tb	760,2	-685,6	-6885,6	-6811,0	-2537,7
Dy	876,1	-696,8	-6922,6	-6743,3	-2460,7
Но	777,9	-705,3	-6949,9	-6877,3	-2559,9
Er	781,1	-712,1	-6971,2	-6902,2	-2557,3
Tm	784,4	-719,1	-6993,8	-6928,5	-2558,9
Yb	836,1	-730,3	-7030,7	-6924,9	-2484,9
Lu	847,3	-730,6	-7037,3	-6920,6	-2512,8

Tabla 10: Energías para la serie $Cs_2NaLnCl_6$. [KJ/mol]

Lantánido	Born	V. Waals	Coulomb	E _{reticular}	$\Delta H_{formación}$
La	576,6	-637,3	-6261,9	-6322,6	-2362,0
Се	620,4	-655,0	-6346,2	-6380,8	-2354,0
Pr	589,3	-668,2	-6363,9	-6442,8	-2381,0
Nd	594,6	-671,2	-6370,6	-6447,2	-2344,8
Pm	597,2	-680,2	-6405,9	-6488,9	-2324,9
Sm	620,2	-692,4	-6452,3	-6524,5	-2373,3
Eu	632,9	-701,7	-6484,6	-6553,4	-2267,9
Gd	626,1	-703,8	-6490,0	-6567,7	-2345,7
Tb	635,3	-715,9	-6516,2	-6596,8	-2342,7
Dy	648,9	-725,7	-6549,0	-6625,8	-2362,4
Но	702,9	-732,6	-6570,7	-6600,4	-2302,2
Er	707,9	-739,0	-6590,7	-6621,8	-2296,1
Tm	713,3	-745,5	-6610,9	-6643,1	-2292,7
Yb	728,6	-756,2	-6644,3	-6671,9	-2251,1
Lu	1098,6	-758,7	-6651,4	-6311,5	-1922,9

Tabla 11: Energías para la serie $Cs_2NaLnBr_6$. [KJ/mol]

Lantánido	Born	V. Waals	Coulomb	E _{reticular}	$\Delta H_{formación}$
La	1109,9	-444,0	-7926,6	-7260,7	-3491,9
Се	1160,1	-467,2	-8032,2	-7339,3	-3504,3
Pr	1167,5	-481,8	-8092,1	-7406,4	-3536,4
Nd	1131,2	-483,4	-8103,0	-7455,2	-3544,6
Pm	1163.0 (*)	-495,2	-8157,5	-7489,7	-3517,5
Sm	1205,4	-513,2	-8234,6	-7542,4	-3583,0
Eu	1168,1	-525,2	-8285,5	-7642,6	-3548,9
Gd	1168,9	-526,4	-8296,8	-7654,3	-3624,1
Tb	1200,4	-537,4	-8337,0	-7674,0	-3611,7
Dy	1197,1	-550,7	-8391,5	-7745,1	-3673,5
Но	1200,2	-559,3	-8428,5	-7787,6	-3681,2
Er	1206,3	-567,3	-8463,3	-7824,3	-3690,4
Tm	1217,4	-574,5	-8495,7	-7852,8	-3694,2
Yb	1257,7	-589,4	-8551,9	-7883,6	-3654,6
Lu	1227,3	-589,3	-8561,0	-7923,0	-3726,2

Tabla 12: Energías para la serie Cs_2KLnF_6 . [KJ/mol]

(*) valor obtenido por interpolación usando regresión lineal (R = 0.75).

Lantánido	$A_{cristal}$	x
La	13,1854	0,2459
Се	13,1258	0,2423
Pr	13,1023	0,2409
Nd	13,1057	0,2411
Pm	13,0751	0,2393
Sm	13,0287	0,2366
Eu	13,0009	0,2350
Gd	13,0026	0,2351
Tb	12,9921	0,2345
Dy	12,9639	0,2329
Но	12,9462	0,2319
Er	12,9338	0,2312
Tm	12,9213	0,2305
Yb	12,8925	0,2289
Lu	12,8943	0,2290

Tabla 13: Constantes de Madelung $(A_{cristal})$ obtenida para la serie

 Cs_2NaLnF_6 dado el parámetro de estructura "x"

Lantánido	A _{cristal}	x
La	13,2481	0,2498
Се	13,1935	0,2464
Pr	13,1739	0,2452
Nd	13,1788	0,2455
Pm	13,1492	0,2437
Sm	13,1057	0,2411
Eu	13,0803	0,2396
Gd	13,0854	0,2399
Tb	13,0786	0,2395
Dy	13,0512	0,2379
Но	13,0374	0,2371
Er	13,0252	0,2364
Tm	13,0148	0,2358
Yb	12,9868	0,2342
Lu	12,9921	0,2345

Tabla 14: Constantes de Madelung $(A_{cristal})$ obtenida para la serie

 Rb_2NaLnF_6 dado el parámetro de estructura "x"

Lantánido	$A_{cristal}$	x	
La	13,3361	0,2555	
Се	13,2949	0,2528	
Pr	13,2779	0,2517	
Nd	13,2857	0,2522	
Pm	13,2670	0,2510	
Sm	13,2354	0,2490	
Eu	13,2178	0,2479	
Gd	13,2226	0,2482	
Tb	13,2129	0,2476	
Dy	13,1935	0,2464	
Но	13,1820	0,2457	
Er	13,1755	0,2453	
Tm	13,1673	0,2448	
Yb	13,1459	0,2435	
Lu	13,1475	0,2436	

Tabla 15: Constantes de Madelung $(A_{cristal})$ obtenida para la serie

Cs₂NaLnCl₆ dado el parámetro de estructura "x"

Lantánido	$A_{cristal}$	x	
La	13,3556	0,2568	
Се	13,3165	0,2542	
Pr	13,3027	0,2533	
Nd	13,3058	0,2535	
Pm	13,2842	0,2521	
Sm	13,2528	0,2501	
Eu	13,2338	0,2489	
Gd	13,2386	0,2492	
Тb	13,2338	0,2489	
Dy	13,2145	0,2477	
Но	13,2049	0,2471	
Er	13,1968	0,2466	
Tm	13,1886	0,2461	
Yb	13,1690	0,2449	
Lu	13,1723	0,2451	

Tabla 16: Constantes de Madelung $(A_{cristal})$ obtenida para la serie

Cs₂NaLnBr₆ dado el parámetro de estructura "x"

Lantánido	$A_{cristal}$	x	
La	12,9939	0,2346	
Се	12,9373	0,2314	
Pr	12,9159	0,2302	
Nd	12,9195	0,2304	
Pm	12,8907	0,2288	
Sm	12,8454	0,2263	
Eu	12,8198	0,2249	
Gd	12,8234	0,2251	
Tb	12,8179	0,2248	
Dy	12,7903	0,2233	
Но	12,7755	0,2225	
Er	12,7625	0,2218	
Tm	12,7514	0,2212	
Yb	12,7234	0,2197	
Lu	12,7290	0,2200	

Tabla 17: Constantes de Madelung $(A_{cristal})$ obtenida para la serie

 Cs_2KLnF_6 dado el parámetro de estructura "x"

Es posible además obtener una relación matemática con cuatro decimales de precisión para la constante de Madelung de estas elpasolitas de acuerdo a la definición propuesta en el punto II.6, para $A_{cristal}$. En el capitulo II.7 se definió "x" como un parámetro de estructura libre, el cual está dado en coordenadas reducidas respecto a la celda unitaria y por tanto es adimensional. Para esto se ajustó el resultado obtenido para las cinco series de datos que se presentan en las tablas 13 a 17, donde se conoce la constante de Madelung para cada uno de los cristales. El resultado es una ecuación que se presenta a continuación:

$$A_{cristal}[x] = 11,030387 - 21,047643 \cdot x + 211,747975 \cdot x^{2} - 368,095457 \cdot x^{3}$$
(2.40)

La función $A_{cristal}[x]$ tiene una correlación de valor uno.

y por tanto, la energía de Coulomb puede determinarse haciendo uso de la ecuación descrita en II.6:

$$E_{coulomb}(xR) = -\frac{1}{2} \frac{e^2 \cdot N_{Av}}{4\pi\varepsilon_0 xR} [A_{cristal}]$$
(2.41)

siendo R el parámetro de red.

El siguiente gráfico (figura 11) ilustra como se comporta la función $A_{cristal}[x]$ (azul). Se presentan además los puntos calculados con los cuales se realizó el ajuste (rojo).

Figura 11:
$$A_{cristal}[x]$$
 para elpasolitas.

II.11 Conclusiones

En este Capítulo, hemos realizado un análisis, en cierta medida exhaustivo de familias de elpasolitas del tipo Cs_2NaLnF_6 , $Cs_3NaLnCl_6$, $Cs_2NaLnBr_6$, Rb_2NaLnF_6 y Cs_2KLnF_6 , para iones lantánidos trivalentes positivos, caracterizados en el rango de números atómicos que se indica: $57 \le Z \le 71(La - Lu)$. En los extremos se producen situaciones especiales, de modo que la capa de valencia para estos es la que se indica a continuación: ${}_{57}La:[{}_{54}Xe]5d^16s^2$ y ${}_{71}Lu:[{}_{54}Xe]4f^{14}5d^16s^2$. En estas situaciones, para los iones trivalentes positivos, observamos que para ${}_{57}La^{+3}:[{}_{54}Xe]$, es decir un seudo-gas noble y en el otro extremo, tenemos: ${}_{71}Lu^{+3}:[{}_{54}Xe]4f^{14}$ (configuración con referencia a la penúltima capa, completa). Una situación distinta ocurre para los iones lantánidos intermedios en el rango $58 \le Z \le 70$, en el cual, se aprecia directamente que la penúltima capa corresponde a configuraciones electrónicas del tipo: $4f^{1-13}$ (es decir, capa incompleta).

 ${}_{58}Ce^{+3}(4f^{1})_{,59}Pr^{+3}(4f^{2})_{,60}Nd^{+3}(4f^{3})_{,61}Pm^{+3}(4f^{4})_{,62}Sm^{+3}(4f^{5})_{,63}Eu^{+3}(4f^{6})_{,64}Gd^{+3}(4f^{7})_{,65}Tb^{+3}(4f^{8})_{,66}\}Dy^{+3}(4f^{9})_{,67}Ho^{+3}(4f^{10})_{,68}Er^{+3}(4f^{11})_{,69}Tm^{+3}(4f^{12})_{,70}Yb^{+3}(4f^{13})$

Hemos realizado un barrido por una serie de elpasolitas, las cuales han sido reportadas, con diversos grados de aproximación en la literatura. El modelo de cálculo adoptado por este enfoque fue pioneramente reportado por Born-Mayer-Buckingham (B-M-B). Como lo señalamos en detalle en el texto, el modelo supone razonable, el particionar la energía reticular (esta magnitud energética está referida a la formación del cristal a partir de sus iones constituyentes, éstos últimos en fase gaseosa. Estos procesos son, desde un punto de vista de la termodinámica exergónicos). Esta magnitud energética, en el modelo B-M-B., es considerada como la suma de tres contribuciones diagonales, del tipo: E_c (Coulomb), E_{vw} (van der Waals) y E_B (Born). Trabajos realizados por Marx y colaboradores **[19, 26, 27]**, se refieren a estructuras del tipo

 $K_2NaScF_6, K_2NaGaF_6, Cs_2LiYCl_6, Cs_2LiLuCl_6, Cs_2NaBiCl_6, Cs_2NaYCl_6, Cs_2NaYBr_6, Cs_2NaHoBr_6, Cs_2KScCl_6, Cs_2KEuCl_6, Cs_2KTbCl_6$

Como es posible apreciar, solo para los cristales tales como: $Cs_2LiLuCl_6, Cs_2NaHoBr_6, Cs_2KEuCl_6, Cs_2KTbCl_6$, Marx y colaboradores realizaron cálculos explícitos para la estimación de las energías coulómbicas (E_c).

Adicionalmente, para los sistemas K_2NaScF_6 , K_2NaGaF_6 , los trabajos de este autor, reportan valores para la energía reticular, empleando un esquema de cálculo diagonal como el esbozado en los párrafos anteriores. Para estos cristales los valores calculados de energías de Coulomb, (E_c) son exactamente los mismos, dado el mismo conjunto inicial de parámetros. Las diferencias aparecen a nivel de las estimaciones de las energías de Born y van der Waals.

Para efectos ilustrativos, consideraremos estas dos estructuras del tipo elpasolitas (con la penúltima capa incompleta). El conjunto de datos de Marx y colaboradores y los estimados en esta tesis, se informan a continuación:

Valores comparativos de energías reticulares y contribuciones^{1, 2}. Las energías se reportan en KJ/mol

Elpasolita	E _C	$E_{\scriptscriptstyle Born}$	$E_{_{V-W}}$	$E_{{ m Re} ticular}$
$K_2 NaScF_6$	-9.168,40	+1.309,70	-303,30	-8.162
		[1.310,10]	[-309,10]	[-8.168]
$K_2 NaGaF_6$	-9.681,20	+1.366,10	-397,70	-8.712,80
		[1.366,27]	[-408,60]	[-8723,70]

1: Marx y colaboradores [19, 26, 27]

2: Este trabajo

Podemos apreciar una cierta sensibilidad a nivel de las energías de van der Waals, con diferencias del orden de: 5,80 y 10.9, entre los valores de esta tesis y los estimados por Marx y colaboradores. Un análisis exhaustivo del trabajo realizado por estos autores, nos sugiere que estas diferencias pueden ser explicadas razonablemente a partir de los valores de N_{eff} , los cuales aparecen en el cálculo de los coeficientes de van der Waals $C_{i,j}$, ver ec. (2.26),

en la cual aparecen, adicionalmente las polarizabilidades dipolares asociadas a los pares de iones en cuestión (i, j). En principio, el origen de los valores de N_{eff} corresponde, idealmente al número de electrones de la capa de valencia.

No obstante, la experiencia de una serie de investigadores en esta área, sugiere que los valores a ser empleados en la expresión de Slater-Kirwoood (S-K), resultan ser menores que los electrones de la capa de valencia y ciertamente deben incluirse otras consideraciones para su estimación. En efecto, al observar la ecuación S-K, vemos que aparecen en términos del tipo $1/\sqrt{lpha_k / N_{e\!f\!f}}$, donde k = i, j. Existe, en la literatura un artículo "inter- and intramolecular forces and molecular polarizability", cuyo autor es K.S.Pitzer [29], en el cual se avanzan elementos significativos para orientar la metodología a emplear sí desea estimar estos números efectivos de electrones por unidad de volumen, más susceptibles de influencias los valores de las polarizabilidades electrónicas. Este autor, argumenta "Thus in making a very similar treeatment a few years ago, in which slightly different empirical potentail were used, this autor (K.S.Pitzer) found substantially smaller effective N - values" Por esta razón, un valor relativamente crudo para N, es potencialmente capaz de producir una estimación, relativamente razonable para la estimación de los coeficientes asociados al potencial en el modelo de Slater-Kirwood. De igual forma, la selección del promedio entre el número total de electrones y el número de electrones de la capa de valencia, parece arrojar valores apropiados para

86

gases nobles. Estos potenciales empíricos para moléculas fueron obtenidos bajo el supuesto de centros de atracción simples. Este supuesto, aparece como satisfactorio para H_2 , solo razonable para CH_4 y pobre para Cl_2 . Es interesante, señalar que aún para el caso de metano (cuya forma, podemos suponerla relativamente esférica, el hecho de que algunos átomos están más bien cercanos a la superficie más externa cuando se compara con el centro, puede tener una importancia no menor. Las distancias inter-atómicas más próximas son con una dependencia del tipo R^{-6} en el potencial en cuestión. Es también importante indicar que este punto ha sido abordado por diversos autores, los cuales se han abocado a estimaciones de potenciales intermoleculares en diversos modelos físicos. En resumen, este tema sigue abierto a la discusión académica y precisaremos de un cuidado especial en los valores que emplearemos para los sistemas que nos interesa modelar, en nuestro caso, elpasolitas esteguiométricas. El lector es referido al trabajo de Pitzer [29] para obtener una representación intelectual más cercana a la realidad, en todo lo relacionado con estos potenciales y otros por ejemplo, la propuesta de Lennard-Jones, etc. Existe otro trabajo de interés, de los autores Scott y Scherega [21], los cuales focalizan su atención al desarrollo de métodos de cálculo con referencias a barreras rotaciones internas, con aplicaciones a moléculas poliatómicas en el rango $1 \le Z \le 54$ para los átomos constituyentes del sistema de N-cuerpos. En este artículo, ver Figura 1, se grafica la curva $N_{e\!f\!f}$

87

v/s Z. Nuestro problema aparece, por cuanto para las elpasolitas consideradas en este capítulo, los valores de Z (Número atómico) son superiores al valor correspondiente al gas noble ${}_{54}Xe$. Precisamos en consecuencia, el valor de N_{eff} para ${}_{86}Rn$, estimando el valor a partir de la relación: $\frac{1}{2}(86+6) = 46$. Siguiendo esta metodología, podemos encontrar los valores de N_{eff} y posteriormente, podemos por medio de un simple ajuste en el rango: (a) $2 \le Z \le 18$ y (b) $18 \le Z \le 86$. De esta forma, nuestro trabajo sugiere los siguientes ajustes:

(A)
$$2 \le Z \le 18$$
. $N_{eff} = 0,14375 + 0,75625Z + 0,0109375Z^2$

(B) $18 \le Z \le 86$ $N_{eff} = 18,52932353 - 0,28724591Z + 0,01351643Z^2 - 0,00007514Z^3$

Estimamos que los valores de N_{eff} , empleados por Marx y colaboradores para las estructuras K_2NaScF_6, K_2NaGaF_6 adolecen de fallos y al comparar, obtenemos el listado que se indica a continuación:

$$Na^+: 10,00[9,78594], K^+: 17,50[17,4357], Sc^{+3}: 14,40[17,762],$$

 $Ga^{+3}: 19,00[20,3755], F^-: 8,00[7,83594]$

La argumentación dada, explica razonablemente las sensibilidades y diferencias que se evidencian, cuando se desea estimar las energías de van der Waals, empleando la ecuación de Slater-Kirwood. Con relación a los calores de

formación asociados a estos cristales, estimamos innecesario recalcularlos en nuestro modelo, por cuanto las diferencias están esencialmente alojadas en las energías de van der Waals (valores en módulo, relativamente pequeños pero con importancia física, tal cual lo hemos sugerido en la discusión de este Capítulo). Finalmente, realizamos una revisión bibliográfica exhaustiva para encontrar valores de calores de formación experimentales asociados a las familias de elpasolitas Cs_2NaLnF_6 , $Cs_3NaLnCl_6$, $Cs_2NaLnBr_6$, Rb_2NaLnF_6 y Cs₂KLnF₆, la cual resultó infructuosa, no obstante una inspección de naturaleza empírica nos sugiere que los ordenes de magnitud que reportamos en esta tesis, son correctos. Hemos diseñados los ciclos termoquímicos de Born-Haber y empleado datos de la literatura, obtenidos experimentalmente en condiciones estándares de operación $(1atm y 25^{\circ}C)$. Una complicación relativa a los valores de electroafinidades (EA), dice relación con estos valores son muy escasos y cuando se conocen es por el expediente simple de conocimiento de algún ciclo termoquímico de interés. Para los Halógenos, los valores asociados a los procesos de representación: $X(g) + 1e^- \rightarrow X^-(g) + EA$, son conocidos.

II.12 Referencias.

- [1] I. Levine, Fisicoquímica, tercera edición, Mc. Graw Hill, España, pág 1019-1021 (1993).
- [2] F. Cotton and G. Wilkinson, Química Inorgánica Avanzada, Editorial Limusa, México, pág 51-53 (1978).
- [3] R. Sabry-Grant, Lattice Enthalpies of some binary ionic compounds, Tesis of Master of Philosophy, Birkberk College, Departament of Chemistry, University of London, UK (1987).
- [4] E. Madelung, Phys. ZS., 19, 524 (1918).
- [5] P.P. Ewald, Ann. Phys., 64, 253 (1921).
- [6] J. Kendall, J. Am. Chem. Soc., 44, 717 (1922).
- [7] H.M. Evjen, Phys. Rev., **39**, 675 (1932).
- [8] F. C. Frank, Phil. Mag., 41, 1287 (1950).
- [9] G. Rohrer, Structure and Bonding in crystalline materials, Cambridge University Press, Cambridge, UK, pag 263-531 (2001).
- [10] S.Derenzo, M.Klintenberg and M. Weber, J. Chem. Phys, 112, 2074-2081 (2000).

- [11] Y. Sakamoto, J. Sci. Hiroshima Univ., Ser. A, 38, 239 (1974).
- [12] Abramowitz and Stegun, Handbook of mathematical functions, National Bureau of standdads, Fórmula 7.1.26.
- [13] Y. Sakamoto, J. Sci. Hiroshima Univ., Ser. A, 16, 569 (1953).
- [14] S. Tiagi, Cond-mat/0405574.2. (2004).
- [15] A. Abrahamson, Phys. Rev., 178, 1, 76 (1968).
- [16] S.Selle and U. Riedel, AIAA.0211 (2000).
- [17] F. Hutchinson et. al, J. Chem. Phys., 111, 5, 2028 (1999).
- [18] K. Tateishi et al, J. Ceramic Soc. of Japan, 112, 5, 658 (2004).
- [19] V. Marx, Phys. Stat. Sol. B, 220, 805 (2000).
- [20] H. Margenau, Rev. Mod. Phys., 11, 1 (1939).
- [21] R.A. Scott and H.A. Scheraga, J. Chem. Phys. 42,2209 (1965).
- [22] J. C. Slater and J. G. Kirkwood, Phys. Rev. 37. 682 (1931).
- [23] R.Acevedo, A. Soto, Revista electrónica Ciencia Abierta (ISSN: 0717 8948), "Interacciones moleculares", 25, educación (2004).
 www.cabierta.uchile.cl.

- [24] R. Tabensky, comunicación personal.
- [25] J. Rossler, comunicación personal.
- [26] V. Marx and B. Hundhammer, Z. Naturf. 55b, 935 (2000).
- [27] V. Marx, Z. Naturf. 52b. 895 (1997).
- [28] G.W. Castellan, Physical Chemistry, Addison Wesley Publishing Company, chap. 23, 518 – 519 (1971).
- [29] I. Prigogine, K. Pitzer, Advances in Chemical Physics volume II, London (1959).

CAPITULO III

INTERACCION RADIACION – MATERIA.

PROCESOS MONOFOTONICOS Y BIFOTONICOS

III.1 - Introducción.

En este Capítulo se analizan los principios básicos del Hamiltoniano de interacción radiación - materia y los términos de la expansión multipolar con sus respectivos elementos matriciales y reglas de selección. Se estudian, desde un punto de vista formal, procesos radiativos que involucran a uno y dos fotones.

Las diversas técnicas del análisis instrumental y sus principios básicos son analizadas desde un punto de vista de la mecánica cuántica, en lo que dice relación con la cuantización de la interacción radiación - materia. Enfocaremos nuestra discusión a los aspectos formales de espectroscopia de uno y de dos fotones (IR, Luminiscencia y Raman).

III.2 – Interacción Radiación – Materia.

El tratamiento clásico de la interacción radiación - materia ha sido desarrollado por diversos autores en la literatura [1]. En efecto, la descripción clásica del campo de radiación en el vacío se obtiene a partir de la resolución de las ecuaciones de Maxwell - Lorentz, que se indican a continuación:
$$\vec{\nabla} \times \vec{E} + (1/c)\partial \vec{H} / \partial t = \vec{0} \qquad (3.1.1)$$

$$\vec{\nabla} \times \vec{H} - (1/c)\partial \vec{E} / \partial t = (4\pi/c)\vec{j} \qquad (3.1.2)$$

$$\vec{\nabla} \cdot \vec{E} = 4\pi\rho \qquad (3.1.3)$$

$$\vec{\nabla} \cdot \vec{H} = \vec{0} \qquad (3.1.4)$$

Donde \vec{E} , \vec{H} , \vec{j} y ρ representan el campo eléctrico, campo magnético, densidad de corriente y densidad de cargas, respectivamente. La resolución de las ecuaciones anteriores, es posible realizarla introduciendo el campo vectorial \vec{A} y el campo escalar ϕ . Es directo, inferir las identidades vectoriales:

$$\vec{H} = \vec{\nabla} \times \vec{A} \qquad (3.2.1)$$
$$\vec{E} = -\vec{\nabla}\phi - (1/c)\partial\vec{A}/\partial t \qquad (3.2.2)$$

Es conveniente introducir el "gauge" de Lorentz, el cual deja invariante las ecuaciones del electromagnetismo clásico, con respecto de transformaciones relativistas. En estos términos, se satisface la condición:

$$\vec{\nabla} \cdot \vec{A} + (1/c)\partial\phi/\partial t = 0 \qquad (3.3)$$

La introducción del gauge de Lorentz, en las ecuaciones (3.1.2) y (3.1.3) nos conduce a las identidades:

$$(1/c^2)\partial^2 \vec{A}/\partial t^2 - \nabla^2 \vec{A} = (4\pi/c)\vec{j}$$

$$(1/c^2)\partial^2 \phi/\partial t^2 - \nabla^2 \phi = 4\pi\rho$$

$$(3.4.1)$$

En el vacío $\vec{j} = 0$ y $\rho = 0$, lo cual nos permite inferir que tanto el potencial vectorial como el escalar, corresponden a una onda electromagnética que se propaga a la velocidad de la luz, es decir:

$$\nabla^{2} \vec{A} = (1/c^{2}) \partial^{2} \vec{A} / \partial t^{2} \qquad (3.5.1)$$
$$\nabla^{2} \phi = (1/c^{2}) \partial^{2} \phi / \partial t^{2} \qquad (3.5.2)$$

A continuación, Introduzcamos una función escalar arbitraria, digamos χ y las transformaciones:

$$\vec{A} = \vec{A}_0 - \vec{\nabla}\chi \qquad (3.6.1)$$

$$\phi = \phi_0 + (1/c)\partial\chi/\partial t \qquad (3.6.2)$$

Cuando las relaciones anteriores, se sustituyen en el "gauge" de Lorentz, vemos que \vec{A}_0 satisface los requerimientos matemáticos, siempre y cuando la función arbitraria χ , sea compatible con una solución del tipo onda electromagnética.

En nuestras transformaciones anteriores es siempre posible escoger la función χ de modo que $\phi = 0$. Bajo estas condiciones, concluimos que el campo de radiación en el vacío satisface las condiciones:

$$\phi = 0 \qquad (3.7.1)$$

$$\vec{\nabla} \cdot \vec{A} = 0 \qquad (3.7.2)$$

$$\nabla^2 \vec{A} = (1/c^2) \partial^2 \vec{A} / \partial t^2 \qquad (3.7.3)$$

por cuanto $\vec{j} = \vec{0}$ y $\rho = 0$.

Las soluciones generales de la ecuación (3.7.2) son de la forma:

$$\vec{A}(\vec{r},t) = \sum_{\lambda} \left\{ q_{\lambda}(t) \vec{A}_{\lambda}(\vec{r}) + q_{\lambda}^{*}(t) \vec{A}_{\lambda}^{*}(\vec{r}) \right\}$$
(3.8)

En la expresión anterior, el asterisco indica el conjugado y de igual forma se cumple: $\vec{A}_{\lambda}(\vec{r}) = \vec{v}_{\lambda} \exp i \left[\left(\vec{k}_{\lambda} \cdot \vec{r} \right) - wt \right]$

En la ec (3.8). La sumatoria se realiza sobre todos los modos normales asociados al campo de radiación y también \vec{v}_{λ} y \vec{k}_{λ} , representan los vectores de polarización y de ondas asociados al modo normal λ – ésimo. A partir de la ec(3.7.2), se demuestra que en el caso de una onda plana que se propaga linealmente, se cumple que los vectores de polarización y de ondas son ortogonales entre sí, para cada uno de los modos normales del campo de radiación. Lo anterior, se traduce en que se satisface la identidad:

$$\vec{v}_{\lambda} \cdot \vec{k}_{\lambda} = 0, \quad \forall \lambda \qquad (3.9)$$

En el caso de ondas polarizadas linealmente, se introduce la condición de normalización:

$$\int \vec{A}_{\lambda}(\vec{r}) \cdot \vec{A}_{\mu}(\vec{r}) d\tau = 4\pi c^2 \delta_{\lambda\mu} \qquad (3.10)$$

la cual corresponde a una condición de bi- ortonormalidad, en consecuencia es directo encontrar soluciones normalizadas del tipo:

$$\vec{A}_{\lambda}(\vec{r}) = \left(4\pi c^2\right)^{1/2} \vec{u}_{\lambda} \exp\left[i\left(\vec{k}_{\lambda} \cdot \vec{r}\right)\right] \qquad (3.11)$$

En la expresión anterior, \vec{u}_{λ} es un vector unitario, caracterizado por una dirección perpendicular a la dirección de propagación del campo.

Adicionalmente a lo señalado anteriormente, sabemos que en mecánica clásica, el operador de energía de Hamilton \hat{H} , corresponde a una partición de dos términos por oscilador del campo de radiación, de modo que podemos escribir:

$$H = \sum_{\lambda} H_{\lambda} = \sum_{\lambda} (1/2) \left(P_{\lambda}^2 + w_{\lambda}^2 Q_{\lambda}^2 \right) \qquad (3.12)$$

y las variables canónicas P_{λ} y Q_{λ} , se definen por las relaciones:

$$Q_{\lambda} = q_{\lambda}(t) + q_{\lambda}^{*}(t) \qquad (3.13.1)$$

$$P_{\lambda} = d Q_{\lambda} / dt = -i w_{\lambda} [q_{\lambda}(t) - q_{\lambda}^{*}(t)] \qquad (3.13.2)$$

A continuación, al emplear las ecuaciones de Hamilton, que se indican a continuación:

$$\frac{\partial H_{\lambda}}{\partial Q_{\lambda}} = -dP_{\lambda}/dt \qquad (3.14.1)$$

$$\frac{\partial H_{\lambda}}{\partial P_{\lambda}} = dQ_{\lambda}/dt \qquad (3.14.2)$$

estrategia que nos lleva a la representación del problema que estamos abordando, por medio de una función del tipo:

$$H = \sum_{\lambda} H_{\lambda} = \sum_{\lambda} 2w_{\lambda}^2 q_{\lambda}(t) q_{\lambda}^*(t) \qquad (3.15)$$

La sumatoria anterior corresponde al Hamiltoniano de un conjunto de osciladores armónicos. Es importante resaltar que cuando se procede a cuantizar el campo de radiación, la dependencia del tiempo de los parámetros q_{λ} y su conjugado desaparece.

La descripción cuántica del campo de radiación se realiza a partir de la formulación axiomática de la Mecánica Cuántica. En efecto, el Hamiltoniano cuántico se obtiene a partir de la función de Hamilton clásica haciendo uso del principio de Correspondencia. De esta forma los operadores clásicos de momentum lineal, son reemplazados por los respectivos operadores cuánticos, a saber: $-i(h/2\pi)\vec{\nabla}$

Sea H_r el Hamiltoniano que representa el campo de radiación aislado y $\langle \phi_t \rangle$ un conjunto completo de funciones propias de H_r .

Las ecuaciones de valores propios son escritas de la forma:

$$H_r \phi_t = E_t \phi_t$$
 (3.16) donde, $H_r = \sum_{\lambda} H_{r\lambda}$

El hamiltoniano H_r , es expresable como una suma de Hamiltonianos del tipo $H_{r\lambda}$, lo cual sugiere el uso de funciones del tipo producto:

$$\phi_t = \prod_{\lambda} \phi_{t\lambda} \qquad (3.17)$$

por lo tanto, los valores propios de la ec (3.16) corresponden a una expresión del tipo que se indica:

$$E_t = \sum_{\lambda} E_{t\lambda} \qquad (3.18)$$

De lo mencionado anteriormente, se infiere que cada uno de los modos normales asociados al campo de radiación, le corresponde una ecuación de valores propios, como la que se indica a continuación:

$$H_{r\lambda}\phi_{t\lambda} = E_{t\lambda}\phi_{t\lambda} \qquad (3.19)$$

Donde $H_{r\lambda}$ es el típico Hamiltoniano correspondiente a un oscilador armónico cuántico. Es directo, inferir que las funciones propias de la ecuación (3.19) pueden expresarse en términos de los polinomios asociados de Hermite [2], con valores propios de la forma:

$$E_{t\lambda} = (n_{\lambda} + 1/2)(h/2\pi)w_{\lambda} \qquad (3.20)$$

En la expresión anterior, n_{λ} es el número cuántico vibracional y w_{λ} corresponde a la velocidad angular asociada al modo normal λ -ésimo del campo de radiación.

Existen, sin embargo, ciertas limitaciones que es preciso considerar en cierto detalle:

- (a) La descripción del campo de radiación realizada es análoga a la correspondiente a un oscilador armónico multidimencional, para el cual es posible definir un conjunto de coordenadas Q_{λ} y de momenta P_{λ} .
- (b) Este paralelismo en la descripción del campo de radiación es sin embargo, puramente formal puesto que el sentido físico de las coordenadas Q_{λ} es poco transparente y la naturaleza de las funciones propias es bastante poco conocida.
- (c) De la ec (3.20) vemos que para $n_{\lambda} = 0$ y dada la existencia de un número infinito de osciladores, la energía en el punto cero tendería a infinito. Es posible argumentar, en favor o en contra de la existencia de un valor infinito para la energía en el punto cero, sin embargo, resulta más convincente reformular la teoría de modo que esta energía en el punto cero tienda efectivamente a cero.

Para estos efectos es común en la literatura redefinir el Hamiltoniano $H_{r\lambda}$ en la forma que se indica:

$$H_{r\lambda} = (1/2) \left[P_{\lambda}^{2} + w_{\lambda}^{2} Q_{\lambda}^{2} - (h/2\pi) w_{\lambda} \right] \qquad (3.21)$$

Es interesante en este punto de la discusión, examinar las ecuaciones de Hamilton, ver ecs. (3.14.1) y (3.14.2). En efecto, observamos que la inclusión de la cantidad $(h/2\pi)w_{\lambda}$ en el Hamiltoniano clásico $H_{r\lambda}$ deja las ecuaciones de movimiento invariantes y en consecuencia es legítimo adoptar la estrategia señalada anteriormente. El uso del Principio de Correspondencia y la resolución de las ecuaciones de valores propios, nos conduce a las energías:

$$E_{t\lambda} = (h/2\pi) w_{\lambda} n_{\lambda}$$
 (3.22), donde: $E_t = \sum_{\lambda} E_{t\lambda}$

correspondiente a la ecuación deseada.

De las propiedades matemáticas de las funciones del tipo oscilador armónico se desprenden una serie de propiedades de elementos matriciales que involucran los operadores Q_{λ} y P_{λ} , en la ec. (3.21), de modo que a partir de las ecs. (3.13.1) y (3.13.2) es inmediato encontrar expresiones para q_{λ} y q_{λ}^{*} en términos de Q_{λ} y P_{λ} , por lo tanto podemos escribir:

$$q_{\lambda}|n_{\lambda}\rangle = (h/4\pi w_{\lambda})^{1/2} \sqrt{n_{\lambda}} |n_{\lambda} - 1\rangle \qquad (3.23.1)$$
$$q_{\lambda}^{*}|n_{\lambda}\rangle = (h/4\pi w_{\lambda})^{1/2} \sqrt{n_{\lambda} + 1} |n_{\lambda} + 1\rangle \qquad (3.23.2)$$

Los operadores q_{λ} y q_{λ}^{*} tienen sentido físico, así observamos que q_{λ} es un típico operador de aniquilación, en cambio q_{λ}^{*} corresponde a un operador de creación. La interpretación física, se interpreta como se indica: los operadores de aniquilación dan cuenta de procesos de absorción de radiación, en cambio los operadores de creación representan procesos de emisión de radiación.

En virtud de lo señalado anteriormente vemos que las funciones propias que describen el campo de radiación pueden ser escritas de la forma:

$$\phi_t = |n_{\lambda 1}, n_{\lambda 2}, \dots\rangle \qquad (3.24)$$

Es decir, la función de ondas ϕ_t que describe el campo de radiación depende de un conjunto de números cuánticos $\{n_{\lambda}\}$ cada uno de los cuales relacionado con un oscilador del campo de radiación cuya frecuencia es $(w_{\lambda}/2\pi)$.

En este sentido, un número cuántico dado mide, en unidades de $(h/2\pi)w_{\lambda}$, la separación energética entre un estado excitado correspondiente a un oscilador del campo de radiación de frecuencia $(w_{\lambda}/2\pi)$ y el estado

fundamental. En otras palabras n_{λ} corresponde al número de quanta con energía $(h/2\pi)w_{\lambda}$, para cada uno de los modos λ -ésimo del campo de radiación.

En definitiva, la función de ondas, dada por la ec (3.24) nos indica la existencia de $n_{\lambda 1}$ fotones de la especie $\lambda 1$ y $n_{\lambda 2}$ fotones de la especie $\lambda 2$,, etc.

La próxima etapa de esta exposición, consiste en el estudio del Hamiltoniano de interacción radiación – materia, tema que analizaremos formalmente:

En términos generales la situación anterior puede ser descrita utilizando un Hamiltoniano de la forma:

$$H = H_{mol} + H_{rf} + H_{int} \qquad (3.25)$$

es decir, como una suma de tres contribuciones, a saber:

(a) H_{mol} : Hamiltoniano del sistema molecular aislado.

(b) H_{rf} : Hamiltoniano del campo de radiación aislado.

(c) H_{int}: Hamiltoniano de interacción.

La forma de obtener el Hamiltoniano de interacción consiste en escribir la función de Hamilton clásica y posteriormente hacer uso del Principio de Correspondencia para obtener la representación cuántica.

Así, de la teoría clásica del electromagnetismo, sabemos la fuerza que actúa sobre una partícula de masa m y velocidad \vec{v} que se mueve bajo la acción de un campo electromagnético está dada por la expresión **[2, 3]**:

$$\vec{F} = e\left[\vec{E} + (1/c)(\vec{v} \times \vec{H})\right] \qquad (3.26)$$

De las ecs (3.2.1) y (3.2.2) podemos re - escribir \vec{F} de la forma que se indica a continuación:

$$\vec{F} = e \left[-\left(1/c\right) \partial \vec{A} / \partial t - \vec{\nabla} \phi + \left(1/c\right) \left[\vec{v} \times \left(\vec{\nabla} \times \vec{A}\right) \right] \right]$$
(3.27)

La expresión anterior para \vec{F} puede ser fácilmente obtenida de la función de Hamilton clásica definida por la relación:

$$H = \frac{1}{2m} \left(\vec{p} - \frac{e}{c} \vec{A} \right)^2 + e\phi \qquad (3.28)$$

por simple utilización de las ecuaciones canónicas de Hamilton.

Generalicemos el resultado anterior a un sistema constituido por N partículas bajo la acción de un campo electromagnético externo. Es inmediato obtener la siguiente representación para el Hamiltoniano del sistema:

$$H = \sum_{j} \left(\frac{1}{2m_{j}} \left[\vec{p}_{j} - \frac{e}{c} \vec{A}_{j} \right]^{2} + \sum_{j} e_{j} \phi_{j} + V$$
(3.29)

y al aplicar el Principio de Correspondencia $\vec{p}_j \rightarrow -i(\hbar/2\pi)\vec{\nabla}_j$, obtenemos la expresión general:

$$H = \left(-\sum_{j} \left(\frac{\hbar^{2}}{8\pi^{2}m_{j}} \nabla_{j}^{2} + V \right) + \sum_{j} \frac{1}{2m_{j}} \left\{ -\frac{\hbar e_{j}}{ic} \left[\left(\vec{\nabla}_{j} \cdot \vec{A}_{j} \right) + 2\left(\vec{A}_{j} \cdot \vec{\nabla}_{j} \right) \right] + \left(3.30 \right) \right\}$$
$$\frac{e_{j}^{2}}{c^{2}} \vec{A}_{j}^{2} + \sum_{j} e_{j} \phi_{j} = H_{mol} + H_{int}$$

Es interesante observar que cuando se aplica el "gauge" de Lorentz, ver ec. (3.3), es siempre posible escoger $\phi = 0$ y en consecuencia describir el potencial de interacción exclusivamente en términos del potencial vectorial \vec{A} , sometido a la condición $(\vec{\nabla} \cdot \vec{A} = \vec{0})$, con lo cual para $\phi = 0$, el "gauge" de Lorentz se confunde con el "gauge" de Coulomb.

Con lo anterior la ec. (3.30) adopta la forma siguiente:

$$H_{\rm int} = \sum_{j} \left(-\frac{e_j \hbar}{i c m_j} \left(\vec{A} \cdot \vec{\nabla}_j \right) + \frac{e_j^2}{2 m_j c^2} \vec{A}_j^2 \right) \qquad (3.31)$$

En la descripción de la mecánica cuántica del campo de radiación resulta conveniente redefinir el vector de ondas \vec{k}_j .

Para estos efectos lo definiremos como un vector cuya dirección proporciona la dirección de propagación del fotón y cuya magnitud es igual a la energía del fotón.

La ec. (3.8) toma la forma que se indica a continuación:

$$\vec{A}_{j} = \left(4\pi c^{2}\right)^{1/2} \sum_{\lambda} \vec{u}_{\lambda} \left\{ q_{\lambda} \exp\left[\frac{i}{\hbar c} \left(\vec{k}_{\lambda} \cdot \vec{r}_{j}\right)\right] + q_{\lambda}^{*} \exp\left[-\frac{i}{\hbar c} \left(\vec{k}_{\lambda} \cdot \vec{r}_{j}\right)\right] \right\}$$
(3.32)

Al combinar las ecs (3.31) y (3.32) obtenemos el Hamiltoniano de interacción radiación – materia, cuya forma es la que se indica:

$$H_{\rm int} = H_{\rm int}^{(1)} + H_{\rm int}^{(2)}$$
 (3.33)

Es importante, enfatizar que la expansión del Hamiltoniano de interacción da origen a términos diversos, de primer y segundo orden, es decir, procesos monofotónicos y bífotónicos. Los procesos monofotónicos dan cuenta de la absorción y/o emisión de un fotón, en cambio los procesos bífotónicos (probabilidad menor que los monofotónicos), involucran términos de diversas complejidades tales como:

(a) Emisión simultánea de dos fotones.

(b) Absorción simultánea de dos fotones.

(c) Absorción y emisión simultánea de dos fotones.

Las correcciones de primer y segundo ordenes son expresables de la forma siguiente:

$$H_{\rm int}^{(1)} = -\frac{2\hbar\pi^{1/2}}{i} \sum_{j} \sum_{\lambda} \frac{e_{j}}{m_{j}} \left\{ q_{\lambda} \exp\left[\frac{i}{\hbar c} \left(\vec{k}_{\lambda} \cdot \vec{r}_{j}\right)\right] + q_{\lambda}^{*} \exp\left[-\frac{i}{\hbar c} \left(\vec{k}_{\lambda} \cdot \vec{r}_{j}\right)\right] \right\} \left(\vec{u}_{\lambda} \cdot \vec{\nabla}_{j}\right) \quad (3.34)$$

y de igual forma los términos de segundo orden son expresables como:

$$H_{\text{int}}^{(2)} = 2\pi \sum_{j,\lambda,\mu} \frac{e_j}{m_j} (\vec{u}_{\lambda} \cdot \vec{u}_{\mu}) \left\{ q_{\lambda} q_{\mu} \exp\left[\frac{i}{\hbar c} (\vec{k}_{\lambda} + \vec{k}_{\mu}) \cdot \vec{r}_j\right] + q_{\lambda} q_{\mu} \exp\left[\frac{i}{\hbar c} (\vec{k}_{\lambda} - \vec{k}_{\mu}) \cdot \vec{r}_j\right] + q_{\lambda}^* q_{\mu} \exp\left[\frac{i}{\hbar c} (-\vec{k}_{\lambda} + \vec{k}_{\mu}) \cdot \vec{r}_j\right] + q_{\lambda}^* q_{\mu} \exp\left[\frac{i}{\hbar c} (-\vec{k}_{\lambda} + \vec{k}_{\mu}) \cdot \vec{r}_j\right] + q_{\lambda}^* q_{\mu} \exp\left[-\frac{i}{\hbar c} (\vec{k}_{\lambda} + \vec{k}_{\mu}) \cdot \vec{r}_j\right] \right\}$$
(3.35)

En relación a los términos de segundo orden, vemos que el primer término del miembro de la derecha de la ecuación anterior involucra dos operadores de aniquilación, es decir describe un proceso en el cual dos fotones de frecuencias $\hbar w_{\lambda}$ y $\hbar w_{\mu}$ son absorbidos simultáneamente. El segundo término corresponde a un proceso bifotónico en el cual un fotón de energía $\hbar w_{\lambda}$ es absorbido y otro de energía $\hbar w_{\mu}$ es emitido simultáneamente. El tercer término corresponde a un proceso en donde un fotón de energía $\hbar w_{\lambda}$ es emitido y otro de energía $\hbar w_{\mu}$ es absorbido en forma simultánea y finalmente el cuarto y último término, corresponde a un proceso en el cual dos fotones de energías $\hbar w_{\lambda}$ y $\hbar w_{\mu}$ son emitidos simultáneamente.

III.3 - Transiciones electrónicas. Regla de oro de Fermi. Número Dos.

Examinemos sucintamente, las bases de la Regla de Oro de Fermi, la cual nos proporciona información en relación a las probabilidades de transición electrónica.

Las ideas básicas se derivan de la teoría de perturbaciones dependiente del tiempo [1 - 4]

Se trata de resolver la ecuación de ondas:

$$H\phi = i\hbar \partial \phi / \partial t \qquad (3.36)$$

donde; $H = H^{(0)} + \lambda H^{(1)}$ siendo $H^{(1)}$ una perturbación pequeña sobre las funciones propias y valores propios del Hamiltoniano de orden cero $H^{(0)}$. Esta perturbación es dependiente del tiempo y su forma será explicitada a lo largo de esta discusión. De igual forma suponemos que las funciones propias del Hamiltoniano H son expresables por medio de las series infinitas:

$$\phi = \sum_{k} b_k(t) \psi_k \exp\left[-iE_k t/\hbar\right] \qquad (3.37)$$

Satisfaciéndose las ecuaciones de valores propios de orden cero.

$$H^{(0)}\psi_k = E_k\psi_k \qquad (3.38)$$

donde, $\{\psi_k\}$ es una base bi ortonormal completa en el espacio de Hilbert.

La Introducción de la ec. (3.37) en (3.36) nos conduce al conjunto de ecuaciones acopladas:

$$db_m(t)/dt = -(i/\hbar) \sum_k \lambda b_k(t) H_{mk}^{(1)} \exp\left[-i\Delta_{km} t/\hbar\right] \qquad (3.39)$$

y $\Delta_{km} = E_k - E_m$ y $H_{mk}^{(1)} = \langle \psi_m | H^{(1)} | \psi_k \rangle$ De la identidad (3.39) se observa que el efecto neto de la perturbación $H^{(1)}$ es acoplar todas aquellas funciones propias de $H^{(0)}$ para las cuales los elementos matriciales $H_{mk}^{(1)}$ sean distintos de cero.

De la ec. (3.37) es evidente que se satisface la condición de normalización:

$$1 = \langle \psi | \psi \rangle = \sum_{k,m} b_k^* b_m \delta_{mk} \exp\left[-i\Delta_{km} t/\hbar\right] = \sum_k |b_k(t)|^2 \qquad (3.40)$$

Con el propósito de describir correcciones de primer y segundo orden es conveniente introducir una expansión de los coeficientes $b_k(t)$ de la forma siguiente:

$$b_k(t) = \sum_l \lambda^l b_k^l(t)$$
 (3.41), donde I =0, 1, 2, 3,

La incorporación de la ec. (3.41) en (3.39) nos conduce a diversos órdenes de aproximación, a saber:

Orden Cero:
$$db_m^{(0)}/dt = 0$$
 (3.42.1)

Orden Uno:
$$db_m^{(1)}/dt = -(i/\hbar) \sum_k b_k^{(0)}(t) H_{mk}^{(1)} \exp[i\Delta_{mk} t/\hbar]$$
 (3.42.2)

Orden Dos:
$$db_m^{(2)}/dt = -(i/\hbar) \sum_k b_k^{(1)}(t) H_{mk}^{(1)} \exp[i\Delta_{mk} t/\hbar]$$
 (3.42.3)

y así sucesivamente, se obtienen correcciones de ordenes superiores.

La obtención de soluciones únicas para las ecuaciones anteriores exige la introducción de condiciones de borde las cuales se escogen en conformidad con el problema físico que deseamos resolver. Así para un tiempo dado, digamos t que difiera en una cantidad infinitesimal de t = 0, podemos suponer que el sistema está descrito por un estado estacionario, digamos ψ_0 .

Observe que ψ_0 no tiene por que representar el estado fundamental, no obstante que, en las aplicaciones corrientes se le otorga este sentido. De esta forma, para t = 0, podemos suponer que la perturbación comienza a actuar

sobre el sistema existiendo una probabilidad finita de ocurrencia de una excitación electrónica dada.

Examinemos los ordenes uno y dos y las probabilidades asociadas:

(A) Orden Uno: Para t < 0, hasta un valor que difiere en una cantidad infinitesimal del valor t = 0, suponemos al sistema descrito por la función de ondas del estado estacionario ψ_0 , de modo que de la condición de normalización dada por la ec. (3.40), vemos que: $|b_0(0)|^2$ es prácticamente la unidad y en consecuencia $b_0(0)=1$ y $b_k(0)=0 \quad \forall k \neq 0$. En orden cero, vemos en consecuencia que: $b_0^{(0)}(0)=1$ y $b_k^{(0)}(0)=0 \quad \forall k \neq 0$.

De la ec. (3.42.2) obtenemos directamente una expresión del tipo:

$$d b_m^{(1)}/dt = -(i/\hbar) H_{m0} \exp[i\Delta_{m0} t/\hbar]$$
 (3.43.1)

Por razones de simplicidad en la discusión, consideraremos el caso más simple para el cual $H^{(1)}$ sea independiente del tiempo. Es posible observar que aún en el caso en que $H^{(1)}$ sea una perturbación constante para t > 0, la perturbación total para el rango desde t < 0 hasta t > 0 será dependiente del tiempo, por cuanto $H^{(1)}$ se comporta como una función del tipo escalón para t = 0. En el caso de una perturbación periódica la identidad (3.43.1) puede ser integrada trivialmente para obtener el resultado:

$$b_m^{(1)} = H_{m0} \frac{1 - \exp[i\Delta_{m0} t/\hbar]}{\Delta_{m0}} \qquad (3.43.2) \qquad \text{para} \quad \Delta_{m0} \neq 0$$

Del resultado anterior es inmediato encontrar la probabilidad de hallar al sistema en el estado m en un tiempo dado t, para lo cual nos basta tomar el producto: $b_m(t)b_m^*(t)$, donde $b_m = b_m^{(0)} + b_m^{(1)}$ obteniendo el resultado siguiente:

$$b_m b_m^* = 2H_{m0} H_{m0}^* \left\{ \frac{1 - \cos[\Delta_{m0} t/\hbar]}{\Delta_{m0}^2} \right\}$$
 (3.43.3)

Por otra parte, tenemos la conocida relación E = hv, de modo que la expresión anterior es expresable como:

$$b_{m}b_{m}^{*} = 2H_{m0}H_{m0}^{*}\left\{\frac{1-\cos 2\pi [v_{m}-v_{0}]t}{h^{2}(v_{m}-v_{0})^{2}}\right\} = 4H_{m0}H_{m0}^{*}\frac{sen^{2}\pi (v_{m}-v_{0})t}{h^{2}(v_{m}-v_{0})^{2}} \quad (3.43.4)$$

es decir:

$$b_{m}b_{m}^{*} = \left(\frac{1}{h^{2}}\right)H_{m0}H_{m0}^{*}\frac{sen^{2}\pi(\nu_{m}-\nu_{0})t}{h^{2}(\nu_{m}-\nu_{0})^{2}} \qquad (3.43.5)$$

En la expresión anterior, es necesario señalar que las energías de los estados $|0\rangle$ y $|m\rangle$, corresponden a energías totales, es decir del sistema molecular y del campo de radiación.

Escribamos, en consecuencia la expresión anterior de la siguiente forma:

$$b_{m}b_{m}^{*} = \left(\frac{1}{h^{2}}\right)|H_{m0}|^{2}\frac{sen^{2}\pi(v_{m0}-v)t}{\pi^{2}(v_{m0}-v)^{2}} \qquad (3.43.6)$$

siendo $v_{m0} = v_m - v_0$ y v es la frecuencia de la luz. Sí escribimos $x = \pi (v_{m0} - v)t$, en consecuencia la expresión anterior se expresa de la forma siguiente:

$$b_m b_m^* = \left(\frac{1}{h^2}\right) |H_{m0}|^2 t^2 \frac{sen^2 x}{x^2}$$
 (3.43.7)

Sí tomamos el límite de la expresión anterior cuando x tiende a cero, vemos por la Regla l'Hopital, que la identidad anterior varía de acuerdo a t^2 .

Esta conclusión no tiene asidero físico y adicionalmente la línea de absorción v_{m0} tiene un ancho natural (El estado excitado $|m\rangle$ tiene asociado un valor de vida media, digamos Δt y esta propiedad del estado está relacionada con el ancho natural del pico espectral que denotaremos por ΔW), por medio de una relación del tipo: $(\Delta t)(\Delta W) > h$. Para el caso de una vida media radiativa correspondiente a una absorción permitida por paridad Δt es del orden de 10^{-9} segundos, con lo cual el ancho natural es mayor o igual a $5 \cdot 10^{-3}$ cm⁻¹.

Retomemos la discusión de la ec (3.43.6); Introduzcamos la densidad de energía del estado final ρ $\left(\propto \frac{1}{E} \right)$ y al integrar a lo largo de la línea de absorción obtenemos la probabilidad total de absorción. Para estos efectos sabemos que la contribución mayor a esta probabilidad proviene del caso en el cual $v_{m0} \rightarrow v$, con lo cual podemos, para efectos prácticos, reemplazar los límites de integración a $-\infty$ y $+\infty$. De esta forma para la energía hv_{m0} , podemos considerar la densidad de energía como sí fuese una constante.

En definitiva y aprovechando las propiedades de la delta de Dirac, es decir:

$$\int_{-\infty}^{+\infty} \delta(x) dx = 1,$$

obtenemos entonces que la probabilidad total por unidad de tiempo es de la forma:

$$W_{m0}^{(1)} = \left(\frac{2\pi}{h}\right) |H_{m0}|^2 \rho(E) \qquad (3.44)$$

expresión que corresponde a la "Regla de Oro" de Fermi número 2. Orden dos: Las probabilidades de transición en segundo orden, pueden ser obtenidas en forma análoga al procedimiento anterior, lográndose expresiones de la forma siguiente:

$$W_{m0}^{(2)} = \left(\frac{2\pi}{h}\right) |K_{m0}|^2 \rho(E) \qquad (3.45) \text{, donde } K_{m0} = \sum_k \frac{H_{k0} H_{mk}}{E_0 - E_k}$$

Las implicancias de las expresiones (3.44) y (3.45) serán motivo de estudio posterior en esta tesis.

III.4 – Procesos Monofotónicos.

En esta sección retomaremos el estudio de las ecs (3.34) y (3.44) para el caso de procesos monofotónicos, para los cuales existe creación y/o aniquilación de un fotón. La ec. (3.34) nos entrega los términos de interacción radiación - materia, aplicables a estos procesos. Un análisis directo de estas ecuaciones nos indica que todos los operadores involucrados son independientes del tiempo. Adicionalmente, este es un típico ejemplo de un Hamiltoniano el cual representa un espectro de valores propios discretos (sistema molecular) inmerso en un continuo (campo de radiación). Bajo estas circunstancias, es razonable hacer uso de la teoría de perturbaciones en primer orden para evaluar la probabilidad de transición entre estados estacionarios del sistema molecular.

En efecto, sí el sistema está en el estado estacionario descrito por ψ_A existirá una probabilidad distinta de cero de encontrar al sistema, después de

un tiempo t, en otro estado estacionario distinto, digamos ψ_B si se satisfacen dos condiciones simultáneamente:

(a) Los elementos de matriz $\langle \psi_A | H_{int}^{(1)} | \psi_B \rangle$ son distintos de cero y (b) Si las energías de los estados ψ_A y ψ_B son iguales o casi idénticas. Es necesario enfatizar que los dos estados difieren en la energía de un fotón absorbido del campo de radiación o viceversa, entonces la energía de los dos estados permanecerá invariante satisfaciéndose la condición (b). Con respecto de la condición (a), ésta se satisface al describir las funciones del campo de radiación en el contexto de la aproximación del oscilador armónico, de modo que los elementos matriciales que involucran estos estados ψ_A y ψ_B difieran a lo máximo en una unidad.

Para efectos ilustrativos designaremos las funciones propias y valores propios de la siguiente forma: ψ_{ij} y E_{ij} , para describir los estados estacionarios del sistema. En esta notación el sub índice "i" se refiere al sistema molecular y el sub índice "j" se referirá a la estructura del campo de radiación.

Recordemos que las funciones del campo de radiación las simbolizamos por los kets: $|n_{\lambda 1}, n_{\lambda 2}, ... \rangle$, donde los números $n_{\lambda i}$ indican el número de fotones de cada una de las especies.

Así para el estado $(0, n_{\lambda})$ designaremos las funciones y valores propios, en notación obvia de acuerdo a:

$$\Psi_{0n_{\lambda}} = \psi_0 \phi_{n_{\lambda}} \qquad (3.46.1) \quad \text{y en consecuencia:} \ E_{0n_{\lambda}} = E_0 + n_{\lambda} \hbar w_{\lambda}$$

y en la aproximación armónica los únicos estados conectados al estado $(0, n_{\lambda})$ son los estados $(m, n_{\lambda} + 1)$ y $(m, n_{\lambda} - 1)$.

En nuestro caso, la ec (3.37) adopta la forma:

$$\Psi(t) = b_{0n_{\lambda}}(t)\psi_{0n_{\lambda}}\exp\left[-iE_{on_{\lambda}}t/\hbar\right] + \sum_{m,\lambda}b_{mn_{\lambda}+1}(t)\psi_{mn_{\lambda}+1}\exp\left[-iE_{mn_{\lambda}+1}t/\hbar\right] + (3.46.2)$$
$$\sum_{m,\lambda}b_{mn_{\lambda}-1}(t)\psi_{mn_{\lambda}-1}\exp\left[-iE_{mn_{\lambda}-1}t/\hbar\right]$$

de donde la identidad análoga a la ec (3.43.3) es la que se indica a continuación:

$$b_{mn_{\lambda}\pm 1}b_{mn_{\lambda}\pm 1}^{*} = 2H_{mn_{\lambda}\pm 1}, 0n_{\lambda}H^{*}_{mn_{\lambda}\pm 1}, 0n_{\lambda}\left\{\frac{1-\cos[\Delta_{m0}\pm\hbar w_{\lambda}]t/\hbar}{(\Delta_{m0}\pm\hbar w_{\lambda})^{2}}\right\}$$
(3.47)

Recordando que para funciones del tipo oscilador armónico se cumplen las identidades [3]

$$\langle n | q_{\lambda} | n+1 \rangle = (\hbar/w_{\lambda})^{1/2} (n+1/2)^{1/2}$$
 (3.48)
 $\langle n+1 | q_{\lambda}^{*} | n \rangle = (\hbar/w_{\lambda})^{1/2} (n+1/2)^{1/2}$

y en consecuencia: $\langle n+1|q_{\lambda}|n\rangle = \langle n|q_{\lambda}^{*}|n+1\rangle = 0$

De esta forma encontramos las probabilidades de emisión y absorción por unidad de tiempo de un fotón obteniéndose las expresiones:

(A) Probabilidad de emisión por unidad de tiempo:

$$\frac{b_{mn_{\lambda}+1}b_{n_{\lambda}+1}^{*}}{t} = \frac{4\pi^{2}\hbar^{2}}{w_{\lambda}}H_{m0}H_{m0}^{*}(n_{\lambda}+1)\delta(\Delta_{m0}+\hbar w_{\lambda}) \qquad (3.49.1)$$

(B) Probabilidad de absorción por unidad de tiempo:

$$\frac{b_{mn_{\lambda}-1}b_{n_{\lambda}-1}^{*}}{t} = \frac{4\pi^{2}\hbar^{2}}{w_{\lambda}}H_{m0}H_{m0}^{*}n_{\lambda}\delta(\Delta_{m0}-\hbar w_{\lambda}) \qquad (3.49.2)$$

Recordando las propiedades de la delta de Dirac vemos que en el primer caso Δ_{m0} debe ser negativo, es decir: $E_m < E_0$, situación que corresponde a un proceso de emisión desde el estado $|0\rangle$ al estado $|m\rangle$ siendo la diferencia de energía entre ambos estados equivalente a $\hbar w_{\lambda}$. En el segundo caso sucede la situación opuesta, en la cual Δ_{m0} debe ser positiva es decir $E_m > E_0$, lo cual se traduce en la absorción de un fotón de energía $\hbar w_{\lambda}$ y en consecuencia el sistema pasa desde un estado $|0\rangle$ al estado $|m\rangle$.

En las expresiones anteriores los elementos matriciales adoptan las formas siguientes:

$$H_{m0} = \left\langle \psi_m \left| \sum_j \frac{e_j}{m_j} \exp\left[\frac{i}{\hbar c} \left(\vec{k}_{\lambda} \cdot \vec{r}_j\right)\right] \left(\vec{u}_{\lambda} \cdot \vec{\nabla}_j\right) \psi_0 \right\rangle \quad (3.50.1)$$
$$H_{m0}^{*} = \left\langle \psi_m \left| \sum_j \frac{e_j}{m_j} \exp\left[-\frac{i}{\hbar c} \left(\vec{k}_{\lambda} \cdot \vec{r}_j\right)\right] \left(\vec{u}_{\lambda} \cdot \vec{\nabla}_j\right) \psi_0 \right\rangle \quad (3.50.2)$$

Algunas observaciones importantes de nuestras ecuaciones son:

- (a) Del análisis de la ec. (3.49.2), vemos que la probabilidad de absorción es proporcional al número de fotones n_{λ} del campo de radiación para la especie λ ésima.
- (b) Sin embargo de la ec. (3.49.1) vemos que la probabilidad de emisión está constituida por dos términos, uno de los cuales es proporcional a n_{λ} y el otro que es independiente del número de fotones. De esta forma el término proporcional a n_{λ} corresponde a la llamada emisión estimulada, en cambio el término independiente del número de fotones se conoce como el responsable de la emisión espontánea del sistema.

De acuerdo a la expresión (3.49.2) la probabilidad por unidad de tiempo correspondiente a la absorción de radiación electromagnética es proporcional, entre otras cantidades, al número de fotones del campo correspondiente a la especie λ – ésima.

Adicionalmente, es inmediato observar que esta probabilidad tiene valores apreciables cuando se satisface la condición de resonancia, es decir, $\Delta_{m0} = \hbar w_{\lambda}$ (válido bajo el supuesto que los elementos matriciales H_{m0} y H_{m0}^{*} son distintos de cero. Por otra parte, y considerando que la luz absorbida por la molécula es algunos ordenes de magnitud mayor que las dimensiones moleculares, es conveniente localizar el origen en el centro de masas de la molécula y realizar, en consecuencia expansión en serie:

$$\exp\left[\frac{i}{\hbar c}\left(\vec{k}_{\lambda}\cdot\vec{r}_{j}\right)\right] = 1 + \frac{i}{\hbar c}\left(\vec{k}_{\lambda}\cdot\vec{r}_{j}\right) + \dots \qquad (3.51.1)$$

es decir, los elementos de matriz H_{m0} adoptan la forma siguiente:

$$H_{m0} = \overline{M}_{m0} + \left(\frac{i}{\hbar c}\right)\Omega_{0m} + \dots \qquad (3.51.2)$$

en notación obvia.

En la expresión anterior, el término de orden uno representado por \overline{M}_{m0} , da origen a contribuciones del tipo dipolar eléctrico, en cambio los

términos de segundo orden, representados por Ω_{m0} son bastante más complejos e involucran contribuciones del tipo cuadrupolar eléctrico y dipolar magnético.

Las contribuciones de órdenes superiores son despreciables en magnitud y corresponden a mecanismos del tipo octupolo eléctrico, hexadecapolo eléctrico, etc.

La corrección de tipo dipolo eléctrico es de la forma:

$$\overline{M}_{m0} = \left\langle \psi_M \left| \frac{e_j}{m_j} \left(\vec{u}_\lambda \cdot \vec{r}_j \right) \psi_0 \right\rangle = -\frac{\Delta_{m0}}{\hbar^2} \left\langle \psi_M \left| \sum_j e_j \left(\vec{u}_\lambda \cdot \vec{r}_j \right) \psi_0 \right\rangle$$
(3.51.3)

es decir:

$$\overline{M}_{m0} = -\frac{\Delta_{m0}}{\hbar^2} M_{m0} = -\frac{\hbar w_{\lambda}}{\hbar^2} \vec{u}_{\lambda} \cdot \vec{P}_{m0} = -\frac{w_{\lambda}}{\hbar} \vec{u}_{\lambda} \cdot \vec{P}_{m0} \qquad (3.51.4)$$

Por lo tanto sí definimos la probabilidad total de transición de tipo dipolar eléctrico sobre todo el rango de frecuencias del espectro electromagnético, obtenemos la identidad:

$$W_{m0} = \frac{2\pi}{\hbar^2} \Delta_{m0} M_{m0} M_{m0}^* n_{\lambda} \qquad (3.52)$$

y por cierto cuando la condición de resonancia se satisface, entonces la magnitud: $n_{\lambda}\Delta_{m0} = n_{\lambda}\hbar w_{\lambda}$, representará la energía del campo de radiación para 122

cada una de los modos de oscilación del campo de radiación, designados acá, por las especies λ – ésima que denominaremos densidad de energía $\rho(E)$. En virtud de lo expuesto anteriormente escribimos la expresión (3.52) de la forma estándar:

$$W_{m0} = \frac{2\pi}{\hbar^2} M_{m0} M_{m0}^* \rho(E) \qquad (3.53)$$

En la ec. (3.51.4), $\vec{P}_{m0} = \langle \Psi_M | \sum_j e_j \vec{r}_j | \Psi_0 \rangle$, representa el momento de transición del tipo dipolar eléctrico y el vector \vec{u}_λ representa el vector de polarización de los fotones del campo radiación. Al respecto, los vectores \vec{r}_j están referidos a un origen que corresponde al centro de masas de la molécula, en consecuencia el vector \vec{P}_{m0} está referido a este mismo sistema.

Sin embargo, el vector de polarización de los fotones, está referido a un espacio de coordenadas fijo en el espacio. Sea, en consecuencia θ el ángulo formado por estos dos vectores, con lo cual la probabilidad total correspondiente a la absorción por unidad de tiempo, con exclusión de términos de órdenes superiores a uno, es expresable por medio de la identidad:

$$W_{m0} = \frac{2\pi}{\hbar^2} \vec{P}_{m0} \vec{P}_{m0}^* \cos^2 \theta \rho(E) \qquad (3.54)$$

Con el propósito de relacionar la cantidad anterior W_{m0} con un observable físico, es costumbre en la literatura tomar el promedio estadístico sobre todas las orientaciones posibles de la molécula con respecto del campo, lo cual nos proporciona una nueva magnitud conocida como "Coeficiente de Absorción de Einstein".

En definitiva, escribimos W_{m0} en función de estos coeficientes para obtener el resultado siguiente:

$$W_{m0} = B_{m0}\rho(E)$$
 (3.55) donde $B_{m0} = \frac{2\pi}{3\hbar^2}\vec{P}_{m0}\vec{P}_{m0}^*$

En los experimentos de absorción se mide normalmente la intensidad de la banda de absorción. En una primera aproximación, sí despreciamos complicaciones adicionales del espectro asociadas a efectos tales como: a) ancho natural de la banda, b) Ensanchamiento de las bandas debido a otros efectos (efecto Doppler, colisiones moleculares, fuerzas intermoleculares, etc.), entonces la teoría desarrollada anteriormente es satisfactoria, no obstante, necesariamente incompleta.

Analicemos con cierto detalle los términos de segundo orden derivados de la ec. (3.51.2) contenidos en los elementos matriciales Ω_{m0} y definidos de acuerdo a la relación:

$$\Omega_{m0} = \left\langle \psi_M \left| \sum_j \frac{e_j}{m_j} \left(\vec{k}_\lambda \cdot \vec{r}_j \right) \left(\vec{u}_\lambda \cdot \vec{\nabla}_j \right) \psi_0 \right\rangle \qquad (3.56)$$

Es conveniente hacer uso de la identidad vectorial:

$$(\vec{u}\cdot\vec{w})(\vec{v}\cdot\vec{s}) = (\vec{u}\times\vec{v})\cdot(\vec{w}\times\vec{s}) + (\vec{v}\cdot\vec{w})(\vec{u}\cdot\vec{s})$$

lo cual la expresión anterior adopta la forma:

$$\Omega_{m0} = \left\langle \psi_M \left| \sum_j \frac{e_j}{m_j} \left[\left(\vec{k}_\lambda \times \vec{u}_\lambda \right) \cdot \left(\vec{r}_j \times \vec{\nabla}_j \right) + \left(\vec{u}_\lambda \cdot \vec{r}_j \right) \left(\vec{k}_\lambda \cdot \vec{\nabla}_j \right) \right] \psi_0 \right\rangle = \Omega_{m0} + \Omega_{m0}$$
(3.57)

La expresión anterior, $\Omega_{m0}^{'}$ corresponde a términos de interacción del tipo dipolo magnético, en cambio los términos que involucran los elementos matriciales $\Omega_{m0}^{''}$ corresponden a las correcciones del tipo cuadrupolo eléctrico. Los términos de naturaleza cuadrupolar eléctricos son expresables, después de cierta álgebra, de la forma:

$$\Omega_{m0}^{"} = \left(\frac{1}{2}\right) \langle \psi_{M} \left| \sum_{\alpha,\beta} k_{\alpha} u_{\beta} T_{\alpha\beta} \right| \psi_{0} \rangle \qquad (3.58)$$

donde los elementos del tensor de momento cuadrupolar eléctrico están dados por la identidad (producto díádico):

$$T_{\alpha\beta} = \sum_{j} e_{j} r_{\alpha j} r_{j\beta} \qquad (3.59)$$

resultando una representación matricial simétrica. La discusión de Ω' , no obstante su importancia, no es el tema central de este Capítulo y el lector es referido a la literatura **[1, 3]**.

Hasta el momento hemos señalado en cierto detalle los términos de corrección de la expansión multipolar producto de la interacción radiación - materia. Es de importancia referirse a los órdenes de magnitud de cada una de estas correcciones. En efecto, para una radiación tipo de longitud de ondas, digamos de 5000 cm⁻¹ los órdenes de magnitud son: Dipolo eléctrico $(6,5 \cdot 10^{-36} \text{ cgs})$, dipolo magnético $(8,7 \cdot 10^{-41} \text{ cgs})$ y cuadrupolo eléctrico $(4 \cdot 10^{-42} \text{ cgs})$. En virtud de estas cantidades, es evidente que sí el mecanismo del tipo dipolo eléctrico es operativo, esta contribución será la dominante en el análisis de los mecanismos radiativos.

La situación, no obstante no es tan simple y en principio debemos considerar dos situaciones de interés en química de compuestos de coordinación: (A) Compuestos de coordinación centro simétricos. Excitaciones del tipo $d \rightarrow d$ y $f \rightarrow f$. En estas situaciones el mecanismo es vibrónico, en naturaleza y las transiciones electrónicas, en principio prohibidas por paridad adquieren intensidad espectral de una transición permitida por paridad con la cooperación de los modos normales impares de vibración y (B) El caso de compuestos no centro simétricos y para excitaciones del tipo $d \rightarrow d$ y $f \rightarrow f$. En este caso, el mecanismo de intensidad espectral es distinto y estas 126 transiciones electrónicas adquieren intensidad de otra transición permitida por paridad con la cooperación de las componentes impares del potencial de interacción.

Situaciones de mayor complejidad serán consideradas en los capítulos venideros con aplicación a compuestos de coordinación de los iones lantánidos.

III.5 – Procesos bifotónicos: Dispersión.

La dispersión de la radiación electromagnética por un sistema molecular es un ejemplo típico de un proceso bifotónico en el cual un fotón es absorbido y el otro es emitido en forma simultánea. Estos fenómenos de dispersión de radiación no pueden ser resueltos, en la escala de los tiempos a dos simples procesos monofotónicos, por dos razones fundamentales : (a) Las energías de los fotones incidentes y dispersado no tienen relación alguna con las energías de los estados estacionarios moleculares y (b) La aniquilación del fotón incidente y la creación del fotón dispersado son procesos no separables y en realidad con sucesos que ocurren simultáneamente, en el sentido que es físicamente imposible discernir el proceso que ocurre en primer lugar.

Estos procesos de dispersión son clasificados de acuerdo a las diferencias energéticas entre el fotón incidente y el dispersado por el sistema

molecular. En este sentido, decimos que sí la diferencia energética es nula, entonces físicamente esta situación corresponde a aquella en la cual la frecuencia de la radiación dispersada es equivalente a la frecuencia de la radiación incidente (dispersión Rayleigh). Por otra parte, sí la frecuencia de la radiación dispersada es mayor o menor que la radiación de excitación, entonces hablamos que existe un efecto Raman operativo.

Para efectos ilustrativos consideremos un sistema molecular inmerso en un campo de radiación. Para t < 0 supongamos al sistema en un estado, digamos $|A\rangle$ caracterizado por la función de ondas:

$$\psi_{A} = \psi_{n} \phi_{n_{\lambda}} \phi_{n_{\mu}} = |n\rangle |n_{\lambda} n_{\mu}\rangle \qquad (3.60)$$

donde el ket $|n\rangle$ representa el estado electrónico y el ket $|n_{\lambda}n_{\mu}\rangle$ representa el campo de radiación. Observe que en el caso de fotones es preciso utilizar la variación del campo de radiación con respecto de de los números de ocupación de las especies λ – ésima y μ – ésima, respectivamente.

Para la función anterior, las energías de orden cero son:

$$E_{A} = E_{n} + n_{\lambda} \hbar w_{\lambda} + n_{\mu} \hbar w_{\mu} \qquad (3.61)$$

y consideramos el estado final, digamos $\left|B\right\rangle = \left|m, n_{\lambda} - 1, n_{\mu} + 1\right\rangle$, es decir:

$$\psi_B = \psi_m \phi_{n_\lambda - 1, n_\mu + 1} \qquad (3.62)$$

cuyas energías son de la forma:

$$E_{B} = E_{m} + (n_{\lambda} - 1)\hbar w_{\lambda} + (n_{\mu} + 1)\hbar w_{\mu} \qquad (3.63)$$

Observe de las expresiones anteriores que los estados $|A\rangle$ y $|B\rangle$ difieren en los siguientes aspectos: (1) El estado molecular asociado al estado $|A\rangle$ es designado por $|n\rangle$, en cambio para el estado $|B\rangle$, el estado molecular es designado por el ket $|m\rangle$ y (2) En el estado $|B\rangle$ un fotón perteneciente a la especie λ – ésima es aniquilado en cambio un fotón de la especie μ – ésima es creado.

Para t = 0 (entendemos la perturbación sobre el sistema) vemos de la ec. (3.35) que el término de $H_{int}^{(2)}$ responsable de la aniquilación de un fotón de la especie λ – ésima y de la creación de un fotón de la especie μ – ésima es de la forma:

$$H_{\rm int}^{(2)} = 2\pi \sum_{j,\lambda,\mu} \frac{e_j^2}{m_j} \left(\vec{u}_\lambda \cdot \vec{u}_\mu \right) \left\{ q_\lambda q_\mu^* \exp\left[\frac{i}{\hbar c} \left(\vec{k}_\lambda - \vec{k}_\mu \right) \cdot \vec{r}_j \right] \right\}$$
(3.64)

De acuerdo a la ec. (3.45) vemos que la probabilidad total de transición por unidad de tiempo en segundo orden es proporcional al cuadrado de los elementos matriciales K_{BA} , los cuales se definen por medio de la expresión:

$$K_{BA} = \sum_{k} \frac{H_{kA} H_{Bk}}{E_{A} - E_{B}} \qquad (3.65)$$

Como lo señalamos anteriormente es físicamente imposible suponer un proceso bifotónico como una secuencia en el tiempo de dos procesos monofotónicos. En la práctica es necesario postular la existencia de estados virtuales correspondientes a ambos procesos: el de absorción de un fotón de la especie λ – ésima y el otro de emisión de un fotón de la especie μ – ésima.

Podemos en consecuencia introducir dos conjuntos de estados virtuales digamos k_1 y k_2 correspondientes, respectivamente, a la absorción de un fotón $k_{\lambda} = \hbar w_{\lambda}$ y a la emisión de un fotón $k_{\mu} = \hbar w_{\mu}$, con la transición simultánea del sistema molecular a un estado l-ésimo.

De esta forma la ec. (3.65) adopta la forma siguiente:

$$K_{BA} = \sum_{k_1} \frac{H_{k_1 A} H_{Bk_1}}{E_A - E_{k_1}} + \sum_{k_2} \frac{H_{k_2 A} H_{Bk_1}}{E_A - E_{k_2}}$$
(3.66)
Explicitemos las funciones y energías de estos estados virtuales de la forma que se indica a continuación:

$$\psi_{k_1} = \psi_1 \phi_{n_{\lambda} - 1, n_{\mu}}$$
 (3.67.1) donde: $E_{k_1} = E_1 + (n_{\lambda} - 1)\hbar w_{\lambda} + n_{\mu}\hbar w_{\mu}$
 $\psi_{k_2} = \psi_1 \phi_{n_{\lambda}, n_{\mu} + 1}$ donde: $E_{k_2} = E_1 + n_{\lambda}\hbar w_{\lambda} + (n_{\mu} + 1)\hbar w_{\mu}$

Haciendo uso de las ecs. (3.61) y (3.67.1), podemos re escribir la identidad dada por la ec. (3.66) de la forma que se indica a continuación:

$$K_{BA} = \sum_{k_1} \frac{H_{k_1 A} H_{Bk_1}}{E_n - E_1 + k_{\lambda}} + \sum_{k_2} \frac{H_{k_2 A} H_{Bk_2}}{E_n - E_1 - k_{\mu}} \qquad (3.67.2)$$

donde: $k_{\lambda} = \hbar w_{\lambda}$ y $k_{\mu} = \hbar w_{\mu}$

En consecuencia el elemento de matriz completo que conecta los estados $|A\rangle$ y $|B\rangle$ y que designaremos por R_{BA} es expresable de la forma:

$$R_{BA} = H_{BA}^{(2)} + K_{BA} \qquad (3.68)$$

donde $H_{BA}^{(2)} = \langle B | H_{int}^{(2)} | A \rangle$ y el Hamiltoniano de interacción está dado por la ec. (3.64).

A esta altura de la discusión es necesario explicitar la forma de los operadores de interacción que aparecen en los elementos matriciales que dan

origen a los términos que constituyen K_{BA} . Así, definimos, los elementos matriciales:

$$H_{k_{1}A} = \langle k_{1} | H_{\text{int}}^{(1)} | A \rangle \qquad H_{k_{2}A} = \langle k_{2} | H_{\text{int}}^{(1)} | A \rangle \qquad (3.69)$$
$$H_{Bk_{1}} = \langle B | H_{\text{int}}^{(1)} | k_{1} \rangle \qquad H_{Bk_{2}} = \langle B | H_{\text{int}}^{(1)} | k_{2} \rangle$$

donde hemos escrito: $H_{int}^{(1)} = H_{int}^{(1)} + H_{int}^{(1)}$, donde el primer término da cuenta de la absorción y el segundo de la emisión, a los estados virtuales designados por k_1 y k_2 .

Introduzcamos a continuación los operadores de aniquilación y de creación de fotones definidos respectivamente, por medio de las expresiones:

$$L_{\lambda} = \sum_{j} \frac{e_{j}}{m_{j}} (\vec{u}_{\lambda} \cdot \vec{P}_{j}) \exp\left[\frac{i}{\hbar c} (\vec{k}_{\lambda} \cdot \vec{r}_{j})\right] \qquad (3.70.1)$$
$$L_{\mu}^{*} = \sum_{j} \frac{e_{j}}{m_{j}} (\vec{u}_{\mu} \cdot \vec{P}_{j}) \exp\left[-\frac{i}{\hbar c} (\vec{k}_{\mu} \cdot \vec{r}_{j})\right] \qquad (3.70.2)$$

Con lo cual los elementos matriciales dados por la ec. (3.68) adoptan la forma:

$$R_{BA} = 2\pi\hbar^{2} \left[n_{\lambda} \left(n_{\mu} + 1 \right) / k_{\lambda} k_{\mu} \right]^{\frac{1}{2}} \left\{ \left(\vec{u}_{\lambda} \cdot \vec{u}_{\mu} \right) \left\langle \psi_{m} \left| \sum_{j} \frac{e_{j}^{2}}{m_{j}} \exp \left[\frac{i}{\hbar c} \left(\vec{k}_{\lambda} - \vec{k}_{\mu} \right) \cdot \vec{r}_{j} \right] \psi_{n} \right\rangle + \left(3.71 \right) \right\}$$

$$\sum_{l} \frac{\left\langle \psi_{l} \left| L_{\lambda} \right| \psi_{n} \right\rangle \left\langle \psi_{m} \left| L_{\mu}^{*} \right| \psi_{l} \right\rangle}{k_{\lambda} - k_{l}} + \frac{\left\langle \psi_{l} \left| L_{\mu}^{*} \right| \psi_{n} \right\rangle \left\langle \psi_{m} \left| L_{\lambda}^{*} \right| \psi_{l} \right\rangle}{-k_{\mu} - k_{l}} \right\}$$

La expresión anterior puede ser simplificada considerablemente utilizando la aproximación dipolar discutida a propósito de los procesos monofotónicos en la sección anterior.

Recordemos la expansión:

$$\exp\left[\frac{i}{\hbar c}\left(\vec{k}_{\lambda}\cdot\vec{r}_{j}\right)\right] = 1 + \frac{i}{\hbar c}\left(\vec{k}_{\lambda}\cdot\vec{r}_{j}\right) + \dots$$

cuya validez fue discutida anteriormente.

El primer término de la expresión anterior da origen al término del tipo dipolo eléctrico, en cambio el segundo correspondiente a correcciones de orden dos, es decir a contribuciones del tipo dipolo magnético y cuadrupolo eléctrico y así sucesivamente. En efecto, los términos cuadrupolares y su inclusión pueden justificarse en casos muy especiales de procesos bifotónicos, sin embargo, juegan un rol bastante secundario en la dispersión normal Raman. En síntesis, una aproximación razonable consiste en retener el carácter bipolar eléctrico en la expansión multipolar producto de la interacción radiación materia.

A continuación definamos las magnitudes:

$$k_l = E_l - E_n \tag{3.72.1}$$

$$C_{\lambda\mu} = 2\pi\hbar^2 \left[n_{\lambda} \left(n_{\mu} + 1 \right) / k_{\lambda} k_{\mu} \right]^{1/2}$$
(3.72.2)

$$G_{mn}^{(0)} = \left(\sum_{j} \frac{e_{j}^{2}}{m_{j}}\right) \langle \psi_{m} | \psi_{n} \rangle = \left(\sum_{j} \frac{e_{j}^{2}}{m_{j}}\right) \delta_{mn}$$
(3.72.3)

$$F_{pq,\alpha}^{(0)} = \left\langle \psi_p \left| \sum_j \frac{e_j}{m_j} \left(\vec{u}_\alpha \cdot \vec{P}_j \right) \psi_q \right\rangle = \frac{i}{\hbar} \left(E_p - E_q \right) \left(\vec{u}_\alpha \cdot \vec{P}_{pq} \right) \quad (3.72.4)$$

en la expresión anterior: $\alpha = \lambda, \mu$; p = l, m y q = n, l.

También:
$$\vec{P}_{pq} = \left\langle \psi_p \left| \vec{\mu} \right| \psi_q \right\rangle$$
 siendo $\vec{\mu} = \sum_j e_j \vec{r}_j$

De modo que en la aproximación dipolar la ec. (3.71) se reduce a la identidad:

$$R_{BA} = 2\pi \left[n_{\lambda} k_{\lambda} (n_{\mu} + 1) k_{\mu} \right]^{1/2} \phi_{BA} \qquad (3.73)$$

donde la expresión para la ecuación de dispersión está dada por la identidad:

$$\phi_{BA} = \left(\vec{u}_{\lambda} \cdot \vec{u}_{\mu}\right) \frac{\hbar^{2}}{k_{\lambda}k_{\mu}} G_{mn}^{(0)} + \sum_{l} \frac{k_{l}(k_{l} - k_{m})}{k_{\lambda}k_{\mu}} \left[\frac{\left(\vec{u}_{\lambda} \cdot \vec{P}_{ln}\right)\left(\vec{u}_{\mu} \cdot \vec{P}_{ml}\right)}{-k_{l} + k_{\lambda}} + \frac{\left(\vec{u}_{\lambda} \cdot \vec{P}_{ml}\right)\left(\vec{u}_{\mu} \cdot \vec{P}_{ln}\right)}{-k_{l} - k_{\mu}} \right]$$
(3.74)

De acuerdo a la ec. (3.72.3) el primer término de la ecuación de dispersión es no nulo sólo si n es igual a m. Este término contribuye exclusivamente a la dispersión Rayleigh. En la práctica este término es bastante pequeño y por lo general es despreciado.

Respecto del segundo término de la expresión anterior, es aún posible realizar ciertas simplificaciones: En efecto, el coeficiente: $k_l (k_l - k_m)/k_{\lambda}k_{\mu}$ es del orden de la unidad, por cuanto k_l y k_{λ} son bastante parecidos entre si, como también la diferencia $(k_l - k_m)$ posee un valor muy próximo a k_{μ} .

Finalmente la ecuación de dispersión puede ser escrita en la representación de Kramers - Heisenberg de acuerdo a la identidad:

$$\phi_{BA} = \sum_{l} \frac{\left(\vec{u}_{\lambda} \cdot \vec{P}_{ln}\right)\left(\vec{u}_{\mu} \cdot \vec{P}_{ml}\right)}{-k_{l} + k_{\lambda}} + \frac{\left(\vec{u}_{\lambda} \cdot \vec{P}_{ml}\right)\left(\vec{u}_{\mu} \cdot \vec{P}_{ln}\right)}{-k_{l} - k_{\mu}} \qquad (3.75)$$

Combinando las ecs. (3.45) y (3.73) obtenemos una expresión a la probabilidad de transición por unidad de tiempo W_{BA} , de acuerdo a la expresión:

$$W_{BA} = \frac{(2\pi)^3}{\hbar} n_{\lambda} k_{\lambda} (n_{\mu} + 1) k_{\mu} |\phi_{BA}|^2 \qquad (3.76)$$

Es interesante escribir la ec. (3.75) de la siguiente forma:

$$\phi_{BA} = -\vec{u}_{\mu} \overset{=}{\alpha}_{mn} \vec{u}_{\lambda} \qquad (3.77)$$

donde los $\overline{\alpha}_{mn}$ representan los elementos de un tensor de segundo orden conocido como tensor de polarizabilidad definido por medio de la identidad:

$$= \frac{1}{\alpha_{mn}} = \sum_{l} \left\{ \frac{\vec{P}_{ml}\vec{P}_{ln}}{k_l - k_{\lambda}} + \frac{\vec{P}_{ln}\vec{P}_{ml}}{k_l + k_{\mu}} \right\}$$
(3.78)

donde m, n = (X, Y, Z) representan las coordenadas Cartesianas referidas a un sistema de ejes fijo en el espacio. Es decir, la probabilidad de transición por unidad de tiempo, adopta la forma:

$$W_{BA} = \frac{(2\pi)^3}{\hbar} n_{\lambda} k_{\lambda} (n_{\mu} + 1) k_{\mu} \left| -\vec{u}_{\mu} \cdot \vec{\alpha}_{mn} \cdot \vec{u}_{\lambda} \right|^2 \qquad (3.79)$$

A esta altura de la discusión, es importante analizar con cierto detalle la intensidad de la radiación dispersada. Para efectos ilustrativos, consideremos radiación de excitación monocromática de frecuencia $v_{\lambda} = (k_{\lambda}/h)$ cuya intensidad es:

$$I_0 = cn_\lambda k_\lambda \qquad (3.80)$$

Por otra parte, la intensidad de la radiación de frecuencia $v_{\mu} = (k_{\mu}/h)$ y cuyo vector de polarización es \vec{u}_{μ} dispersada por unidad de tiempo por una molécula en un elemento de ángulo sólido $d\Omega$, está dada por la expresión:

$$dI = k_{\mu} W_{BA} \rho(\mu) d\Omega \qquad (3.81)$$

siendo $\rho(\mu)$ la densidad de la radiación de frecuencia v_{μ} que se define como equivalente al número de fotones por unidad de volumen con energías comprendidas en el intervalo dk_{μ} y con una dirección de propagación en el elemento del ángulo sólido $d\Omega$, siendo válida la relación:

$$\rho(\mu)dk_{\mu}d\Omega = \frac{k_{\mu}^{2}}{\left(2\pi\hbar c\right)^{3}}dk_{\mu}d\Omega \qquad (3.82)$$

Combinando las ecs. (3.76) y (3.82) obtenemos la intensidad dI como equivalente a la expresión:

$$dI = I_0 \left(\frac{k_{\mu}}{\hbar c}\right)^4 \left(n_{\mu} + 1\right) \phi_{BA} \Big|^2 d\Omega \qquad (3.83)$$

Para el caso de Z moléculas por unidad de volumen la dispersión no coherente es Z veces mayor. Para obtener la intensidad de la luz dispersada

en el ángulo sólido completo 4π , debemos integrar la ec. (3.83) sobre el volumen del ángulo sólido $d\Omega$, multiplicar por Z y sumar sobre las dos direcciones mutuamente ortogonales del vector de polarización \vec{u}_{μ} . En los procesos de dispersión normal, en los cuales interviene luz de excitación monocromática se cumple que $n_{\mu} = 0$, con lo cual obtenemos la expresión:

$$I = I_0 Z \left(\frac{k_{\mu}}{\hbar c}\right)^4 \sum_{\vec{u}_{\mu}} \int \left|\phi_{BA}\right|^2 d\Omega = Z \frac{2^7 \pi^5}{3c^4} I_0 v_{\mu}^4 \left|\overline{\alpha}_{BA} \cdot \vec{u}_{\lambda}\right|^2 \qquad (3.84)$$

donde $\overline{\alpha}_{BA} = \overline{\alpha}_{mn}$, siendo $\overline{\alpha}$ el tensor de dispersión.

De la expresión anterior es posible concluir que la intensidad de la dispersión es proporcional a la cuarta potencia de la frecuencia. Adicionalmente si promediamos la expresión anterior sobre todas las orientaciones relativas de las moléculas con respecto de un vector de polarización \vec{u}_{λ} fijo en el espacio de la luz de excitación, obtenemos la expresión final:

$$I = Z \frac{2^{7} \pi^{5}}{3^{2} c^{4}} I_{0} v_{\mu}^{4} \sum_{\rho,\sigma} \left| \left(\alpha_{\rho\sigma} \right)_{BA} \right|^{2} \qquad (3.85)$$

donde $\rho, \sigma = X, Y, Z$ representan coordenadas cartesianas referidas a un sistema de ejes fijo en el espacio y $(\alpha_{\rho\sigma})_{BA}$ representan los elementos $\rho\sigma$ – ésimo del tensor de polarizabilidad α_{BA} .

Observaciones:

(1) Las funciones de ondas moleculares, digamos ψ_r son soluciones de la ecuación de ondas de Schrödinger, sin embargo las funciones $\exp(i\delta)\psi_r$ son también soluciones de la misma ecuación de ondas.

De esta forma resulta evidente que los elementos de matriz \vec{P}_{pq} tienen asociado un factor de fase del tipo $\exp[i(-\delta_p + \delta_q)]$, el cual desaparece cuando ambos estados coinciden, es decir p = q.

(2) Consideremos la radiación dispersada por un conjunto de moléculas. Si los estados terminales de la excitación, a saber los estados $|p\rangle$ y $|q\rangle$ coinciden, entonces se produce dispersión Rayleigh. En esta situación no existe diferencia de fases entre los fotones dispersados por los diferentes centros dando como resultado luz dispersada coherente pudiendo ocurrir interferencia.

La intensidad total dispersada depende críticamente de las orientaciones relativas de los centros de dispersión.

(3) Si a diferencia de la situación anterior, los estados terminales de la excitación $|n\rangle$ y $|m\rangle$ son distintos, esta situación da origen al llamado efecto

Raman. En este caso, los factores de fases que señalábamos anteriormente, adoptan valores al azar "random values" y fenómenos de interferencia no pueden ocurrir. En esta situación la intensidad total es proporcional al número de centros dispersantes por unidad de volumen.

III.6 - Referencias

- [1] R. Loudon, "The quantum theory of light", Oxford Science Publications. Clarendon Press. Oxford, 1993.
- [2] G.Arfken, "Mathematical Method for Physicists. Academic Press, Inc., 1985.
- [3] S. Califano, "Vibronic states". John Wiley and Sons, 1976.
- [4] C.J. Ballhausen, "Molecular electronics structures of transition metal complexes". McGraw-Hill, 1979.

CAPITULO IV

ASPECTOS FORMALES DE LA ESPECTROSCOPIA MOLECULAR

IV.1 – Introducción.

Diversos son los aspectos formales de la espectroscopia molecular y sus implicancias en los mecanismos propuestos de intensidades espectrales. En este Capítulo, concentraremos nuestra atención en la discusión de la aproximación de Born - Oppenheimer y sus implicancias en la comprensión de las hipersuperficies de energías potenciales de los diversos estados electrónicos, movimientos nucleares, análisis de coordenadas normales y el teorema de Jahn - Teller.

No obstante la abundante literatura, en los tópicos enunciados anteriormente, el autor está consciente de la carencia de una discusión unificada sobre todos estos aspectos y sus implicancias, en la comprensión de fenómenos espectroscópicos de nuevos materiales inorgánicos, para los cuales se ha acumulado una vasta información experimental. La información existente en la literatura cubre un rango casi ilimitado de compuestos, cada una de los cuales presenta diversos ordenes de complejidad.

Es ciertamente deseable disponer de algunos criterios básicos que nos permitan estudiar la validez de nuestros modelos en lo que dice relación con la comprensión del observable físico.

IV.2 – Energías electrónicas y aproximación de Born - Oppenheimer.

En compuestos de coordinación de M núcleos y N electrones la estructura rotacional de los diversos picos del espectro aparece completamente cubierta por el envoltorio electrónico vibracional. Por cierto, las energías rotacionales en módulo, son bastante menores en magnitud que las vibracionales y de igual forma, éstas últimas son en magnitud, bastante menores que las energías electrónicas del sistema. Nos interesarán fundamentalmente aquellas excitaciones para las cuales se observa una alta resolución vibracional en el envoltorio electrónico.

El avance tecnológico actual permite, en una gran mayoría de los materiales inorgánicos de interés, obtener una altísima resolución de los espectros y en consecuencia proponer mecanismos de decaimiento radiativos y no radiativos asociados a cada una de las excitaciones en estudio.

En una primera aproximación abordemos con cierto detalle el problema de la separación de los movimientos electrónicos y nucleares, desde un punto de vista de la aproximación de Born - Oppenheimer **[1, 2]**. Para estos efectos, sea un sistema compuesto de M núcleos y N electrones y por razones de notación designemos las coordenadas y masas nucleares por los conjuntos (Q_{μ}, M_{μ}) y para el caso de los electrones por las parejas (r_i, m) .

143

Tanto las coordenadas nucleares Q_{μ} como las electrónicas r_i estarán referidas a un sistema de laboratorio fijo en el espacio.

Escribamos en consecuencia el Hamiltoniano de la forma:

$$H = -\sum_{\mu} \frac{\hbar^2}{2M_{\mu}} \nabla^2_{\mu} - \sum_{i} \frac{\hbar^2}{2m} \nabla^2_{i} + V(\vec{r}, \vec{Q}) \qquad (4.1)$$

donde la energía potencial $V(\vec{r}, \vec{Q})$ adopta la forma:

$$V(\vec{r}, \vec{Q}) = -\sum_{\mu, i} \frac{Z_{\mu} e^2}{|Q_{\mu} - r_i|} + \sum_{\mu, \nu} \frac{Z_{\mu} Z_{\nu} e^2}{|Q_{\mu} - Q_{\nu}|} + \sum_{i < j} \frac{e^2}{|r_i - r_j|}$$
(4.2)

La simple consideración de la diferencia de masas entre núcleos y electrones nos permite suponer en un instante dado de tiempo, una configuración nuclear "congelada" en relación al movimiento electrónico. En la ec. (4.1) podemos suponer las masas nucleares como infinitamente grandes con respecto de las masas de los electrones y bajo estas condiciones es posible introducir, en una aproximación razonable un Hamiltoniano electrónico de la forma:

$$H_E = -\sum_i \frac{\hbar^2}{2m} \nabla_i^2 + V(\vec{r}, \vec{Q}) \qquad (4.3)$$

con lo cual la ecuación de ondas electrónica toma la forma:

$$H_E \psi_t \left(\vec{r}, \vec{Q} \right) = W_t \left(\vec{Q} \right) \psi_t \left(\vec{r}, \vec{Q} \right) \qquad (4.4)$$

de la ecuación de valores propios anterior, se observa que tanto las funciones propias como también los valores propios de la ecuación de ondas electrónica, dependen paramétricamente de las coordenadas nucleares. En principio, un análisis cuidadoso de la ecuación anterior nos indica que es posible resolverla para las 3M coordenadas nucleares y en consecuencia para cada uno de los arreglos nucleares podríamos obtener un conjunto distinto de funciones y valores propios de la ecuación de ondas electrónica.

Utilizando la ec (4.3) podemos escribir el Hamiltoniano del sistema H de la forma que se indica a continuación:

$$H = H_E - \sum_{\mu} \frac{\hbar^2}{2M_{\mu}} \nabla^2_{\mu} \qquad (4.5)$$

Introduzcamos una función variacional de la forma:

$$\Psi = \sum_{t=1}^{p} \chi_t \left(\vec{Q} \right) \psi_t \left(\vec{r}, \vec{Q} \right) \qquad (4.6)$$

correspondiente a una función truncada de dimensión p. Los coeficientes de expansión son funciones paramétricas de las coordenadas nucleares. Sin que signifique pérdida de generalidad, supondremos que la función de ondas total es real y está normalizada a la unidad, es decir:

$$\int \left| \Psi \left(\vec{r}, \vec{Q} \right) \right|^2 d\tau = 1 \qquad (4.7)$$

resulta importante observar que la identidad anterior supone que la función de ondas $\Psi(\vec{r}, \vec{Q})$ está normalizada para todos los valores posibles de \vec{Q} .

Definamos los operadores diferenciales C_{ut} por medio de las relaciones:

$$C_{ut} = \sum_{\mu} \frac{\hbar^2}{2M_{\mu}} 2 \langle \Psi_{\mu}(\vec{r}, \vec{Q}) | \vec{\nabla}_{\mu} | \Psi_{t}(\vec{r}, \vec{Q}) \rangle \vec{\nabla}_{\mu} +$$

$$+ \sum_{\mu} \frac{\hbar^2}{2M_{\mu}} \langle \Psi_{\mu}(\vec{r}, \vec{Q}) | \vec{\nabla}_{\mu}^2 | \Psi_{t}(\vec{r}, \vec{Q}) \rangle$$

$$(4.8)$$

en virtud de la expuesto anteriormente escribamos la ecuación de ondas total, es decir:

$$H\Psi\left(\vec{r},\vec{Q}\right) = W\Psi\left(\vec{r},\vec{Q}\right) \qquad (4.9)$$

y en función de los operadores definidos en la ec. (4.8) al remplazar en la ecuación (4.9), pre multiplicando por la función $\Psi_u(\vec{r}, \vec{Q})$ e integrando sobre todo el espacio físico, obtenemos un conjunto de ecuaciones diferenciales acopladas de la forma:

$$\left\{-\sum_{\mu}\frac{\hbar^2}{2M_{\mu}}\nabla^2_{\mu}+W_{\mu}\left(\vec{Q}\right)-W-C_{\mu\nu}\right\}\chi_{\mu}\left(\vec{Q}\right)-\sum_{t}C_{\mu t}\chi_{t}\left(\vec{Q}\right)=0\qquad(4.10)$$

146

donde la prima sobre la segunda sumatoria, indica que debe sumarse sobre todos los valores de t, exceptuando el caso t = u. Las ecuaciones diferenciales acopladas anteriores podrían ser utilizadas, para obtener los coeficientes de expansión $\chi_t(\vec{Q})$ para cada uno de los arreglos nucleares.

Este método esbozado en la presente sección es el origen de la aproximación de Born – Oppenheimer, el cual nos conduce a la resolución de dos tipos de ecuaciones diferenciales distintas. En efecto, y como veremos, una de ellas representa el movimiento nuclear en cambio la otra gobierna los movimientos electrónicos. El trabajo original de estos autores hace uso de un método perturbacional, en el cual se utiliza como parámetro de separación la cantidad adimensional $\eta = (m/M)^{1/4}$. La justificación de este parámetro de separación es trivial y se basa en lo siguiente: Para un oscilador armónico se evalúa en el estado fundamental el valor de esperanza del cuadrado de la coordenada, es decir $\langle \zeta^2 \rangle$, con referencia a su posición de equilibrio. De esta forma definimos:

 $\eta = \langle \zeta^2 \rangle / a_0$, donde a_0 es el radio de Bohr reencontrándonos con el parámetro de expansión utilizado por Born - Oppenheimer.

De acuerdo a la ec. (4.8) los operadores C_{ut} contienen operadores diferenciales que representan primeras y segundas derivadas con respecto de las coordenadas nucleares de las funciones de ondas Ψ .

Analicemos los operadores C_{uu} derivables de la ec. (4.8), de modo que para t = u, escribimos:

$$C_{uu} = \sum_{\mu} \frac{\hbar^2}{2M_{\mu}} \langle \psi_u(\vec{r}, \vec{Q}) | \vec{\nabla}_{\mu} | \psi_u(\vec{r}, \vec{Q}) \rangle \vec{\nabla}_{\mu} + \qquad (4.11)$$
$$+ \sum_{\mu} \frac{\hbar^2}{2M_{\mu}} \langle \psi_u(\vec{r}, \vec{Q}) | \nabla^2_{\mu} | \psi_u(\vec{r}, \vec{Q}) \rangle$$

Procedamos a estimar las integrales que aparecen en la diagonal del operador C_{uu}

Consideremos:

(a)
$$\vec{\nabla}_{\mu} \langle \psi_{u} | \psi_{u} \rangle = \langle \vec{\nabla}_{\mu} \psi_{u} | \psi_{u} \rangle + \langle \psi_{u} | \vec{\nabla}_{\mu} \psi_{u} \rangle =$$

= $\langle \psi_{u}^{*} | \vec{\nabla}_{\mu}^{*} | \psi_{u}^{*} \rangle + \langle \psi_{u} | \vec{\nabla}_{\mu} | \psi_{u} \rangle$

donde se desprende:

$$\left\langle \Psi_{u}\left|\vec{\nabla}_{\mu}\right|\Psi_{u}\right\rangle =0$$

En la derivación anterior hemos supuesto que las funciones son reales (Esta suposición no significa pérdida de generalidad).

Este resultado es válido por cuanto hemos supuesto que las funciones $\{\psi_u(\vec{r}, \vec{Q})\}$ constituyen un conjunto ortonormal completo en el espacio funcional.

(b) Para estimar el orden de magnitud de la integral $\langle \psi_u | \nabla^2_\mu | \psi_u \rangle$, es razonable suponer que los núcleos y electrones experimentan en promedio la misma intensidad de las fuerzas coulómbicas que determinan el potencial de interacción. Esta interacción es inversamente proporcional a $|\vec{Q}_\mu - \vec{r}_i|$. Bajo este supuesto básico podemos suponer que: $\nabla^2_\mu \psi_u$ es del orden de magnitud de $\nabla^2_i \psi_u$, con lo cual es directo escribir la inecuación:

$$\frac{\hbar^2}{2M_{\mu}} \langle \psi_u | \nabla^2_{\mu} | \psi_u \rangle \cong \frac{\hbar^2}{2M_{\mu}} \langle \psi_u | \nabla^2_i | \psi_u \rangle$$

Esta última integral corresponde aproximadamente a la energía de un quantum rotacional $(\hbar^2/2M_{\mu}a_0^2)$. Para sistemas de M núcleos y N electrones, estas energías pueden ser despreciadas.

En virtud de lo expuesto anteriormente fluye que para los sistemas que nos interesan, los operadores diagonales C_{uu} ser despreciados lo cual produce una simplificación importante en la ec. (4.10).

Retomemos el estudio de la ec. (4.8) para el caso de $t \neq u$. El análisis de estos términos requiere de la utilización de la ecuación de ondas electrónica, ec. (4.4).

Diferenciando ambos miembros de esta ecuación y haciendo uso del operador $\vec{\nabla}_{\mu}$ obtenemos la identidad que se indica a continuación:

$$\left(\vec{\nabla}_{\mu}H_{E}\right)\psi_{t} + H_{E}\left(\vec{\nabla}_{\mu}\psi_{t}\right) = W_{t}\left(\vec{\nabla}_{\mu}\psi_{t}\right) + \left(\vec{\nabla}_{\mu}W_{t}\right)\psi_{t} \qquad (4.12.1)$$

al pre multiplicar por ψ_u^* e integrar sobre todo el espacio físico obtenemos la identidad: (Las integrales se toman sobre las coordenadas electrónicas).

$$\left\langle \psi_{u} \left| \left(\vec{\nabla}_{\mu} H_{E} \right) \psi_{t} \right\rangle + \left\langle \psi_{u} \left| H_{E} \left(\vec{\nabla}_{\mu} \psi_{t} \right) \right\rangle = W_{t} \left\langle \psi_{u} \left| \vec{\nabla}_{\mu} \right| \psi_{t} \right\rangle + \left\langle \psi_{u} \left| \left(\vec{\nabla}_{\mu} W_{t} \right) \psi_{t} \right\rangle \right\rangle$$
(4.12.2)

es decir:

$$\langle \psi_{u} | \vec{\nabla}_{\mu} V (\vec{r}, \vec{Q}) \psi_{t} \rangle + W_{u} \langle \psi_{u} | \vec{\nabla}_{\mu} | \psi_{t} \rangle =$$

$$W_{t} \langle \psi_{u} | \vec{\nabla}_{\mu} | \psi_{t} \rangle + \left| \vec{\nabla}_{\mu} W_{t} \right| \delta_{ut}$$

$$(4.13)$$

por cuanto: $\vec{\nabla}_{\mu}H_{E} = \vec{\nabla}_{\mu}V(\vec{r},\vec{Q})$. Para $u \neq t$ la expresión anterior reduce a una forma más simple:

$$\langle \psi_{u} | \vec{\nabla}_{\mu} | \psi_{t} \rangle = \frac{\langle \psi_{u} | \vec{\nabla}_{\mu} V (\vec{r}, \vec{Q}) \psi_{t} \rangle}{W_{t} - W_{u}}$$
 (4.14)

150

para $t \neq u$, se observa de la identidad anterior que este tipo de elementos matriciales es despreciable sólo para diferencias energéticas importantes entre los estados termínales de la excitación. La próxima etapa reside en la estimación de los elementos matriciales del tipo: $\langle \psi_u | \nabla^2_\mu | \psi_t \rangle$ el cual al ser pre multiplicado por $\hbar^2/2M_\mu$ y haciendo uso de la desigualdad de Schwartz $|\langle \phi | \psi \rangle| < \sqrt{\langle \phi | \phi \rangle \langle \psi | \psi \rangle}$ encontramos la desigualdad:

$$\frac{\hbar^2}{2M_{\mu}} \langle \psi_u | \nabla^2_{\mu} | \psi_t \rangle \cong W_{rot} \qquad (4.15)$$

De modo que para los sistemas de nuestro interés, para los cuales existen M núcleos y N electrones, estas energías rotacionales son francamente despreciables, de modo que resulta razonable suponer: $C_{uu} \cong 0$ y el operador C_{ut} se reduce exclusivamente al primer término. Sin embargo, sí los estados electrónicos están lo suficientemente separados entre sí, entonces resulta válido en una primera aproximación despreciar estos operadores para $u \neq t$.

Bajo estas condiciones la ec. (4.10) se reduce a la identidad:

$$\left\{-\sum_{\mu}\frac{\hbar^2}{2M_{\mu}}\nabla^2_{\mu}+W_t\left(\vec{Q}\right)\right\}\chi_{t,\nu}\left(\vec{Q}\right)=W_{t,\nu}\chi_{t,\nu}\left(\vec{Q}\right) \qquad (4.16.1)$$

correspondiente a la ecuación de ondas nuclear. Observe que en la identidad anterior las energías electrónicas $W_t(\vec{Q})$ las cuales dependen paramétricamente 151

de las coordenadas nucleares, corresponden al término de energía potencial en la ecuación de ondas nuclear. Es precisamente por esta razón que las funciones de ondas nucleares, dependen de la naturaleza del estado electrónico simbolizado por el índice t y de un número cuántico vibracional v. Los valores propios de la ecuación de ondas electrónica $W_t(\vec{Q})$ se conocen como superficies de energía potencial y dependen de la configuración nuclear que se escoja para resolver el problema.

De esta forma se concluye que para sistemas de M núcleos y N electrones, para los cuales sea posible despreciar los términos C_{ut} para $u \pm t$, es posible truncar la expansión de la función de ondas y escribir simplemente:

$$\Psi = \chi_{t,v} \left(\vec{Q} \right) \psi_t \left(\vec{r}, \vec{Q} \right) \qquad (4.16.2)$$

corresponde a la representación de la función de ondas total en la aproximación adiabática de Born - Oppenheimer.

Como veremos en la discusión posterior, para un sistema de Z partículas, existe un total de (3Z - 6) grados de libertad vibracionales. Lo anterior significa que la función de ondas vibracional es expresable en una representación del tipo producto:

$$\chi_{t,v} = \prod_{i=1}^{3Z-6} \chi_{t,v}(Q_i)$$
 (4.17)

152

La función de energía potencial $W_{t}(Q)$, es corrientemente expresada en una serie de los desplazamientos cartesianos con respecto de alguna configuración nuclear de referencia, es decir:

$$W_t - W_t^0 = \sum_i \left(\partial W_t / \partial s_i \right) s_i + \sum_{i,j} \left(1/2 \right) \left(\partial^2 W_t / \partial s_i \partial s_j \right) + \dots$$
(4.18)

En la notación anterior, los desplazamientos internos, correspondientes a tensiones de los enlaces, deformaciones de los ángulos de enlace, torsiones,, etc. y se han representado por los conjuntos $\{s_i\}$. De la expresión anterior se observa que la expansión de W_i depende del estado electrónico en cuestión, para una configuración de referencia dada.

Para un sistema molecular de una simetría dada, se toman combinaciones lineales de las coordenadas internas adaptadas por simetría, denominadas coordenadas de simetría $\{S_i\}$ y en consecuencia, para una configuración nuclear de referencia la expresión anterior es expresable de la forma:

$$\widetilde{W}_{t} = W_{t} - W_{t}^{0} = \sum_{i} \left(\frac{\partial W_{t}}{\partial S_{i}} \right) S_{i} + \left(\frac{1}{2} \right) \sum_{i,j} \left(\frac{\partial^{2} W_{t}}{\partial S_{i}} \right) S_{i} + \dots \quad (4.19)$$

En este punto de la discusión resulta interesante mencionar que para una configuración nuclear dada, las coordenadas de simetría están relacionadas con las coordenadas internas por medio de la transformación s = BR **[3,4]**, donde la

matriz B es obtenida trivialmente una vez conocida la configuración nuclear de referencia del sistema molecular.

Adicionalmente recordemos que las coordenadas de simetría se construyen adaptadas por simetría, de modo que se transforman de acuerdo a las diversas representaciones irreductibles Γ_i del grupo puntual molecular al cual pertenece el sistema de N partículas en estudio. De esta forma es posible encontrar la matriz de transformación unitaria U, la cual relaciona dos conjuntos de representación de coordenadas.

Escribimos en consecuencia la relación: S = Us, de donde se deduce la transformación: S = (UB)R.

La transformación anterior relaciona el conjunto de las coordenadas de simetría con el conjunto de las coordenadas cartesianas de desplazamiento nucleares. Esta transformación es por definición triangular y es posible su cuadratura introduciendo las coordenadas de traslación y de rotación del sistema como un todo. Una vez eliminada las redundancias es posible invertir la transformación (UB) y, de esta forma, expresar las coordenadas de desplazamientos Cartesianos nucleares en términos de las coordenadas de simetría.

En rigor las coordenadas de simetría no representan los modos normales de vibración del sistema siendo en consecuencia necesario resolver las ecuaciones de movimiento nucleares. Este proceso no es en absoluto trivial por cuanto se precisa disponer del conjunto más completo posible de datos experimentales derivados de las distintas técnicas del análisis instrumental (IR, Raman, Luminiscencia) y por cierto, de las asignaciones espectroscópicas correctas. Son muy escasos en la literatura aquellos sistemas para los cuales se dispone de estos completos conjuntos de frecuencias vibracionales y de asignaciones no ambiguas. Muy probablemente el sistema más estudiado es el correspondiente al enrejado Cs_2MnF_6 y a ciertos enrejados dopados con la impureza MnF_6^{-2} [5, 6]. La información más relevante es posible obtenerla haciendo uso de las técnicas de espectroscopia de luminiscencia a bajas temperaturas. La obtención de monocristales de alta pureza y estables es una condición inicial de gran importancia desde un punto de vista experimental.

En el estado sólido, las dificultades experimentales son evidentes sí se considera que el análisis de los datos experimentales se debe realizar considerando las tres zonas principales del espectro. Es decir, las zonas de baja, de mediana y de alta energías. Por cierto la zona de energías intermedia resulta ser, por lo general la de mayor dificultad, por cuanto son altamente probables los acoplamientos de los modos de la impureza y del enrejado cristalino pertenecientes a la misma representación de simetría en el grupo espacial. En todos aquellos casos, en los cuales se observa este acoplamiento la asignación espectroscópica se ve complicada por efectos tales, como mezclas de modos

normales de igual simetría pertenecientes al enrejado cristalino y a la impureza. Estos acoplamientos, por cierto inciden en las intensidades espectrales asociadas a cada una de los picos del espectro y es en consecuencia necesario enfocar el problema desde un punto de vista formal de la dinámica de cristales.

Existen no obstante otros sistemas más ideales para el estudio experimental y teórico, para los cuales este acoplamiento es débil y en consecuencia es posible identificar, en una aproximación razonable, los modos de vibración de la impureza, siendo estos últimos, dependientes del enrejado cristalino (que aloja a la impureza) y la temperatura.

Adicionalmente resulta conveniente escoger sistemas cúbicos para los cuales es posible, haciendo uso de tablas de correlación, obtener reglas de selección que permitan asignar los picos más intensos del espectro sin mayores ambigüedades. Existen no obstante otras consideraciones que es preciso tener en cuenta en las asignaciones espectroscópicas:

(1) Las geometrías de los estados terminales de la transición electrónica.

(2) Los posibles mecanismos de intensidades espectrales, tanto en procesos radiativos, como no radiativos asociados tanto en las fluorescencias como en las fosforescencias.

(3) Distorsiones estáticas y dinámicas del tipo Jahn - Teller.

(4) Procesos multifotónicos.

(5) Existencia de bandas de transferencia de cargas y otros.

A la luz de la discusión anterior resulta interesante retomar la expansión de las superficies de energía potencial realizada anteriormente, ver ec. (4.19).

Supongamos la existencia de una configuración nuclear de equilibrio la cual definimos como aquella para la cual los términos lineales son de la forma:

$$\left(\partial W_t / \partial R_{\mu X}\right)_0 = \left(\partial W_t / \partial R_{\mu Y}\right)_0 = \left(\partial W_t / \partial R_{\mu Z}\right)_0 = 0 \qquad \forall \mu \qquad (4.20)$$

donde los $R_{\mu\alpha}$ ($\alpha = X, Y, Z$) representan las coordenadas de desplazamientos cartesianos para cada uno de los núcleos. Recordemos que este conjunto está relacionado con las coordenadas de simetría por medio de la transformación (UB)⁻¹. Las condiciones establecidas por la ec. (4.20) nos indican que la función $W_i(\vec{Q})$ debe ser un extremal (puede adoptar valores máximos o mínimos) en el punto $\vec{Q} = \vec{Q}_0$. Por cierto la existencia de mínimos dependerá del criterio de la segunda derivada. En aquellas situaciones para las cuales las condiciones dadas por las ec. (4.20) no se satisfacen completamente y existe a lo menos una derivada distinta de cero, nos encontramos con una situación que nos indica claramente que el sistema, en dicho punto del espacio de dimensión 3N, no se encuentra en un mínimo y en consecuencia dicho estado molecular no es estable.

Por cierto si el punto $\vec{Q} = \vec{Q}_0$ corresponde a un mínimo, entonces la expansión de W_t en función de las coordenadas de simetría puede ser escrita en la aproximación armónica de la forma siguiente:

$$\widetilde{W}_{t} = W_{t} - W_{t}^{0} = (1/2) \sum_{i,j} \left(\partial^{2} W_{t} / \partial S_{i} \partial S_{j} \right)_{0} S_{i} S_{j} = \sum_{i,j} f_{ij}^{t} S_{i} S_{j} \qquad (4.21)$$

Bajo estas condiciones podemos trivialmente re escribir la ec. (4.16) en el espacio de las coordenadas de simetría haciendo uso de la expansión dada por la ec. (4.21). Un análisis de la ecuación anterior nos indica la ocurrencia de términos cruzados en la expansión de W_i . Este tipo de términos, para un sistema electrónico dado, es consecuencia de la inadecuada descripción de los modos normales de vibración que entrega el espacio de las coordenadas de simetría. En efecto, esta dificultad es posible obviarla resolviendo las ecuaciones de movimiento vibracionales, para un campo de fuerzas vibracional dado. Para estos efectos, utilizamos el enfoque clásico estándar el cual nos permite describir la dinámica del movimiento vibracional en función de las ecuaciones canónicas de Lagrange y/o Hamilton **[7]**.

Para sistemas moleculares las ecuaciones de movimiento nos conducen a resolver las así llamadas ecuaciones de Wilson y colaboradores [4, 8].

$$GFL = L\Lambda \qquad (4.22)$$

158

donde G es la conocida matriz cuyo inverso aparece en la expresión de la energía cinética del sistema y F es la matriz que aparece en la expansión de la energía potencial **[4, 8]**. La derivación de la matriz G es trivial una vez conocida la configuración nuclear de equilibrio del sistema molecular sin embargo la forma explícita de la matriz de energía potencial F no es directa. El problema físico fundamental aparece como consecuencia del hecho que no conocemos la forma de la energía potencial y sólo sabemos que debe ser una función de los desplazamientos nucleares relativos.

En virtud de lo señalado anteriormente, es costumbre en la literatura expandir la energía potencial en términos de los desplazamientos Cartesianos de los núcleos, ver ec. (4.21).

Existen en la literatura diversas aproximaciones de campos de fuerzas vibracionales de distintos grados de sofisticación que discutiremos en el transcurso de esta sección. La matriz L representa las amplitudes de vibración. Esta matriz L se normaliza de acuerdo a la condición: LL' = G, es decir se normaliza a la matriz de energía cinética. De esta forma, al reemplazar en las ecuaciones de Wílson y colaboradores, la condición de normalización obtenida: $\Lambda = L'FL$, donde la matriz Λ es diagonal y sus elementos son proporcionales a los cuadrados de las frecuencias de cada uno de los modos de vibración del sistema.

159

De esta forma la transformación matricial puede ser escrita en forma expandida como se indica a continuación:

$$\lambda_{i} = \sum_{k} L_{ki}^{2} F_{kk} + \sum_{k \pm l} L_{ki} L_{li} F_{kl} \qquad (4.23)$$

donde $\lambda_i = (v_i/1303,16)^2$ y las frecuencias de los distintos modos normales de vibración se expresan en cm⁻¹.

La ec. (4.23) debe ser examinada con gran cuidado, por cuanto puede conducir a errores importantes en los esquemas de cálculo de las intensidades espectrales. En efecto, resulta razonable esperar que las constantes de fuerzas no diagonales F_{kl} para $k \pm l$ sean menores en magnitud que las diagonales F_{kk} . Sin embargo, esta condición no es necesaria como tampoco suficiente para el desprecio de los términos cruzados (con $k \pm l$) en la ec. (4.23).

De esta forma, el desprecio de los términos cruzados de la ecuación anterior, nos conduce en el caso de un bloque de simetría de 2 x 2, a las identidades:

$$\lambda_{1}^{'} = L_{11}^{2} F_{11} + L_{21}^{2} F_{22} \qquad (4.24)$$
$$\lambda_{2}^{'} = L_{12}^{2} F_{11} + L_{22}^{2} F_{22}$$

es decir, podríamos definir elementos de una nueva matriz, de la forma siguiente:

$$\left(PED\right)_{ij} = \frac{L_{ij}^2}{\lambda_j} F_{ii} \qquad (4.25)$$

con lo cual la representación diagonal, de la conocida distribución de energía potencial adopta la forma:

$$1 \cong (PED)_{11} + (PED)_{21} \qquad (4.26)$$
$$1 \cong (PED)_{12} + (PED)_{22}$$

No obstante, para un campo vibracional dado, los valores de los elementos de matriz L_{ij} son funciones del campo vibracional, en consecuencia la definición de esta matriz de distribución de energía potencial tiene sólo realidad física si en el proceso del análisis de coordenadas normales se minimiza el término cruzado es decir:

$$(CT) = \sum_{k \pm l} L_{ki} L_{li} F_{kl} \qquad (4.27)$$

Es posible obtener un ajuste óptimo entre las frecuencias observadas y las calculadas, para un campo de fuerzas vibracional dado, sin embargo como se desprende de nuestra discusión anterior esto no se traduce necesariamente en una descripción realista de la dinámica del movimiento nuclear y en consecuencia de una descripción adecuada de los modos normales de vibración de un sistema poli atómico. Para ilustrar esta discusión en mayor detalle, recordemos que para

un campo de fuerzas dado, las coordenadas de simetría y las coordenadas normales están relacionadas entre sí por medio de la formación:

$$S = LQ$$
 (4.28) de modo que $Q = L^{-1}S$ (4.29).

De esta forma, para un bloque de simetría de 2 x 2, las relaciones son del tipo general:

$$\begin{bmatrix} S_{1a} \\ S_{2a} \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} Q_{1a} \\ Q_{2a} \end{bmatrix}$$
(4.30)

donde los coeficientes $\{\alpha_{ij}\}$ son una medida de la mezcla entre las coordenadas de igual simetría S_{1a} y S_{2a} . Es directo observar que estos coeficientes de mezclas son funciones de los elementos de la matriz de amplitud L. Es necesario enfatizar una vez más que estos coeficientes de mezcla dependen del estado electrónico y de los detalles del campo de fuerzas vibracional. Son diversos los tipos de excitaciones electrónicas que pueden ocurrir y uno de esos casos dice relación con estados terminales cuyas superficies de energía potencial son distintas. Esta situación es compleja, por definición y se requiere en consecuencia un estudio acucioso de ellas y una estimación de la magnitud de las distorsiones, a lo largo de los modos normales comprometidos.

Una situación de interés dice relación con el llamado efecto Duschinky [1]. En este caso las superficies adiabáticas de los estados terminales de la excitación electrónica difieren en su forma, en consecuencia es posible suponer que las coordenadas normales del estado excitado corresponden a translaciones y rotaciones de las coordenadas normales del estado fundamental.

Supongamos un sistema molecular que en el estado fundamental presenta dos frecuencias, asociadas a modos normales, pertenecientes a la misma representación irreductible. Designemos por v_1^0 y v_2^0 estas dos frecuencias.

Si el efecto Duschinky es operativo entonces estas dos frecuencias también serán encontradas en el estado excitado, digamos estado adiabático t-ésimo, sin embargo por el hecho de haberse combinado linealmente las frecuencias asociadas serán distintas en el estado excitado.

Este efecto es de fundamental importancia en espectroscopia molecular y para efectos prácticos, bastará comparar los espectros de absorción y de emisión del mismo sistema molecular, observándose una pérdida de la imagen especular.

La ec. (4.21) puede ser re escrita en forma conveniente utilizando una representación en el espacio de las coordenadas normales. Recordemos que en un estado electrónico dado los (3N - 6) modos normales de vibración dan origen a igual número de coordenadas normales las cuales se relacionan con las coordenadas de simetría por medio de la transformación $Q = L^{-1}S$. El conjunto de coordenadas normales, para un estado electrónico dado, forman un conjunto

ortogonal, de modo que la expansión de W_r en esta última representación funcional da origen a una expansión de la forma:

$$W_{t} = W_{t}^{0} + (1/2) \sum_{i=1}^{3N-6} a_{ii} (Q_{ii})^{2} + \dots \qquad (4.31)$$

donde W_t^0 corresponde a la energía en el mínimo.

Finalmente retomemos la discusión con relación a la aproximación adiabática de Born - Oppenheimer, ver ec. (4.16.1). En esta aproximación la función de ondas total puede, en un buen orden de aproximación, ser representada de acuerdo a la función del tipo producto: $\Psi = \chi_{tv} (\vec{Q}) \psi_{tv} (\vec{r}, \vec{Q})$.

Esta aproximación puede hacerse aún más severa e introducir la Ilamada aproximación adiabática cruda de Born - Oppenheimer, en la cual la función de ondas vibrónica se expresa de acuerdo a la representación:

$$\Psi_{tv}\left(\vec{r},\vec{Q}\right) = \chi_{tv}\left(\vec{Q}\right)\psi_t^0\left(\vec{r}\right) \qquad (4.32)$$

donde las funciones de ondas electrónicas se determinan para una configuración nuclear de equilibrio fija.

El conjunto completo de funciones de ondas electrónicas estáticas forman base de expansión en el llamado espacio funcional de Longuet - Higgins. De esta forma, en este espacio de representación es posible obtener una representación dinámica para las funciones de ondas electrónicas, como superposición de funciones de ondas electrónicas estáticas, de la forma que se indica a continuación:

$$\Psi_{j}(\vec{r},\vec{Q}) = \sum_{j} \psi_{t}^{0}(\vec{r}) c_{jt}(\vec{Q}) \qquad (4.33)$$

expansiones del tipo dado por la ec. (4.33) son frecuentemente encontradas en el llamado esquema vibrónico de Herzberg - Teller del cual nos haremos cargo a lo largo de este Capítulo.

IV.3 – Teorema de Jahn - Teller.

Consideramos aquellas situaciones, de gran ocurrencia en espectroscopia molecular en las cuales existe un subconjunto de funciones propias del Hamiltoniano electrónico las cuales presentan igual valor propio, para una configuración nuclear de referencia dada. La degeneración de dimensión p-ésima es por cierto, dependiente de la simetría del sistema molecular.

La obtención explícita de las hipersuperficies de energía potencial se realiza expandiendo el Hamiltoniano H en torno de la configuración \vec{Q}^0 y haciendo uso de teoría de perturbaciones para estados degenerados. El sub espacio funcional de p funciones degeneradas, lo supondremos expandido por igual número de funciones propias del Hamiltoniano electrónico en la representación de la aproximación adiabática cruda de Born - Oppenheimer.

De esta forma, la expansión del Hamiltoniano H en función de las coordenadas de simetría es expresable de la forma estándar:

$$H = H^{0} + \sum_{i} \left(\frac{\partial V}{\partial S_{i}} \right)_{0} S_{i} + \left(\frac{1}{2} \right) \sum_{i,j} \left(\frac{\partial^{2} V}{\partial S_{i} \partial S_{j}} \right)_{0} S_{i} S_{j} + \dots$$
(4.34)

Un desplazamiento nuclear destruirá la degeneración de la simetría del sub conjunto de funciones de ondas electrónicas degeneradas, conduciendo a una ruptura de dicha degeneración. En primer orden, en las coordenadas de simetría, esta ruptura de la degeneración dependerá de la magnitud del elemento matricial

$$\sum_{i} S_{i} \left\langle \psi_{m}^{0}(\vec{r}) \middle| (\partial V / \partial S_{i})_{0} \middle| \psi_{n}^{0} \right\rangle \qquad (4.35)$$

Un análisis directo de la expresión anterior nos conduce a una serie de conclusiones inmediatas:

(a) El término $(\partial V/\partial S_i)_0$ se transforma de acuerdo a la representación irreductible Γ_i , en el grupo puntual molecular al cual pertenece la molécula. Esto es válido por cuanto la energía potencial V, que es uno de los términos del Hamiltoniano debe pertenecer a la representación irreductible totalmente simétrica.

(b) Para la coordenada totalmente simétrica, es decir S_1 la cual se transforma de acuerdo a la representación irreductible resulta evidente que el triple producto de representación $\Gamma_m \times \Gamma_1 \times \Gamma_n$ no contiene a Γ_1 , a menos que $\Gamma_m = \Gamma_n$. De modo que
para $\Gamma_m \neq \Gamma_n$, el término lineal se anula por razones de paridad. De estas consideraciones se desprende que un desplazamiento totalmente simétrico no es capaz, en primer orden de destruir la simetría molecular de referencia.

(c) Producto de la conclusión anterior es preciso concentrar nuestra atención en coordenadas de simetría distintas a S_1 .

Para el caso de grupos puntuales simplemente reducibles (exceptuando los grupos dobles), se demuestra que los elementos matriciales lineales dados por la ec. (4.35) son no nulos siempre y cuando el producto simétrico resultante del producto de representación $\Gamma_m \times \Gamma_n$, contenga a lo menos una coordenada de simetría que se transforme de acuerdo a la representación irreductible Γ_i – ésima.

Es importante enfatizar que si estamos trabajando en el grupo doble, entonces debemos utilizar como test el producto simétrico, a diferencia del caso de grupos puntuales moleculares simplemente reducibles que no involucren el spin.

Es interesante recordar que el producto directo de representación $\Gamma_m \times \Gamma_n$ es expresable como: $\Gamma_m \times \Gamma_n = [\Gamma_m \times \Gamma_n]_{sim} + [\Gamma_m \times \Gamma_n]_{ant}$, es decir como una combinación lineal de representaciones irreductibles correspondientes a los productos de representación simétricos y antisimétricos.

En una investigación sistemática de diversos sistemas moleculares Jahn -Teller **[9,10]** demostraron que con la excepción de moléculas lineales, una conformación nuclear que conduzca a la ocurrencia de estados electrónicos degenerados, exhibirá en forma simultánea a lo menos un modo de vibración (distinto al totalmente simétrico), tal que los elementos matriciales lineales dados por la ec. (4.35) sean no nulos. Esto en la práctica se traduce que para aquellos modos normales de vibración para los cuales los elementos matriciales lineales sean no nulos, se producirán en forma espontánea distorsiones con respecto de dichos modos (en otras palabras, la molécula pertenecerá a un sub grupo del grupo puntual molecular sobre la base del cual se clasificó al sistema molecular en una primera instancia). Resulta evidente de la discusión anterior, que el llamado efecto de Jahn - Teller no es un efecto desde un punto de vista formal, por cuanto, estos sistemas ya están distorsionados sin la acción de agente externo alguno.

En resumen, el así llamado efecto de Jahn - Teller nos enseña que en el caso de sistemas molecular no lineales existirán vibraciones distintas a la totalmente simétrica las cuales producirán distorsiones en relación a la simetría molecular estática que asignamos de partida, por consideraciones de la estereoquímica al sistema molecular.

El tratamiento teórico de este así llamado efecto consiste en dos etapas:

(a) La obtención de las hipersuperficies de energía potencial y (b) Resolución de los movimientos vibracionales de los núcleos sobre las hipersuperficies de energía potencial. El caso (a) se refiere al Jahn - Teller estático y la segunda situación corresponde al Jahn - Teller dinámico.

Existe una situación de gran interés en espectroscopia molecular que se refiere al pseudo efecto Jahn - Teller. En este caso, las funciones de ondas electrónicas no degeneradas son capaces de interactuar apreciablemente frente a la corrección vibrónica de primer orden **[1]**.

Discusiones detalladas y aplicaciones del formalismo expuesto anteriormente a sistemas moleculares diversos, pueden ser encontradas en la literatura **[11,12]**, de modo que cerraremos esta sección en este punto de la discusión.

I V.4 – Transiciones Electrónicas.

La expansión multipolar generada por la interacción radiación materia da origen a una serie infinita de términos, de los cuales, el término de primer orden corresponde al operador dipolar eléctrico, en segundo orden aparecen dos términos; uno de ellos correspondiente a un dipolo magnético y el otro a un cuadrupolo eléctrico y así sucesivamente. De esta forma, el coeficiente de absorción de Einstein **[13,14]**, puede ser expresado de la forma que se indica a continuación:

$$B_{0j} = \frac{2\pi}{3\hbar^2} \left| \langle j | \sum_n e\vec{r}_n [0) \right|^2 + \frac{2\pi}{3\hbar^2} \left| \langle j | \sum_n \beta \left(k \tilde{l}_n + 2S_n \right) [0) \right|^2 + (4.36)$$
$$\frac{2\pi^3 v_{j0}^2}{5\hbar^2 c^2} \left| \langle j | \sum_n eq_n | 0 \rangle \right|^2 + \dots$$

de la expresión anterior vemos que el primer término contiene al operador dipolar eléctrico, el segundo al operador de dipolar magnético y el tercero corresponde a la contribución proveniente del momento cuadrupolar eléctrico k representa el conocido factor de reducción orbital, $\beta = e\hbar/2mc$ es el magnetón de Bohr y las q_n representan las componentes activas del momento cuadrupolar eléctrico: $[xy, yz, zx, 1/2(x^2 - y^2), \sqrt{3}/2(3z^2 - R^2)].$

Para transiciones electrónicas del tipo $d \rightarrow d$ y $f \rightarrow f$ existen a lo menos cinco mecanismos que es necesario considerar, para explicar sobre bases cuantitativas las intensidades espectrales observadas experimentalmente. Los mecanismos son los que se enuncian brevemente a continuación:

(a) Intensidades espectrales del tipo bipolar eléctrico para compuestos de coordinación sin centro de inversión: En estos casos, la intensidad espectral observada puede ser explicada sobre la base de estados mezclas provenientes de componentes de la configuración I^N con otros estados excitados de paridad

distinta conectados por medio de una o más componentes impares del campo de interacción coulómbico.

(b) Intensidad del tipo dipolar eléctrica en el caso de compuestos de coordinación centrosimétricos: En estos casos, la intensidad proviene de otra(s) excitación(es) permitida(s) por paridad y por spin, con la cooperación de los modos normales impares de vibración del sistema molecular. Esta es la base, en la versión del campo cristalino, del mecanismo vibrónico responsable de las excitaciones electrónicas entre estados de igual paridad. Este es el llamado mecanismo estático de intensidad espectral.

(c) Intensidad dipolar eléctrica derivada de transiciones vibracionales permitidas por paridad: En estos casos, existe cambio en a lo menos un quantum asociado en forma simultánea a una vibración par y a una vibración impar, de modo que la intensidad se obtiene en una gran proporción de una diferencia en la frecuencia vibracional asociados a los estados electrónicos terminales de la excitación electrónica. Este mecanismo es bastante secundario en aporte, en el caso de los compuestos de coordinación de los metales de transición, lantánidos, actínidos y cúridos y no será considerado en el presente trabajo.

(d) Intensidad dipolar magnética: En muchos casos, corresponde a una contribución menor a la intensidad integrada asociada a cada uno de los picos del espectro.

(e) Intensidad cuadrupolar eléctrica: Esta contribución es aún menor en magnitud a la intensidad del tipo dipolar magnética.

Retomemos el estudio de la ec. (4.36). En rigor una transición electrónica se dice permitida si el primer término de la expresión del coeficiente de absorción de Einstein es distinto de cero, es decir, si el momento dipolar eléctrico de transición es distinto de cero.

Al despreciar los términos de ordenes superiores a uno, en la ec. (4.36) concluimos que la fuerza dipolar asociada a la transición electrónica $|0\rangle \rightarrow |j\rangle$ está dada por la expresión:

$$D_{0j} = \sum_{\alpha=X,Y,Z} \left| \left\langle 0 \left| \mu^{\alpha} \right| j \right\rangle \right|^2 \qquad (4.37)$$

Para medir la intensidad de la transición es conveniente introducir una magnitud, adimensional conocida como fuerza del oscilador, la cual se define, por medio de la identidad:

$$f_{0j} = \frac{2m}{3\hbar^2 e^2} \Delta E_{0j} D_{0j} = 1,085 \cdot 10^{11} \nu_{0j} (cm^{-1}) e^{-2} D_{0j} \qquad (4.38)$$

Es conveniente señalar que la fuerza dipolar f_{0j} está relacionada con el coeficiente de absorción de Einstein, por medio de la conocida relación:

$$f_{0j} = \frac{mh\nu_{0j}}{\pi e^2} B_{0j} \qquad (4.39)$$

donde en la expresión (4.39) la frecuencia en $ciclos \cdot seg^{-1}$, se ha escrito como v_{0j} .

La relación anterior es válida para el caso en el cual existe una línea de absorción simple. Sin embargo, en la situación correspondiente a una banda de absorción ancha, el coeficiente total de Einstein se define como:

(40)
$$B = \int (dB/dv) dv$$

Haciendo uso de ley de Lambert - Beer **[2]**, obtenemos al integrar sobre todo el contorno de la banda, la siguiente expresión para la fuerza del oscilador, que para efectos prácticos, corresponde al área bajo la curva del pico de absorción:

$$f = \frac{10^3 mc^2 Ln 10}{L_A \pi e^2} \int \varepsilon(\overline{\nu}) d\overline{\nu} = 4,332 \cdot 10^{-9} \int \varepsilon(\overline{\nu}) d\overline{\nu} \qquad (4.41)$$

siendo L_A el número de Avogadro $\varepsilon(\overline{\nu})$ el coeficiente de extinción molar.

Sí suponemos para la banda de absorción una forma Gaussiana del tipo [1].

$$\varepsilon(\overline{\nu}) = \varepsilon_{\max} \exp\left[-\left(\overline{\nu} - \overline{\nu}_{\max}\right)^2 / a^2\right] \qquad (4.42)$$

obtenemos para la fuerza del oscilador, la expresión:

$$f = 4,61 \cdot 10^{-9} \varepsilon_{\max} \overline{V}_{1/2}$$
 (4.43)

donde $\overline{v}_{1/2}$ es el valor de \overline{v} para $\varepsilon = \frac{1}{2} \varepsilon_{max}$. La identidad dada por la ec. (4.43) es bastante útil para comparar los valores de fuerza del oscilador calculados con los obtenidos experimentalmente, en el supuesto de que la banda de absorción sigue la forma correspondiente a una gaussiana. Existe, adicionalmente una forma de banda del tipo Lorentziana, la cual se utiliza con menor intensidad en esto tipo de discusiones.

Hoy en día los avances tecnológicos nos permiten medir en forma muy precisa las áreas de cada uno de los picos del espectro, es decir las conocidas áreas integradas. Sin embargo, una primera indicación del área bajo la curva o intensidad espectral puede ser realizada con un margen de error pequeño, pero no despreciable, utilizando la expresión anterior. La dificultad mayor reside, no obstante, en la capacidad de resolución de los instrumentos y en consecuencia la resolución de los distintos picos en el espectro.

Este hecho es de particular importancia, cuando se mide el espectro de un material, y aparecen cientos de picos de los cuales un subconjunto, en ocasiones no despreciables corresponde a superposición de picos ya sea de absorción o de emisión. En estos casos la determinación de los valores de $\overline{v}_{\frac{1}{2}}$, puede ser prácticamente imposible de ser realizada en forma confiable.

Cada uno de los niveles vibracionales está asociado con un denso envoltorio ya sea de niveles rotacionales y/o de vibraciones del cristal (fonones acústicos). Así por ejemplo, a la temperatura de 4,2 K, la energía térmica es del orden de 3 cm⁻¹. Por esta razón, el ensanchamiento debido a estos fonones acústicos es de este orden de magnitud. Sin embargo, el ancho de las bandas refleja en este caso, no sólo a los así llamados fonones calientes sino que también la forma y naturaleza de la superficie de energía potencial para la molécula en el sitio que ocupa en el medio.

Con el propósito de dar cuenta, de los movimientos de la molécula en relación a su entorno, Moffit y Modscowitz **[1,13]** introdujeron los números cuánticos "libracionales". De esta forma, la densidad $\rho(W_j)$ del estado libracional asociado con la vibración intramolecular j-ésima se considera normalizada a la unidad:

$$\int \rho(W_j) dW = 1 \qquad (4.44)$$

donde $\rho(W_j)$ representa una forma de la línea efectiva generada por los movimientos libracionales. Esta estructura no resuelta, puede otorgar a las líneas de absorción moleculares un ancho de varios números de ondas.

La observación en el espectro de líneas agudas o semi agudas (es decir con $\bar{v}_{1/2}$ menor que 10 cm⁻¹) es una indicación clara, que estas líneas están asociadas con las transiciones: electrónicas entre estados terminales, cuyas separaciones energéticas no sean muy grandes en cm⁻¹. Por otra parte, mientras mayor sea la diferencia energética entre los estados terminales de la excitación electrónica, más denso será el continuo y en consecuencia mayor será el ancho de las líneas de absorción.

Bixon y Jortner **[1,13]** propusieron un modelo que permite describir las formas y el ancho de las líneas espectrales. Para estos efectos, se supone que la función ψ_s de energía W_s representa un estado víbrónico asociado al estado electrónico $|A\rangle$.

Por otra parte se introduce un conjunto de estados vibrónicos, funciones propias del mismo Hamiltoniano, que designaremos por $\{\psi_1\}$, asociadas al estado electrónico $|B\rangle$. Para efectos prácticos se supone que las funciones del conjunto $\{\psi_1\}$ son cuasi degeneradas pero sus energías no difieren fundamentalmente de W_s . Supondremos que las funciones $\{\psi_l\}$ están uniformemente separadas entre sí, por una cantidad que simbolizaremos por ε . Tenemos claramente tres posibilidades:

(a) Estados con energías, $W > W_s$ (l > 0), (b) Estados con energías $W < W_s$ y (c) para (l = 0), un estado con energía W_0 . La energía W_0 corresponde a un estado vibrónico, del conjunto $\{\psi_1\}$ con (l = 0) y representa una energía correspondiente al nivel vibrónico más cercano en energía al valor W_s (cota energética inferior más próxima).

Las ecuaciones de valores propios son las que se indican a continuación:

$$H\psi_s = W_s\psi_s \qquad (4.45.1)$$

$$H\psi_l = W_l\psi_l = (W_0 + \varepsilon l)\psi_l = (W_s - \alpha + \varepsilon l)\psi_l \quad (4.45.2), \text{ donde } \alpha = W_s - W_0.$$

A continuación se introduce un Hamiltoniano de perturbación $H^{(1)}$ el cual conecta los estados ψ_s con los ψ_l , de modo tal que se define un elemento de interacción el cual se supone constante en magnitud o independiente del sub índice l.

$$V = \left\langle \psi_s \left| H^{(1)} \right| \psi_l \right\rangle \qquad (4.46)$$

De esta forma, las funciones propias del sistema molecular se expresan como combinaciones lineales de los estados de orden cero, por medio de la relación:

$$\Psi_n = a_n \psi_s + \sum_l b_l^n \psi_l \qquad (4.47)$$

donde los coeficientes de expansión quedan determinados por la condición de normalización:

$$(a_n)^2 + \left(\sum_l b_l^n\right)^2 = 1$$
 (4.48)

de donde es posible demostrar las identidades siguientes:

$$a_n^2 = \frac{V^2}{(W_s - W_n)^2 + V^2 + (\pi V^2 / \varepsilon)^2} \qquad (4.49.1)$$

La expresión anterior nos da un envoltorio correspondiente a una Lorentziana para los valores de a_n^2 en función de W_n . El ancho Δ de la amplitud de distribución correspondiente a la Lorentziana, se define de acuerdo a la relación:

$$\Delta^2 = 4 \left[V^2 + \left(\pi V^2 / \varepsilon \right)^2 \right] \qquad (4.49.2)$$

con lo cual, al combinar las ecs (4.49.1) y (4.49.2), obtenemos la identidad:

$$a_n^2 = \frac{V^2}{(W_s - W_n)^2 + \frac{1}{4}\Delta^2} \qquad (4.49.3)$$

y en consecuencia, de las ecs. (4.48) y (4.49.3) obtenemos la identidad:

$$\left(\sum_{l} b_{l}^{n}\right)^{2} = \frac{\left(W_{s} - W_{n}\right)^{2}}{\left(W_{s} - W_{n}\right)^{2} + \frac{1}{4}\Delta^{2}} \qquad (4.49.4)$$

Existen a lo menos dos situaciones de interés:

(a) Primer Caso:

Los momentos de transición D_{0l} desde el estado fundamental ψ_0 al continuo representado por las funciones $\{\psi_l\}$ son todos nulos. Suponemos que adicionalmente el momento de transición D_{0s} , que involucra los dos estados vibrónicos discretos terminales de la excitación es no nulo.

La forma de la línea está dada, en consecuencia por la expresión:

$$G_{0n}(W_s - W_n, \Delta) = |D_{0s}|^2 \frac{V^2}{(W_s - W_n)^2 + \frac{1}{4}\Delta^2} \qquad (4.49.5)$$

de donde se infiere que la forma de la línea corresponde a un pico del tipo Lorentziano simétrico de ancho equivalente a la cantidad Δ . (b) Segundo Caso:

Supongamos que los momentos de transición D_{0l} son todos colineales y de igual magnitud. En cuanto al sistema molecular el momento de transición D_{0s} no es necesariamente colineal con los momentos D_{0l} . En el caso general, la forma de $\left|\vec{D}_{0n}\cdot\vec{E}\right|^2$, donde \vec{E} es el campo eléctrico correspondiente al campo de radiación y \vec{D}_{0n} es el momento de transición desde el estado fundamental ψ_0 al estado mezcla Ψ_n , ver ec. (4.47).

Sea ϕ el ángulo formado por los vectores de transición \vec{D}_{os} y \vec{D}_{ol} , en estas circunstancias al introducir: $A = \cos \phi$ y las cantidades w y q, definidas por las expresiones:

$$w = \frac{W_s - W_n}{\frac{1}{2}\Delta} \qquad (4.49.6), \quad \text{para } -\infty < w < +\infty$$

y adicionalmente:

$$q = \frac{\left| \vec{D}_{os} \right| V}{\left| \vec{D}_{ol} \right| \frac{1}{2} \Delta} \qquad (4.49.7)$$

donde w es un parámetro de energía reducido y q es un índice de forma de línea. Luego se obtiene para el momento de transición normalizado la expresión siguiente:

$$\vec{D}_{0n} = \frac{(q+Aw)\vec{k} + w\sqrt{1-A^2}\,\vec{j}}{\sqrt{1+w^2}} \qquad (4.49.8)$$

para la elección de ejes, ver [1].

Sea θ el ángulo formado por los vectores \vec{E} y \vec{D}_{os} , en el plano definido por los vectores \vec{D}_{os} y \vec{D}_{on} . Por cuanto la forma de la línea es independiente del ángulo entre los vectores \vec{E} y el plano definido por los vectores unitarios (\vec{k}, \vec{j}) . La forma de la línea adopta una expresión del tipo siguiente:

$$G_{on}(\theta, w) = \frac{\left| (q + Aw) \cos \theta + w\sqrt{1 - A^2} \operatorname{sen} \theta \right|^2}{1 + w^2} \qquad (4.49.9)$$

En un experimento en el cual las fases sean aleatorias, promediar sobre θ , la expresión anterior se transforma:

$$\overline{G}_{on}(w) \propto \frac{q^2 + 2q|A|w + w^2}{1 + w^2}$$
 (4.49.10)

Para q = 0, el fondo (background) tiene una fuerza del oscilador intrínseca que en el estado discreto no la tiene y está dada por la expresión:

$$\overline{G}_{on}(w) \propto \frac{w^2}{1+w^2} \qquad (4.50)$$

En este caso la forma de la línea del fondo corresponde a dos curvas en direcciones opuestas a lo largo del eje w, las cuales son simétricas (con respecto del valor w = 0) y tienden asintóticamente a un valor dado de \overline{G}_{on} (cuyo ancho es Δ).

Adicionalmente, para |A| < 1, ésta línea será observada, como una típica absorción del background anti resonante. Por otra parte, cuando \vec{D}_{os} y \vec{D}_{ol} tienen la misma dirección (|A| = 1), la forma de la línea adopta la expresión de Fano:

$$\overline{G}_{on}(w) \propto \frac{(q+w)^2}{1+w^2} \qquad (4.51)$$

con lo cual, en la región $0 < |q| < \infty$, se observa una línea asimétrica cuya intensidad es cero para q = -w.

El orden de magnitud de una línea de ancho Δ , es del orden de varios cientos de números de ondas (cm⁻¹), para un estado electrónico excitado en el caso de una molécula poliatómica.

El espaciado ε de los estados vibrónicos es relacionado con la densidad ρ de los niveles vibracionales, por medio de la expresión $\varepsilon^{-1} = \rho$. Consideraciones clásicas y semi clásicas nos indican que ε es una función de las frecuencias vibracionales de la molécula y de la energía W del estado excitado. Es corriente en la literatura, expandir el parámetro de interacción V en una parte electrónica "v" y una integral de recubrimiento vibracional S, tal que V = vS. Los estados excitados de mayor energía presentan $V/\varepsilon < 1$, de tal suerte que el ancho de línea Δ es aproximadamente igual a $2\pi v^2 S^2 \rho$. Para un estado excitado, a una energía del orden de 10,000 cm⁻¹, se tiene que ρS^2 se mueve en el rango de 10^{-4} a 10^{-5} cm. Si estimamos v del orden de 10^3 cm⁻¹, obtenemos un ancho Δ en el rango de $10^2 - 10^3$ cm⁻¹.

Otras causas, tales como efectos de difusión son analizados en la literatura [15].

IV.5 - Referencias.

- [1] C.J. Ballhausen, "Molecular electronic structures of transition metal complexes". McGraw-Hill, 1979.
- [2] S.B Phiepo, P.N. Schatz, "Group theory in spectroscopy". John Wiley and Sons, Inc., 1983.
- [3] G. Díaz, Tesis Doctor en Ciencias, Univ. de Chile, 1988.

- [4] S. Califano, "Vibrational states". John Wiley and Sons, 1976.
- [5] R. Acevedo, S.O. Vásquez, C.D. Flint, Mol. Phys., 74(4), 843 (1991).
- [6] R. Acevedo, S.O. Vásquez, C.D. Flint, Mol. Phys., 74(4), 853 (1991).
- [7] Landau y Lifschitz, "Física teórica", Vol. 1, Segunda Edición. Editorial Reverté, 1965.
- [8] E.B. Wilson, J.C. Decius Jr., P.C. Cross, "Molecular vibrations". Dover Publications, INC., New York, 1955.
- [9] R. Englman, "The Jahn Teller effect in molecules and cristals". John Wiley and Sons Ltda., 1992.
- [10] J.B. Bersuker, "The Janh Teller effect", JFJ/Plenum, 1984.
- [11] C.J. Ballhausen, "In vibronic processes in inorganic chemistry". Editor: C.D. Flint, Series C: Mathematical and Physical Sciences, 288, 1988. Kluwer Academic Publisher, páginas1,5,53-78.
- [12] C.J. Ballhausen, "Coordination chemistry Reviews", 100, 29 (1990).
- **[13]** R. Loudon, "The quantum theory of light". Oxford University Press, 1983.
- [14] J. Avery, "The quantum theory of atoms, molecules and photons". McGraw-Hill Book Company, 1972.

[15] C.D. Flint, "Curso Internacional de química teórica y espectroscopía molecular". PNUD/UNESCO, páginas 201 – 232, 1987. CAPITULO V

ANALISIS DE COORDENADAS NORMALES EN CRISTALES

DEL TIPO ELPASOLITAS

V.1 - Palabras preliminares.

Los iones lantánidos trivalentes positivos, en estructuras del tipo elpasolitas M₂ALnX₆, se asocian a sitios de simetría octaédrica. En este capítulo describiremos algunos elementos de la síntesis y caracterización estructural con énfasis en las transiciones de fases. Sabemos que el entorno centrosimétrico de estos iones (Ln^{+3}) , les confiere, de acuerdo al conocimiento acumulado a la fecha, propiedades espectroscópicas distintas, siendo el análisis y comprensión de éstas, un desafío teórico-experimental de envergadura para estos materiales en espectroscopía del estado sólido. Los espectros vibracionales, electrónicos y Raman que caracterizan a estos materiales, presentan grados crecientes de dificultad, toda vez que la tecnología actual nos facilita la obtención de espectrogramas de alta resolución. La costumbre a la fecha, ha sido describir los espectros electrónicos en términos de la llamada "zero phonon line (0-0)" y de la estructura vibrónica asociada y en consecuencia, resulta inmediato sospechar las dificultades teóricas que será preciso resolver para modelar las intensidades espectrales asociadas a excitaciones electrónicas del tipo $f \rightarrow f$ en estos sólidos. Es también de singular importancia, considerar las diferencias de los espectros asociados a configuraciones mixtas totales del tipo $4f^{N} - 4f^{N-1}5d$ asociados a las estructuras $M_{2}ALnX_{6}$. Otro tema relevante dice relación con las estrategias de cálculo para la obtención de los niveles de energías electrónicas, para lo cual las contribuciones pioneras de F.S.Richardson, M.F. Reid y colaboradores **[1 - 9]** son consideradas como punto de partida para cálculos con interacción de configuraciones, en sistemas de esta complejidad.

V.2 – Introducción.

El objetivo de este Capítulo es el considerar aspectos teóricos formales con relación al factor vibracional, el cual y en conjunto con el factor electrónico son responsables de los valores estimados de las fuerzas del oscilador. En una serie de trabajos previos, realizados por diversos investigadores [1 - 21], observamos que la fuerza del oscilador, digamos $f_{0,m}$ asociada a la excitación electrónica $|0\rangle \rightarrow |m\rangle$ es proporcional al cuadrado del módulo del producto $F_{elec}F_{vib}$, correspondiente a los factores electrónicos y vibracionales, en cuestión. Por razones de completitud en esta introducción, es en nuestra opinión relevante, examinar el trabajo de revisión de Tanner [22], el cual en un esfuerzo académico de envergadura, se refiere a los procesos de síntesis, caracterización estructural, reglas de selección espectrales, espectros vibracionales, transiciones electrónicas del tipo $4f^N \rightarrow 4f^N$ asistidas por un mecanismo vibrónico simple, espectros Raman, interacción electrón-fonón y su consecuencia en la mezcla de estados, espectroscopía de absorción de dos fotones en experimentos de uno y de dos colores, espectros electrónicos característicos y atribuibles a transiciones del tipo $4f^N \rightarrow 4f^{N-1}5d$, variación a lo largo del período de los parámetros ajustados por un método debido a Reid y colaboradores y finalmente a problemas de transferencia de energía. Adicionalmente al valor intrínseco de este trabajo, aparece un listado relativamente completo y de gran utilidad, compuesto por un total de 394 referencias.

Con respecto del factor vibracional, resulta pertinente focalizar a partir de este punto, la motivación de este trabajo, la cual podemos resumirla de la forma que se indica: Existe una familia de elpasolitas estequiométricas, para las cuales disponemos de un conjunto importante (no obstante, incompleto) de datos experimentales, los cuales son la resultante del trabajo de números grupos de investigación en las tres últimas décadas. Disponemos de datos derivados de las técnicas empleadas en óptica lineal y no lineal (Raman y espectroscopía de dos fotones en experimentos de uno y de dos colores), no obstante, limitaciones intrínsecas impiden que el número de incógnitas pueda ser compatible con esta masa insuficiente de evidencia experimental. Siempre, en consecuencia, dispondremos de un número mayor de incógnitas que de datos experimentales, lo cual constituye un desafío de envergadura.

En este sentido, los modelos a ser generados y las estrategias de cálculo deben necesariamente incorporar criterios físicos adicionales que nos permitan avanzar en modelos y métodos físicamente razonables de cálculo para los factores electrónicos y vibracionales, mencionados anteriormente como responsables a nivel teórico de los valores experimentales de las fuerzas del oscilador (ver, Capítulos 3 y 4).

En la búsqueda de modelos y estrategias de cálculo, decidimos examinar los campos de fuerzas vibracionales, empleados con el propósito de generalizar los enfoques anteriores e incluir, en forma razonable la contribución de los contra-iones a la energía potencial en un retículo perteneciente al grupo espacial Fm3m. En la Figura 6 del Capítulo 2, se reporta un modelo de 10 átomos, compatible con una elpasolita estequiométrica de la forma: M_2ALnX_6 . En este trabajo, hemos considerado el conjunto de cristales del tipo: $Cs_2NaLnCl_6$, para un total de 7 iones lantánidos del tipo que se indica: $Ln: {}_{59}Pr, {}_{63}Eu, {}_{65}Tb, {}_{66}Dy, {}_{67}Ho, {}_{68}Er$ y ${}_{69}Tm$. Hemos logrado avanzar en el desarrollo de una estrategia de cálculo de modo de dar mayor realismo a nuestras simulaciones de la matriz de energía potencial (F). Nuestra estrategia de optimización, incluye en forma explícita la minimización del término cruzado de la energía potencial, originando una distribución de energía potencial natural (Ver, Capítulo 4). Nuestro objetivo maestro consiste en el desarrollo de condiciones de borde, con un sentido

físico claro y directo, el cual nos permita discernir razonablemente en la identificación y asignación de los picos espectrales. Este tema cobra importancia en estos sistemas con muchos electrones, en los cuales, los efectos relativistas adquieren un peso importante en cualquier modelo de cálculo a ser realizado. No es suficiente con el antiguo criterio, de la minimización de la desviación cuadrática media, se exige que en forma simultánea la descripción de los modos normales sea lo menos ambigua posible. Existe en la literatura, un trabajo teórico pionero, de Lentz [23], el cual puede ser empleado como un punto de partida para nuestros efectos. La motivación de Lentz, se debe esencialmente a la existencia en la década de los 70 de una serie de espectros vibracionales con estructuras del tipo elpasolitas y criolitas; $A_2BB'X_6$ y $A_3B'X_6$, respectivamente. El trabajo exploratorio realizado por este autor, considera un modelo de 10 átomos y un conjunto de 10 constantes de fuerzas (del tipo Hooke) desconocidas, todas diagonales en una versión del tipo campo de fuerzas vibracional Wilsoniano. Este campo, ciertamente adolece de una serie de fallos e inconsistencias que es preciso considerar con detalle. No obstante, las limitaciones del modelo y esquema de cálculo, este trabajo es iluminador y constituye el primer eslabón de este problema de N-cuerpos a nivel vibracional. Es corriente, observar en la literatura, incluso su nomenclatura para la descripción de las coordenadas de simetría (en la base de coordenadas cartesianas de desplazamiento nuclear) y de las frecuencias vibracionales asociadas. Desafortunadamente,

las limitaciones del campo de fuerzas, produce un conjunto de modos normales de vibración poco confiable desde un punto de vista físico.

En un intento por mejorar el estado del arte en esta área, P.A.Tanner y colaboradores emprendieron la compleja tarea de (a) introducir términos no diagonales en la matriz de energía potencial y (b) recopilar la base de datos experimentales más completa posible, usando distintas combinaciones de iones en estructuras del tipo elpasolitas puras, dopadas y no estequiométricas **[24, 25]**. La propuesta de Tanner y colaboradores, adolece de fallas sustantivas, esencialmente en las matrices de constantes de fuerzas (estas son por definición, para una configuración nuclear de equilibrio del sistema positiva, en valor absoluto. Para efectos prácticos, es admisible aceptar algunas constantes de fuerzas entre coordenadas internas con signo negativo, pero se espera que su valor absoluto en módulo sea muy pequeño o despreciable frente a los términos correspondientes a interacciones entre átomos directamente enlazados).

Un análisis crítico de la Tabla 8 de la Referencia **[25]** sugiere la necesidad de buscar otra estrategia de cálculo, más razonable y capaz de acomodar los efectos globales a nivel estructural, de entorno y de disposición espacial. Un mérito indiscutible del trabajo de Tanner **[24, 25]** es su notable esfuerzo por recopilar datos, obtener otros y de esta forma, permitirnos hacer teoría formal. Recientemente, hemos reportado un trabajo de revisión,

dedicado a la espectroscopía del cristal $Cs_2NaErCl_6$, para el cual disponemos de información experimental, referida a una serie de absorciones desde el estado fundamental $|({}^4I_{15/2})^a\Gamma_8\rangle$ a diversos estados excitados. Este artículo será incluido en la tesis, de modo que no precisamos repetir los mismos conceptos y ecuaciones en esta sección **[10]**.

V.3 - Análisis de coordenadas normales.

En base a diferencias físicas y químicas, es posible clasificar los cristales en las siguientes categorías: (a) iónicos, (b) covalentes, (c) metálicos y (d) moleculares. Es sabido, la existencia de cristales con propiedades intermedias, de modo que la clasificación en familias, del tipo (a), (b), (c) y (d) es sólo de valor referencial. Es interesante cuidar la discusión y enfocarla, a la situación de los llamados cristales moleculares por cuanto mucho de la argumentación es posible aplicarla a los cristales iónicos, motivo de esta tesis. Los cristales moleculares, se caracterizan por poseer valores relativamente bajos de la energía de cohesión, bajos puntos de fusión, suavidad y deformabilidad, baja conductividad eléctrica y térmica, así como ser pobres en propiedades mecánicas. De esta forma, los cristales moleculares podemos jerarquizarlos en términos del (a) arreglo estructural de sus átomos y (b) naturaleza e intensidad de las fuerzas de interacción.

Algunos comentarios, a nuestro juicio razonables de emitir son los siguientes: (a) preservación de la identidad molecular. Considerando que las fuerzas de enlace entre átomos de una misma molécula, son de mayor intensidad que las correspondientes a interacciones entre átomos pertenecientes a moléculas distintas. Al respecto, desviaciones en longitudes de enlace y ángulos de enlace, se observan entre las fases gaseosa y cristalina, como consecuencia del potencial intermolecular en los enlaces intramoleculares. (b) en el caso de moléculas simples (caracterizadas por barras de baja energía rotacional), es posible que en el cristal las moléculas adopten una configuración distinta, la cual no es estable en fase gaseosa. (c) estos cristales se caracterizan por la ocurrencia de una periodicidad, de identidades moleculares (redes de Bravais), las cuales se repiten en todo el espacio físico y (d) espectro vibracional del cristal. Sabemos que al comparar los espectros vibracionales en las fases sólida y gaseosa, se observa que en el espectro del gas, los modos fundamentales de vibración de la molécula, sus sobretonos y combinaciones pueden ser observados experimentalmente. No obstante, en el caso del cristal, podemos apreciar las mismas bandas, las cuales sufren un desplazamiento en frecuencias y aparecen divididas en un número de componentes, el cual básicamente depende de dos factores: número de moléculas por celda unitaria y de la simetría asociada a esta celda. Los corrimientos aludidos de las bandas como también sus divisiones de bandas parecen ser de algunos números de ondas, sin embargo, existen casos en los cuales, cuando las fuerzas direccionales son marcadamente intensas, estos corrimientos pueden llegar a ser mayores a $100 cm^{-1}$. En el espectro del cristal a bajas frecuencias, aparecen nuevas bandas, las cuales no existen en el espectro de la molécula en fase gaseosa. Estas nuevas bandas se deben a vibraciones del cristal, en el cual las moléculas desarrollan pequeños movimientos, de origen y naturaleza translacional y rotacional en torno a sus posiciones de equilibrio. Sabemos que en fase las moléculas experimentan libremente, movimientos gaseosa, translacionales y rotacionales, pero en el cristal como es de esperar estos movimientos están restringidos por fuerzas restauradoras, producto de fuerzas intermoleculares.

Estas vibraciones se denominan, en lenguaje espectroscópico "vibraciones externas" y a diferencias de de las netamente moleculares, a las cuales se les conoce como "vibraciones internas". En términos generales, estas vibraciones internas y externas están lo suficientemente separadas en energía y para efectos prácticos, en una primera aproximación podríamos decir que el acoplamiento tiende a cero (desacopladas). Adicionalmente, el tratamiento de las vibraciones externas de un cristal, en el cual los modos internos son considerados separadamente del resto, se asocia a la aproximación del cuerpo rígido, por el simple expediente que las moléculas se comportan como si fuesen cuerpos rígidos, sin grados de libertad internos.

Esta aproximación tiene la ventaja de disminuir en seis el número de grados de libertad de cada una de las moléculas no lineales y en cinco, para el caso de moléculas lineales.

La clasificación entre vibraciones internas y externas, es empleada incluso en aquellos casos, en los cuales la aproximación del cuerpo rígido no es válida, con lo cual todos los grados de libertad deben necesariamente ser considerados simultáneamente.

Este es el caso de los cristales, en los cuales los modos normales asociados a vibraciones internas poseen bajas frecuencias y se recubren con los modos normales cristalinos. Esta situación es de gran complejidad en espectroscopía del estado sólido y se produce una suerte de ambigüedad en la identificación y asignación de picos espectrales diversos, resultantes de recubrimientos entre excitaciones asociadas a modos normales de igual simetría y de energías comparables. Debemos agregar que la aproximación de cuerpo rígido, enfatiza el estudio en las vibraciones externas. De igual forma, podemos argumentar razonablemente que estas vibraciones cristalinas son controladas por el potencial intermolecular y son utilizadas como un vehículo para intentar la racionalización y comprensión de la naturaleza física de las interacciones entre moléculas y de igual forma, visualizar la validez de los diversos modelos de potencial. En el caso de las vibraciones internas, las interacciones moleculares, actúan solo como una pequeña perturbación en el campo de fuerzas interno. Por esta razón, los corrimientos y rupturas de las bandas externas son menos utilizadas en cálculos, dado su complejidad inherente. También y sumados a las bandas internas y externas, el espectro del cristal muestra una serie de bandas de absorción anchas, conocidas como "sidebands" asociadas a las vibraciones internas. Estas "sidebands" son el producto de la combinación de los modos internos del cristal y reciben el nombre de "multi-photon bands". Absorciones multifotónicas, aparecen también en la región de los sobretonos y combinaciones de modos internos y corresponden principalmente a excitaciones de distintos modos internos, asociados a diferentes moléculas en la celda unitaria.

V.4 - Ecuaciones de movimiento. Vibraciones.

Una discusión acuciosa a partir de primeros principios, puede encontrarse en el texto-apunte, "Vibraciones Moleculares de Compuestos de Coordinación", en el cual se hace un barrido de esta área de la espectroscopía, con un énfasis especial en los aspectos formales. De esta forma, y considerando las limitaciones de los modelos empleados en diversos trabajos **[23 - 25, 27]**, hemos considerado el problema central, el cual consiste en obtener una representación físicamente razonable para la matriz de energía potencial *F*, empleando el procedimiento matemático que se detalla a continuación:

El problema consiste en encontrar una matriz *F* simétrica, con todos sus elementos positivos y tal que satisfaga la ecuación de movimiento vibracional **[26]**:

$$GFL = L\Lambda$$
 (5.1)

donde, *G* (matriz de energía cinética) es conocida, para una configuración nuclear de equilibrio. Esta matriz contiene en sus elementos constituyentes, longitudes de enlace, ángulos de enlaces y las masas de los átomos del arreglo periódico. También., la matriz *L* corresponde a las amplitudes de vibración y es desconocida, por cuanto depende paramétricamente de los detalles del campo de fuerzas vibracional. Para una elección dada de un campo de fuerzas, representado, digamos por una matriz *F*, la matriz de amplitudes de vibración debe satisfacer una suerte de condición de normalización, a saber:

$$LL'=G \qquad (5.2),$$

donde la "prima" se refiere al transpuesto de la matriz original L.

También la matriz Λ es diagonal y sus elementos corresponden a los evaluados mediante la relación:

$$\lambda_i = \left(\frac{\overline{\nu_i}}{1.303,16}\right)^2 \qquad (5.3)_{,}$$

siendo $\overline{v_i}$ el número de ondas (en cm^{-1}) de la vibración asociada a la coordenada normal i-ésima.

Una vez formulado el problema, no es difícil darse cuenta que en principio, existe una infinidad de matrices de energía potencial, que satisfacen la ecs (5.1) y (5.2). A continuación, procederemos a detallar un algoritmo heurístico para el cálculo de estas mismas.

De la condición de normalización se desprende que G es una matriz simétrica y considerando que ésta representa la energía cinética vibracional de los núcleos del cristal, entonces debe ser definida positiva, es decir, los valores propios de esta matriz deben ser escalares positivos. Sea, B la matriz de la factorización de Cholesky **[28]** de la matriz G, con lo cual se obtiene la siguiente igualdad:

$$G = B'B \qquad (5.4)$$

También de la ecuación de movimiento vibracional:

 $F = G^{-1}(L\Lambda L^{-1}) = (L^{-1}) L^{-1}L\Lambda L^{-1}$ con lo cual podemos escribir:

$$F = \left(L^{-1}\right) \Lambda L^{-1} \qquad (5.5)$$

y por la forma que tiene la última expresión , se garantiza que cualquier matriz *F* obtenida de esta forma, será simétrica y además los valores propios de la matriz *GF* serán exactamente los λ_i , obtenidos del experimento. Solo nos resta para encontrar la matriz *F*, definir apropiadamente la matriz *L*, la cual debe ser invertible y por lo tanto sus columnas definen una base en todo el espacio R^n .

Definamos a continuación: L = B'A', donde *B* es la matriz de factorización de Cholesky de *G* y *A* es una matriz cuyas columnas, forman una base ortonormal del espacio R^n , es decir: $A' = A^{-1}$. Observemos que con esta definición de la matriz *L* se garantiza que se satisfaga la condición de normalización dada por la ec (5.2), dado que:

 $G = B'B = B'A^{-1}AB = B'A'AB = LL'$

Al sustituir la definición de L en la ec (5.5), obtenemos:

$$F = \left(B^{-1}\right)A' \Lambda A\left(B^{-1}\right) \qquad (5.6)$$

De la identidad anterior, observamos que la matriz F, depende de la matriz A que se considere, de la cual sólo hemos exigido hasta este momento que sea ortonormal. Para la descripción del algoritmo, definamos condiciones adicionales que se desean con referencia a la matriz F, por ejemplo en nuestro caso que deseamos resolver, hemos pedido que todos sus elementos sean positivos y adicionalmente que los elementos tengan un cierto orden, más explícitamente podemos escribir:

Condiciones sobre la matriz *F* :

- * $f_{i,j} > 0$, para todo i, j = 1, 2, ..., n
- * $f_{ii} > f_{i,j}$, para todo i, j = 1, 2, ..., n

*
$$f_{ii} > f_{i,i}$$
, para todo $i, j = 1, 2, ..., n$

Para el caso particular, de la simetría $\tau_{1u}(4x4)$, como veremos que aparece en el modelo de 10 átomos para la elpasolita estequiométrica A_2BLnX_6 , se escogió que los elementos de la diagonal de la matriz F, satisficieran las desigualdades: $f_{11} > f_{33} > f_{22} > f_{44}$. Finalmente, antes de escribir el algoritmo propuesto en seudo lenguaje, definamos la variable Condiciones sobre F de la siguiente manera:

Condiciones sobre $F = \begin{cases} true \rightarrow si \ todas \ las \ condiciones \ exigidas \ a \ la \ matrix \ F \ se \ cumplen \\ false \rightarrow en \ caso \ contrario \end{cases}$

Algoritmo

Sean G y Λ matrices dadas

B matriz de la factorización de Cholesky de la matriz G

While. Conditions sobre F = false

 \hat{A} matriz de nxn aleatoria;

If det $(\hat{A}) \neq 0$, then

A matriz ortonormal generada por \hat{A}

$$F = \left(B^{-1}\right)A' \Lambda A\left(B^{-1}\right)$$

If condiciones sobre F = true, then

Stop

F es una matriz factible

end(If)

end(If)
Criterio de Asignación.

Por lo discutido anteriormente, es imprescindible contar con un criterio que nos permita discernir entre diferentes matrices *F* posibles. Existe, no obstante, un criterio de asignación ampliamente aceptado en base del concepto de distribución de energía potencial, el cual permite a partir de la matriz *F* y por ende, de la matriz *L*, se crea una nueva matriz conocida como *PED* ("potencial energy distribution"). En este Capítulo de la tesis, proponemos obtener la misma matriz, pero siguiendo una metodología un poco diferente que nos permita tener una matriz de asignación (*PED*)_{*i*} para cada uno de los elementos λ_i de la matriz Λ y la matriz comúnmente utilizada *PED*, se obtiene sumando las diversas matrices (*PED*)_{*i*} con *i* = 1,2,...,*n*.

De la ec (5.5), se tiene: $\Lambda = L' FL$ y por lo tanto, cada elemento λ_i de la diagonal de Λ , se puede expresar como: $\lambda_i = \sum_{r=1}^n \sum_{k=1}^n l_{r,i} f_{r,k} l_{k,i}$, donde $l_{i,j}$ y $f_{i,j}$ son los elementos i, j de las matrices L y F, respectivamente. Notemos que de esta última expresión podemos tener una explicación que asigne a cada elemento λ_i de la diagonal de Λ una matriz $M_i = (l_{r,i} f_{r,k} l_{k,i})$ y de esta manera λ_i no sería otra cosa que la suma de todos los elementos de la matriz M_i . De esta forma, definimos la matriz de asignación (PED_i) como: $(PED)_i = \frac{100}{\lambda_i} M_i$ y el criterio de asignación usual queda expresado como:

$$PED = \sum_{i=1}^{n} (PED)_i$$

Lo realizado hasta este punto, nos permite obtener matrices de energía potencial *F*, razonables y debemos agregar a las exigencias planteadas anteriormente, expresiones para los términos diagonales y cruzados por modo normal de vibración del cristal correspondiente a la distribución de energía potencial. Esta tarea es formidable, no obstante, tenemos un razonamiento y estrategia para abordar estas situaciones en forma plausible, tanto desde un punto de vista físico con la rigurosidad matemática exigida.

V.5 - Modelo de 10 átomos para sistemas del tipo elpasolitas. A_2BLnX_6 .

Mencionamos en la sección IV, algunas referencias relevantes [23 - 27] con relación al método y estrategia empleado a la fecha para obtener una representación razonable de la dinámica vibracional para estos sistemas.

Con relación al trabajo de Tanner y colaboradores [24, 25], señalamos en la sección II, la existencia de dificultades de envergadura en la física y química contenida en dicho artículo. Reconocemos lo arduo de la tarea emprendida por este autor y sus colaboradores, no obstante, es criticable el introducir una constante adicional de modo de minimizar el error medio entre las frecuencias calculadas y las experimentales. Desafortunadamente, el trabajo de estos autores no aporta un modelo físico apropiado y debe necesariamente ser desechado.

El modelo desarrollado en este trabajo, contiene un aporte significativo en la obtención de una representación relativamente razonable para la dinámica vibracional con referencia a cristales del tipo elpasolitas estequiométricas, para los cuales disponemos de una cantidad limitada y prácticamente siempre insuficiente de datos experimentales. Como veremos a lo largo de esta discusión, estamos a las puertas de reportar análisis en dinámica de cristales para estos sistemas y cálculos de densidades de fonones, formas de líneas y un estudio crítico de la teoría formal del acoplamiento ión-fonón. Todos estos temas, han recibido la atención de diversos grupos de investigación por más de dos décadas, con resultados interesantes en transferencia de energía y fenómenos relacionados **[29, 37]**.

Un primer paso significativo tendiente al objetivo central de obtener una representación, física y químicamente razonable para la matriz de energía potencial F, ha seguido, la siguiente estrategia: La información a ser discutida en este Capítulo, se encuentra en el **Anexo II**.

(1) Modelo de 10 átomos. Ver Anexo II.1.

(2) Introducción de un conjunto representativo de coordenadas internas. Para estos efectos, hemos introducido los siguientes conjuntos: (a) { Δr }, seis en total. (b) { ΔR }, seis en total. (c) { $\Delta \alpha$ }, doce en total, (d) { $\Delta \beta$ }, doce en total. (e) { Δq }, doce en total. (f) { Δd }, veinticuatro en total. Es decir, una descripción razonable, precisa de un conjunto mínimo de 72 coordenadas internas. [Anexo II.1]

(3) La próxima etapa, en extremo laboriosa fue el identificar las interacciones entre las diversas coordenadas internas, y proceder a definir en forma gráfica (3D) el origen y naturaleza de las interacciones a ser incluidas en nuestro modelo. Al respecto, hemos considerado ilustrativo graficar todas y cada una de estas interacciones, empleando para estos efectos el modelo de 10-átomos. El análisis realizado nos sugiere la introducción de un total de 98 interacciones (originando igual número de constantes de fuerzas del tipo Hooke). Las figuras has sido cuidadosamente diseñadas de modo de permitir al lector, disponer en forma rápida de una representación visual de estas contribuciones a la energía potencial total del sistema. **[Anexo II.2]**

(4) Una situación de particular complejidad, aparece a nivel de la construcción de las coordenadas de simetría S, las cuales se relacionan por medio de una matriz unitaria (U) con el conjunto total de coordenadas internas s. La transformación es la que se indica a continuación: S = Us. Para estos efectos, observamos durante el transcurso de este trabajo, la dificultad de obtener en forma simple y directa las coordenadas de simetría, en la base de las coordenadas internas al emplear únicamente el conjunto de generadores del grupo de sitio octaédrico, a saber: $\{C_4^Z, C_4^X, C_3^{(1,1,1)}\}$, [Anexo **II.61**. Como resultado de las dificultades inherentes al proceso descrito anteriormente, procedimos a obtener en forma explícita en la base de las coordenadas cartesianas (x, y, z), las representaciones matriciales de los operadores de simetría asociados a las 48 transformaciones de coordenadas representativas del grupo de sitio octaédrico O_h [Anexo II.3]. De igual forma, una vez definidas las 72 coordenadas internas para el modelo en cuestión, procedimos a operar con los distintos operadores de simetría sobre todas y cada una de las coordenadas internas del sistema. Estos resultados, se entregan en el Anexo II.4. Habiendo logrado esta información, se procedió a explicitar los proyectores de simetría para todas y cada una de las especies de simetría en el grupo de sitio octaédrico, para las diversas coordenadas de simetría del cristal. Para el modelo utilizado en este estudio, vemos que el número de grados de libertad vibracionales es

veinticuatro (3x10-6 = 24). Observemos que en este número 24, no hemos incluido el modo rotacional restringido T_{1g} . Estos grados de libertad vibracionales se corresponden con los modos normales de vibración, los cuales son clasificados de acuerdo a las siguientes representaciones irreductibles del grupo de sitio, como se indica a continuación:

$$\Gamma_{vib} = A_{1g}(S_1) + E_g(S_2) + T_{1g}(S_3) + 2T_{2g}(S_4, S_5) + 4T_{1u}(S_6, S_7, S_8, S_9) + T_{2u}(S_{10})$$

(5) La aplicación de los diversos proyectores de simetría sobre los seis sub-conjuntos de coordenadas internas, produce las combinaciones lineales, adaptadas por simetría en las bases de las coordenadas internas y de las coordenadas cartesianas de desplazamiento nucleares se informan en el **Anexo II.5**. En el **Anexo II.6**, se entrega la tabla de generadores del grupo octaédrico y el efecto de estos operadores de simetría sobre las componentes de funciones de simetrías en el sub-grupo de las rotaciones (grupo O). Recordemos la cadena de grupos-subgrupos: $O_h \supset O$. En el **Anexo II.7**, se entrega por razones de ilustración de la metodología empleada, un ejemplo que nos permite obtener las tres componentes de la representación irreductible T_{1u} en la base de las coordenadas internas { Δr }. De igual forma, empleando el conjunto mínimo de generadores del grupo de sitio octaédrico, reportamos las combinaciones lineales, adaptadas por simetría para las

diversas representaciones irreductibles, pertinentes a la obtención de las coordenadas de simetría, ver **Anexo II.8**. En estas páginas, se entregan las coordenadas de simetría en ambas bases; coordenadas internas y cartesianas de desplazamiento nuclear. Es interesante observar, como era de esperar, que los diversos conjuntos de coordenadas internas (pertenecientes a distintos conjuntos) se combinen entre sí. No obstante, cuando son proyectadas a lo largo de los tres ejes cartesianos, no es trivial observar una forma no discutible de mezclar estas combinaciones lineales de simetría como tampoco identificar un número adecuado, compatible y físicamente razonable de combinaciones lineales representativo para la representación vibracional.

Decidimos avanzar, en una estrategia más general, empleando todas las operaciones de simetría del grupo de sitio octaédrico y en la base de las coordenadas internas, obtuvimos un conjunto de coordenadas de simetría, lo cual es informado en las **Anexo II.9**.

Un análisis exhaustivo de las diversas combinaciones lineales obtenidas, nos condujo a seleccionar nuevas coordenadas de simetría, mezclas de los conjuntos: { Δr }, { ΔR }, { $\Delta \alpha$ }, { $\Delta \beta$ }, { Δq } y { Δd }. Estos conjuntos optimizados, de coordenadas internas, físicamente razonables se entregan en el **Anexo II.10**. De esta forma, entregamos en el **Anexo II.11**, conjuntos consistentes y adaptados por simetría para describir

razonablemente la dinámica vibracional en el modelo de 10-átomos. A esta altura de la discusión, hemos logrado originar un modelo físico para estas elpasolitas estequiométricas y en consecuencia podemos intentar avanzar en el formidable problema de la resolución de las ecuaciones de movimiento vibracional $GFL = L\Lambda$ [26].

(6) Aceptando que la matriz de transformación entre las coordenadas de simetría y las internas es aceptable, podemos proceder a la obtención de la matriz U(10x38). Es importante, recordar que a nivel de coordenadas de simetría, hemos seleccionado un total de 10 para las diversas representaciones irreductibles, ver **Anexo II.12**. De igual forma, en el **Anexo II.11**, del total de 72 coordenadas internas iniciales, hemos seleccionado un total de 38, linealmente independientes. De esta forma, podemos escribir la identidad matricial: S(10x1) = U(10x38)s(38x1), donde entre paréntesis, hemos explicitado las dimensiones de las diversas matrices. Estas matrices se precisan para construir las matrices simetrizadas asociadas a la energía potencial *F* y cinética *G*, ver **Anexo II.13**. Recordemos que el conjunto inicial de coordenadas internas es 72, y las nuevas coordenadas elegidas para este trabajo, son 38 ver **Anexo II.11**. De igual forma, en la base original, la transformación S(10x1) = U(38x72)s(72x1), se entrega en El **Anexo II.13 a-b**.

(7) En la base del total de 72 coordenadas internas, hemos procedido a escribir en forma explícita la matriz de energía potencial F(72x72), la cual se informa en el **Anexo II.13c**.

Similarmente, recordemos que existe una matriz de transformación del tipo: s(72x1) = B(72x30)R(30x1), la cual relaciona el conjunto de coordenadas internas con las coordenadas de desplazamiento cartesiano nuclear. Esta matriz *B*, se informa en el **Anexo II.13d**.

En el **Anexo II.13e-f**, informamos las matrices $G^{-1}(30x30) \neq UB(10x30)$. Con esta bateria de matrices, ver **Anexo II.14**, es posible avanzar en el problema vibracional y trabajar las matrices, que se indican a continuación: $UB_{mp} = U(MpB) \neq G_{sym} = (UB_{mp})G^{-1}(UB_{mp})$, donde la matriz de paso (Mp) se ha definido en el **Anexo II.13b**, donde hemos procedido a listar un conjunto de 38 nuevas coordenadas internas (resultantes de la combinación lineal de las 72 coordenadas internas originales). Es posible, obtener la matriz de energía potencial simetrizada $F_{sym} = (UMp)F(UMp)'$, tomando la restricción: x[21]=x[22]=x[71]=x[72]=x[73]x[74]=x[75]=x[76]=x[83]=x[84]=x[85]=x[86]=x[87]=x[88]=x[93]=x[94]=0.

Tomando estas restricciones obtenemos, un bloqueo perfecto por simetría para cada una de las especies involucradas en la representación vibracional para los cristales en base del modelo de 10-átomos. En función de las matrices explicitadas anteriormente, es posible obtener en forma directa, la matriz de energía cinética simetrizada: G_{sym} para familias de cristales del tipo A_2BLnX_6 en el grupo espacial Fm3m. En este Capítulo, restringiremos nuestra atención a elpasolitas cloradas del tipo $Cs_2NaLnCl_6$, realizando un barrido muy representativo para la familia de los iones lantánidos (ver **Anexo II.15**).

En el **Anexo II.15**, informamos las matrices G_{sym} para los cristales: $Cs_2NaLnCl_6$ donde Ln = Dy, Ho, Pr, Eu, Tb, Er, Tm. Con relación a la matriz de energía potencial simetrizada, F_{sym} , sus elementos perfectamente bloqueados por especie de simetría son entregados en el **Anexo II.16**. De igual forma, para el conjunto de elpasolitas cloradas, entregamos en el **Anexo II.17a**, un conjunto bastante representativo de números de ondas vibracionales, asociadas a los 10 modos normales de vibración $\overline{v_i}: i = 1, 2, ..., 10$. A continuación, empleando el algoritmo desarrollado, ver ecs (5.1)-(5.6) y el programa utilizado se procedió a obtener los valores propios de la matriz H = GF, para lo cual se generó a partir de las frecuencias vibracionales conocidas y de las condiciones de borde exigidas al programa, un conjunto de valores propios (números de ondas vibracionales) el cual ajusta perfectamente con los datos experimentales. Esto no es inesperado, por cuanto la metodología empleada está condicionada para producir estos ajustes. El tema a analizar es, en consecuencia visualizar sí las soluciones globales; amplitudes de vibración, constantes de fuerzas internas y distribuciones de energía potencial tienen sentido físico. Los valores de

$$\lambda_i = \left(\frac{\overline{\nu_i}}{1303,16}\right)^2$$
 son reportados en el **Anexo II.17b**.

(8) A continuación, presentamos en el **Anexo II.18**, un conjunto de matrices simetrizadas correspondientes al campo de fuerzas para los sistemas: $Cs_2NaLnCl_6$, en el orden que se indica: $Ln \rightarrow Pr, Eu, Tb, Dy, Ho, Er, Tm$. El lector podrá apreciar que hemos listado 3 matrices posibles para cada uno de estos iones lantánidos trivalentes positivos en sistemas del tipo $Cs_2NaLnCl_6$. La discusión en este punto es de la máxima relevancia, por cuanto, el lector podrá apreciar que se conjugan armónicamente dos condiciones: (a) todas las constantes de fuerzas simetrizadas son positivas y (b) las matrices con la restricción:

x[21]=x[22]=x[71]=x[72]=x[73]=x[74]=x[75]=x[76]=x[83]=x[84]=x[85]=x[86]= =x[87]=x[88]=x[93]=x[94]=0, se bloquean perfectamente por especie de simetría. La estrategia y metodología de trabajo para la obtención de estas matrices, asegura una reproducción prácticamente exacta para los números de ondas vibracionales del cristal. Existe, adicionalmente una condición de normalización de las amplitudes de vibración representada por las matrices *L*, la cual debe ser observada rigurosamente.

Las ecuaciones de movimiento son de la forma: $GFL = L\Lambda$, donde LL'=G. Es preciso, recordar que la matriz L, la cual relaciona las coordenadas de simetría S con las coordenadas normales de vibración Q, satisface la relación general: S = LQ y ciertamente, se sabe que L = L(F), es decir, depende paramétricamente de los detalles del campo de fuerzas Bajo estas condiciones, resulta directo aseverar que la vibracional. descripción de los modos normales de vibración exige una buena (y/o razonable) descripción del campo de fuerzas vibracional para el sistema. Este es un punto que no es posible considerarlo superficialmente en la teoría y precisa de más trabajo de laboratorio de modo de hacer posible el desafío de realizar cálculos en dinámica de cristales representativos. Hemos señalado la necesidad de contar con una cantidad más abundante de datos experimentales de alta precisión y debemos avanzar en la teoría de modo de lograr el objetivo de despejar una serie de obstáculos, esencialmente con referencia a la identificación y asignación de picos espectrales. Un estudio serio para estos sistemas nos sugiere que, una cantidad importante de señales espectroscópicas son el producto de excitaciones puras, superposición de éstas y otros efectos relacionados con distorsiones de la geometría de los estados excitados con respecto de la supuesta o conocida a

nivel experimental. La región más compleja de examinar corresponde, a la zona de energías intermedias resultado del acoplamiento entre las vibraciones internas y externas del sistema. No es tan simple, el despreciar estos acoplamientos e intentar explicar los espectros con aproximaciones simples en las cuales se desprecie este acoplamiento. Existen, no obstante, sistemas diversos en espectroscopia para los cuales, este acoplamiento existe, no obstante los picos más intensos del espectro son puros y corresponden en términos generales a excitaciones asignables al ión central, en el entorno directo (lo que denominados cúmulo o "cluster"), el cual está en su primera esfera de coordinación directamente enlazado a iones Cloruro. En nuestro caso, esto correspondería a asociar al cúmulo $LnCl_6^{-3}$, los picos espectrales más intensos y los picos restantes a vibraciones puras del cristal y acoplamiento débil ión-fonón.

Todo lo anterior es significativo, y debe ser revisado con cuidado extremo antes de intentar cálculos de intensidades espectrales. De igual forma, es preciso conocer bastante de la información experimental, básicamente de las curvas de dispersión de fonones, por cuanto sí a nivel de la simetría T_{1u} se produce un "gap" de energía importante entre los modos normales LO - TO, entonces un cálculo simple en un modelo de 7-átomos será por definición erróneo y consideraciones en dinámica de cristales surgen como prioritarias, antes de cualquier intento. El lector puede revisar las

diversas matrices F que hemos seleccionado para cada una de las elpasolitas Cloradas, motivo de este estudio y constatará que debe necesariamente existir algún criterio desarrollado, el cual nos permita decir que estas son las 3 más representativas de múltiples conjuntos de matrices F posibles, dado que la solución no puede ser única (el número de variable excede con creces los datos experimentales distintos). Este punto será discutido a la luz de un criterio de convergencia desarrollado en nuestro grupo de investigación y que dice relación con el concepto de distribución natural de energía potencial y rol jugado por los términos cruzados (términos de interferencia).

(9) Dado un campo de fuerzas vibracional, abordemos el problema de la obtención de la matriz de amplitudes de vibración *L*. En conformidad con las ecs (5.1-5.6) y el algoritmo desarrollo para estos efectos, procederemos a considerar solo las matrices de campo de fuerzas calculadas, y estimar las amplitudes de vibración siguiendo un método clásico de la física. De esta forma, en el **Anexo II.19**, hemos seleccionado dos situaciones correspondientes a bloques de simetrías de orden 2 y 4, respectivamente.

En el **Anexo II.20**, se introduce el concepto de distribución de energía potencial para bloques de simetrías de orden 2 y 4. La situación para la dimensión 1 es trivial y aparece en forma directa en nuestro desarrollo. El

concepto de PED ("potential energy distribution") aparece directamente de las ecuaciones del análisis de coordenadas normales. Así tenemos que: $GFL = L\Lambda$, no obstante, se satisface la ecuación de normalización: LL' = G, de modo que al remplazar obtenemos: $\Lambda = L'FL$. De esta forma, obtenemos para el modo normal i-ésimo la identidad: $\lambda_i = \sum_k L_{k,i}^2 F_{k,k} + \sum_{k \neq l} L_{k,i} L_{l,i} F_{k,l}$. La expresión anterior, puede ser escrita de la forma que se indica:

$$[MDiagonal]_{i,j} = L_{i,j}^2 F_{i,j}$$
 (5.7.1)

y también:

$$\left[Mnodiagonal\right]_{i,j} = \sum_{ll \neq i} L_{i,j} L_{ll,j} F_{i,ll} \qquad (5.7.2)$$

En estas expresiones para bloques de órdenes 2 y 4, el subíndice: ll = 1,2,3,4para la especie de simetría T_{1u} y también ll = 1, 2, si corresponde a la simetría T_{2g} . Recuerde que la representación global en el modelo de diez átomos es:

$$\Gamma_{vib} = A_{1g}(S_1) + E_g(S_2) + T_{1g}(S_3) + 2T_{2g}(S_4, S_5) + 4T_{1u}(S_6, S_7, S_8, S_9) + T_{2u}(S_{10})$$

En este enfoque, se procede de modo que la matriz diagonal y la no diagonal se suman, generando una matriz que denominados M_{d+nd} y la suma de cada una de las columnas de este tipo de matrices genera como resultados los valores propios de la matriz H = GF para todos y cada uno de los bloques de simetría. De igual forma, es posible determinar la matriz de distribución de energía potencial (*PED*), cuyos elementos se obtienen como porcentajes de acuerdo a la expresión:

$$\left[PED\right]_{i,j} = 100 \frac{\left[M_{d+nd}\right]_{i,j}}{\lambda_j} \qquad (5.8)$$

donde λ_j es el valor propio asociado al modo normal j-ésimo asociado al bloque de simetría en estudio. Es evidente que la suma de los elementos a lo largo de las filas y de las columnas debe necesariamente sumar 100 %.

En el **Anexo II.21**, se aborda con claridad el tema de bloques de igual simetría de orden 2. En nuestro caso, nos referimos a la especie de simetría $T_{2g}(S_4, S_5)$. En todos los casos en consideración, se procede a listar:

(a) Matriz L

- (b) [*Mdiagonal*]
- (c) Suma diagonal
- (d) [*Mnodiagonal*]
- (e) suma nodiagonal

(f) [*Mdiagonal*]+[*Mnodiagonal*]

(g) Suma diagonal + no diagonal

donde la matriz de distribución de energía potencial se construye para la serie: $Ln \rightarrow Pr$, Eu, Tb, Dy, Ho, Er, Tm. Así por ejemplo, para la elpasolita $Cs_2Na Pr Cl_6$, en bloque de simetría T_{2g} , el modelo concuerda con las siguientes asignaciones:

(a) Frecuencia
$$v_4: S_4(99,8559\%) + S_5(0,1441\%)$$
 y

(b) Frecuencia
$$v_5: S_4(0,1441\%) + S_5(99,8559\%)$$
.

Consideraciones similares ocurren para los otros iones trivalentes positivos considerados en este trabajo. De igual forma, observamos que en el **Anexo II.22**, se entrega la misma información, no obstante que para efectos de completitud se ha realizado el análisis considerando las tres matrices *F*, informadas previamente. Así, por ejemplo cuando se utiliza la primera matriz *F* para Pr, denominada en el cálculo $F_{Pr_{i}}$, la distribución natural de energía potencial sugiere, la asignación:

$$S_{6}(49,6783\%) + S_{7}(4,17627\%) + S_{8}(42,2986\%) + S_{9}(3,64691\%)$$

para la frecuencia vibracional v_6 . El lector puede observar directamente, el fuerte acoplamiento entre las coordenadas de simetría S_6 y S_8 . En consecuencia, sí nuestra versión de campos de fuerzas es apropiada, resulta inadecuado asignar esta frecuencia a una vibración pura.

Empleando el mismo criterio, el lector puede avanzar en el estudio de los otros casos reportados en este estudio. Las situaciones simples corresponden a los bloques de simetría de dimensión 1, para los cuales la obtención de las coordenadas normales es directo. El resultado global es reportado en el **Anexo II.23**.

(10) Constantes de fuerzas predichas por el modelo:

En el **Anexo II.24**, el análisis nos sugiere reportar las diferencias relativas de constantes de fuerzas, generales a saber:

$$\begin{aligned} x[9] - x[7] &= 2F_{66} - F_{88} \\ x[1] - x[3] &= (2F_{66} + F_{88}) - 2\sqrt{2}F_{68} \\ x[4] - x[6] &= (2F_{66} + F_{88}) + 2\sqrt{2}F_{68} \\ x[1] - x[3] + x[4] - x[6] &= 2(2F_{66} + F_{88}) \\ x[2] + x[5] - 2x[8] &= \frac{2}{3}(F_{11} - F_{22}) \\ x[1] + x[4] - 2x[9] &= \frac{2}{3}(F_{11} + 2F_{22} + 3F_{88}) \\ x[3] + x[6] - 2x[9] &= \frac{2}{3}(F_{11} + 2F_{22} - 6F_{66}) \\ x[38] - x[40] &= \frac{1}{6}(-\sqrt{30}F_{67} + 2\sqrt{6}F_{69} + \sqrt{15}F_{78} - 2\sqrt{3}F_{89}) \\ x[42] - x[44] &= -\frac{\sqrt{10}F_{67} - 2\sqrt{2}F_{69} + \sqrt{5}F_{78} - 2F_{89}}{2\sqrt{3}} \\ x[48] - x[49] - x[51] + x[53] &= \frac{1}{3}(6F_{66} + 2\sqrt{15}F_{67} - 3\sqrt{2}F_{68} + 2\sqrt{3}F_{69} - \sqrt{30}F_{78} - \sqrt{6}F_{89}) \\ x[45] - x[46] - x[68] + x[70] &= \frac{1}{3}(6F_{66} + 2\sqrt{15}F_{67} + 3\sqrt{2}F_{68} + 2\sqrt{3}F_{69} + \sqrt{30}F_{78} + \sqrt{6}F_{89}) \end{aligned}$$

Para la serie $Ln \rightarrow Pr, Eu, Tb, Dy, Ho, Er, Tm$ y empleando los tres campos de fuerzas para los bloques de simetría T_{1u} , obtenemos los resultados que se indican: (10.1) Pr

(10.1.1) Asociado a F_{Pr1} :

$$x[9] - x[7] = 1.00127$$

$$x[1] - x[3] = 1.81844$$

$$x[4] - x[6] = 2.7883$$

$$x[1] - x[3] + x[4] - x[6] = 4.60674$$

$$x[2] + x[5] - 2x[8] = 0.433173$$

$$x[1] + x[4] - 2x[9] = 3.75611$$

$$x[3] + x[6] - 2x[9] = -0.850627$$

$$x[38] - x[40] = 0.0516233$$

$$x[42] - x[44] = 0.113954$$

$$x[48] - x[49] - x[51] + x[53] = 1.40618$$

$$x[45] - x[46] - x[68] + x[70] = 2.14215$$

(10.1.2) Asociado a $F_{\rm Pr2}$:

$$x[9] - x[7] = 0.73051$$

$$x[1] - x[3] = 2.06088$$

$$x[4] - x[6] = 2.31714$$

$$x[1] - x[3] + x[4] - x[6] = 4.37802$$

$$x[2] + x[5] - 2x[8] = 0.433173$$

$$x[1] + x[4] - 2x[9] = 3.91251$$

$$x[3] + x[6] - 2x[9] = -0.465507$$

$$x[38] - x[40] = 0.170609$$

$$x[42] - x[44] = 0.051796$$

$$x[48] - x[49] - x[51] + x[53] = 1.54737$$

$$x[45] - x[46] - x[68] + x[70] = 2.14113$$

(10.1.3) Asociado a $F_{\rm Pr3}$:

$$x[9] - x[7] = 0.91096$$

$$x[1] - x[3] = 2.01968$$

$$x[4] - x[6] = 2.61496$$

$$x[1] - x[3] + x[4] - x[6] = 4.63464$$

$$x[2] + x[5] - 2x[8] = 0.433173$$

$$x[1] + x[4] - 2x[9] = 3.86037$$

$$x[3] + x[6] - 2x[9] = -0.774267$$

$$x[38] - x[40] = 0.0162607$$

$$x[42] - x[44] = 0.00616269$$

$$x[48] - x[49] - x[51] + x[53] = 1.20537$$

$$x[45] - x[46] - x[68] + x[70] = 2.20219$$

(10.2) Eu

(10.2.1) Asociado a F_{Eu1} :

$$x[9] - x[7] = 1.37357$$

$$x[1] - x[3] = 2.34904$$

$$x[4] - x[6] = 2.8499$$

$$x[1] - x[3] + x[4] - x[6] = 5.19894$$

$$x[2] + x[5] - 2x[8] = 0.44698$$

$$x[1] + x[4] - 2x[9] = 3.84336$$

$$x[3] + x[6] - 2x[9] = -1.35558$$

$$x[38] - x[40] = -0.0882549$$

$$x[42] - x[44] = -0.0792312$$

$$x[48] - x[49] - x[51] + x[53] = 2.34575$$

$$x[45] - x[46] - x[68] + x[70] = 2.65790$$

(10.2.2) Asociado a F_{Eu2} :

$$x[9] - x[7] = 0.79987$$

$$x[1] - x[3] = 2.26506$$

$$x[4] - x[6] = 2.33312$$

$$x[1] - x[3] + x[4] - x[6] = 4.59818$$

$$x[2] + x[5] - 2x[8] = 0.44698$$

$$x[1] + x[4] - 2x[9] = 4.11668$$

$$x[3] + x[6] - 2x[9] = -0.4815$$

$$x[38] - x[40] = 0.0857253$$

$$x[42] - x[44] = -0.111433$$

$$x[48] - x[49] - x[51] + x[53] = 1.14692$$

$$x[45] - x[46] - x[68] + x[70] = 2.2768$$

(10.2.3) Asociado a F_{Eu3} :

$$x[9] - x[7] = 1.06939$$

$$x[1] - x[3] = 2.15031$$

$$x[4] - x[6] = 2.58323$$

$$x[1] - x[3] + x[4] - x[6] = 4.73354$$

$$x[2] + x[5] - 2x[8] = 0.44698$$

$$x[1] + x[4] - 2x[9] = 3.91484$$

$$x[3] + x[6] - 2x[9] = -0.8187$$

$$x[38] - x[40] = 0.13886$$

$$x[42] - x[44] = 0.223388$$

$$x[48] - x[49] - x[51] + x[53] = 1.56354$$

$$x[45] - x[46] - x[68] + x[70] = 2.43209$$

(10.3) Tb

(10.3.1) Asociado a F_{Tb1} :

$$x[9] - x[7] = 1.2117$$

$$x[1] - x[3] = 2.44301$$

$$x[4] - x[6] = 2.90863$$

$$x[1] - x[3] + x[4] - x[6] = 5.35164$$

$$x[2] + x[5] - 2x[8] = 0.4311$$

$$x[1] + x[4] - 2x[9] = 4.16194$$

$$x[3] + x[6] - 2x[9] = -1.1897$$

$$x[38] - x[40] = -0.101515$$

$$x[42] - x[44] = -0.0346796$$

$$x[48] - x[49] - x[51] + x[53] = 1.71002$$

$$x[45] - x[46] - x[68] + x[70] = 2.64981$$

(10.3.2) Asociado a F_{Tb2} :

$$x[9] - x[7] = 1.93975$$

$$x[1] - x[3] = 3.183$$

$$x[4] - x[6] = 3.27334$$

$$x[1] - x[3] + x[4] - x[6] = 6.45634$$

$$x[2] + x[5] - 2x[8] = 0.4311$$

$$x[1] + x[4] - 2x[9] = 3.98624$$

$$x[3] + x[6] - 2x[9] = -2.4701$$

$$x[38] - x[40] = -0.0435515$$

$$x[42] - x[44] = -0.088237$$

$$x[48] - x[49] - x[51] + x[53] = 2.69607$$

$$x[45] - x[46] - x[68] + x[70] = 2.99446$$

(10.3.3) Asociado a F_{Tb3} :

$$\begin{aligned} x[9] - x[7] &= 1.23771 \\ x[1] - x[3] &= 2.68629 \\ x[4] - x[6] &= 2.73301 \\ x[1] - x[3] + x[4] - x[6] &= 5.4193 \\ x[2] + x[5] - 2x[8] &= 0.4311 \\ x[1] + x[4] - 2x[9] &= 4.16976 \\ x[3] + x[6] - 2x[9] &= -1.24954 \\ x[38] - x[40] &= -0.0360637 \\ x[42] - x[44] &= -0.00686923 \\ x[48] - x[49] - x[51] + x[53] &= 1.85104 \\ x[45] - x[46] - x[68] + x[70] &= 2.76148 \end{aligned}$$

(10.4) Dy

(10.4.1) Asociado a F_{Dy1} :

$$x[9] - x[7] = 1.27477$$

$$x[1] - x[3] = 2.61131$$

$$x[4] - x[6] = 2.95259$$

$$x[1] - x[3] + x[4] - x[6] = 5.5639$$

$$x[2] + x[5] - 2x[8] = 0.44258$$

$$x[1] + x[4] - 2x[9] = 4.25556$$

$$x[3] + x[6] - 2x[9] = -1.30834$$

$$x[38] - x[40] = -0.0540003$$

$$x[42] - x[44] = -0.0755397$$

$$x[48] - x[49] - x[51] + x[53] = 2.00308$$

$$x[45] - x[46] - x[68] + x[70] = 2.65248$$

(10.4.2) Asociado a F_{Dy2} :

$$x[9] - x[7] = 1.29494$$

$$x[1] - x[3] = 2.87228$$

$$x[4] - x[6] = 2.92704$$

$$x[1] - x[3] + x[4] - x[6] = 5.79932$$

$$x[2] + x[5] - 2x[8] = 0.44258$$

$$x[1] + x[4] - 2x[9] = 4.3531$$

$$x[3] + x[6] - 2x[9] = -1.44622$$

$$x[38] - x[40] = 0.0510425$$

$$x[42] - x[44] = -0.0413466$$

$$x[48] - x[49] - x[51] + x[53] = 2.17755$$

$$x[45] - x[46] - x[68] + x[70] = 2.69243$$

(10.4.3) Asociado a F_{Dy3} :

$$x[9] - x[7] = 1.16446$$

$$x[1] - x[3] = 2.5376$$

$$x[4] - x[6] = 2.8666$$

$$x[1] - x[3] + x[4] - x[6] = 5.4042$$

$$x[2] + x[5] - 2x[8] = 0.44258$$

$$x[1] + x[4] - 2x[9] = 4.28602$$

$$x[3] + x[6] - 2x[9] = -1.11818$$

$$x[38] - x[40] = 0.206559$$

$$x[42] - x[44] = 0.259351$$

$$x[48] - x[49] - x[51] + x[53] = 2.15833$$

$$x[45] - x[46] - x[68] + x[70] = 2.51213$$

(10.5) Ho

(10.5.1) Asociado a F_{Ho1} :

$$x[9] - x[7] = 1.24431$$

$$x[1] - x[3] = 2.63324$$

$$x[4] - x[6] = 2.95326$$

$$x[1] - x[3] + x[4] - x[6] = 5.5865$$

$$x[2] + x[5] - 2x[8] = 0.432667$$

$$x[1] + x[4] - 2x[9] = 4.3666$$

$$x[3] + x[6] - 2x[9] = -1.21989$$

$$x[38] - x[40] = -0.0835648$$

$$x[42] - x[44] = -0.0818516$$

$$x[48] - x[49] - x[51] + x[53] = 2.11753$$

$$x[45] - x[46] - x[68] + x[70] = 2.68282$$

(10.5.2) Asociado a F_{Ho2} :

$$x[9] - x[7] = 1.26145$$

$$x[1] - x[3] = 2.8971$$

$$x[4] - x[6] = 2.9272$$

$$x[1] - x[3] + x[4] - x[6] = 5.8243$$

$$x[2] + x[5] - 2x[8] = 0.432673$$

$$x[1] + x[4] - 2x[9] = 4.46833$$

$$x[3] + x[6] - 2x[9] = -1.35597$$

$$x[38] - x[40] = 0.0198215$$

$$x[42] - x[44] = -0.0494492$$

$$x[48] - x[49] - x[51] + x[53] = 2.30065$$

$$x[45] - x[46] - x[68] + x[70] = 2.71987$$

(10.5.3) Asociado a F_{Ho3} :

$$x[9] - x[7] = 1.47702$$

$$x[1] - x[3] = 2.65714$$

$$x[4] - x[6] = 3.25162$$

$$x[1] - x[3] + x[4] - x[6] = 5.90876$$

$$x[2] + x[5] - 2x[8] = 0.432673$$

$$x[1] + x[4] - 2x[9] = 4.29499$$

$$x[3] + x[6] - 2x[9] = -1.61377$$

$$x[38] - x[40] = 0.0532736$$

$$x[42] - x[44] = 0.07449323$$

$$x[48] - x[49] - x[51] + x[53] = 2.14151$$

$$x[45] - x[46] - x[68] + x[70] = 2.48762$$

(10.6) Er

(10.6.1) Asociado a F_{Er1} :

$$x[9] - x[7] = 1.20048$$

$$x[1] - x[3] = 2.73767$$

$$x[4] - x[6] = 2.84113$$

$$x[1] - x[3] + x[4] - x[6] = 5.5788$$

$$x[2] + x[5] - 2x[8] = 0.4525$$

$$x[1] + x[4] - 2x[9] = 4.3669$$

$$x[3] + x[6] - 2x[9] = -1.2119$$

$$x[38] - x[40] = 0.0320556$$

$$x[42] - x[44] = 0.0681642$$

$$x[48] - x[49] - x[51] + x[53] = 1.72406$$

$$x[45] - x[46] - x[68] + x[70] = 2.65419$$

(10.6.2) Asociado a F_{Er2} :

$$x[9] - x[7] = 1.25375$$

$$x[1] - x[3] = 2.46393$$

$$x[4] - x[6] = 2.72833$$

$$x[1] - x[3] + x[4] - x[6] = 5.19226$$

$$x[2] + x[5] - 2x[8] = 0.4525$$

$$x[1] + x[4] - 2x[9] = 4.12036$$

$$x[3] + x[6] - 2x[9] = -1.0719$$

$$x[38] - x[40] = -0.1285$$

$$x[42] - x[44] = 0.0523798$$

$$x[48] - x[49] - x[51] + x[53] = 1.90097$$

$$x[45] - x[46] - x[68] + x[70] = 2.72485$$

(10.6.3) Asociado a F_{Er3} :

$$x[9] - x[7] = 1.66784$$

$$x[1] - x[3] = 2.99253$$

$$x[4] - x[6] = 3.27419$$

$$x[1] - x[3] + x[4] - x[6] = 6.26672$$

$$x[2] + x[5] - 2x[8] = 0.4525$$

$$x[1] + x[4] - 2x[9] = 4.2435$$

$$x[3] + x[6] - 2x[9] = -2.02322$$

$$x[38] - x[40] = -0.00181855$$

$$x[42] - x[44] = 0.041222$$

$$x[48] - x[49] - x[51] + x[53] = 2.26708$$

$$x[45] - x[46] - x[68] + x[70] = 2.69225$$

(10.7) Tm

(10.7.1) Asociado a F_{Tm1} :

$$x[9] - x[7] = 1.0945$$

$$x[1] - x[3] = 2.23734$$

$$x[4] - x[6] = 2.87182$$

$$x[1] - x[3] + x[4] - x[6] = 5.10916$$

$$x[2] + x[5] - 2x[8] = 0.44592$$

$$x[1] + x[4] - 2x[9] = 4.25122$$

$$x[3] + x[6] - 2x[9] = -0.85794$$

$$x[38] - x[40] = -0.0331783$$

$$x[42] - x[44] = 0.169166$$

$$x[48] - x[49] - x[51] + x[53] = 1.47332$$

$$x[45] - x[46] - x[68] + x[70] = 2.43794$$

(10.7.2) Asociado a F_{Tm2} :

$$x[9] - x[7] = 1.02041$$

$$x[1] - x[3] = 2.33542$$

$$x[4] - x[6] = 2.48696$$

$$x[1] - x[3] + x[4] - x[6] = 4.82238$$

$$x[2] + x[5] - 2x[8] = 0.44592$$

$$x[1] + x[4] - 2x[9] = 4.18192$$

$$x[3] + x[6] - 2x[9] = -0.64046$$

$$x[38] - x[40] = -0.0980875$$

$$x[42] - x[44] = -0.0144021$$

$$x[48] - x[49] - x[51] + x[53] = 1.26642$$

$$x[45] - x[46] - x[68] + x[70] = 2.54065$$

(10.7.3) Asociado a F_{Tm3} :

$$x[9] - x[7] = 1.26702$$

$$x[1] - x[3] = 2.75222$$

$$x[4] - x[6] = 2.82734$$

$$x[1] - x[3] + x[4] - x[6] = 5.57956$$

$$x[2] + x[5] - 2x[8] = 0.44592$$

$$x[1] + x[4] - 2x[9] = 4.3139$$

$$x[3] + x[6] - 2x[9] = -1.26566$$

$$x[38] - x[40] = -0.0423096$$

$$x[42] - x[44] = 0.100542$$

$$x[48] - x[49] - x[51] + x[53] = 1.6741$$

$$x[45] - x[46] - x[68] + x[70] = 2.69868$$

V.6 - Conclusiones.

En el trabajo reportado por Tanner y colaboradores [25], el objetivo de entregar datos experimentales para estos sistemas del tipo elpasolitas a temperaturas de 10K, se logra satisfactoriamente y emerge como una colección relevante de datos actualizados. Estas bases, corresponden a una recopilación lo más exhaustiva posible a la fecha, de lo existente en la literatura. Estos autores, argumentan que el modelo de diez frecuencias conocidas, junto con una versión modificada de un campo de fuerzas del tipo valencial generalizado (9-parámetros y/o constantes de fuerzas) con un ajuste numérico constituye un modelo de cierta validez y generalidad. Llama la atención que los autores, en sus conclusiones intenten fundamentar el éxito del modelo empleado en función de la minimización de la desviación cuadrática media entre las frecuencias calculadas y las observadas. De igual forma, observamos que los autores consideran que los valores ajustados para las constantes de fuerzas del tipo Hooke, muestran tendencias a nivel de sistemas en los cuales los iones lantánidos trivalentes positivos están directamente enlazados a seis iones Cloruro. Nuestro trabajo nos sugiere que el modelo propuesto por estos autores es no apropiado y tiene una validez física restringida. Un simple ajuste numérico, no garantiza el mejorar la física como tampoco la química del problema que se desea resolver.

En conformidad con nuestro modelo de 98 constantes de fuerzas, discutido a lo largo de este Capítulo hemos considerado buscar algún tipo de tendencias a partir de los datos de constantes de fuerzas relativas: x[9]-x[7], x[1]-x[3], x[4]-x[6], x[38]-x[40] en función de: (a) función del número atómico (Z), (b) función de la carga nuclear efectiva y (c) función del radio iónico del ión lantánido en el sólido (elpasolita) y (d) función del radio iónico, reportado en el sistema periódico. Se indica al lector, que los valores de radios iónicos reportados en (c) son del orden de un 10% menor que los correspondientes del sistema periódico. En la serie de los lantánidos, se observa al barrer de izquierda a derecha del sistema periódico, lo siguiente:

(a) las diferencias x[4] - x[6] son las más significativas, en el rango entre 2,5 y 2,8. Estos valores son crecientes hasta Z = 67, para luego disminuir gradualmente, con variaciones pequeñas. También el término x[1] - x[3], resulta ser el de gran importancia con valores en el rango de 2,2 a 2,7, variando con igual tendencia que en el caso anterior correspondiente a x[4] - x[6]. Los valores correspondientes a x[9] - x[7] se mueven en el rango desde 0.8 a 1.5 (salvo notables excepciones) y la variación es del mismo tipo que la señalada para las otra parejas de constantes de fuerzas. De igual forma, x[1] y x[4] son términos cuadráticos diagonales, correspondientes a interacciones del tipo $Ln^{+3} - Cl^{-1} y Ln^{+3} - Na^+$, respectivamente. De la naturaleza de las interacciones, se concluye que: x[1] > x[4] y todos los area constantes de las interacciones, se concluye que: <math>x[1] > x[4] y todos los area constantes de las interacciones, se concluye que: <math>x[1] > x[4] y todos los area constantes de las interacciones, se concluye que: <math>x[1] > x[4] y todos los area constantes de las interacciones, se concluye que: <math>x[1] > x[4] y todos los area constantes de las interacciones, se concluye que: <math>x[1] > x[4] y todos los area constantes de las interacciones, se concluye que: <math>x[1] > x[4] y todos los area constantes de las interacciones de las constantes de las los los area constantes de las los d

valores reportados en esta sección, empleando el modelo desarrollado son consistentes entre sí. En (b), (c) y (d), se observan las mismas tendencias, lo cual es un signo de fortaleza del modelo propuesto. Por efectos de completitud en el análisis, reportamos a continuación las gráficas correspondientes. El modelo desarrollado constituye, a nuestro juicio, la base para desarrollos en dinámica de cristales para sistemas diversos. Quedan, por cierto varias "ventanas abiertas" para el debate académico, lo cual justifica por sí mismo este trabajo de investigación.

Figura (b): Número atómico efectivo (Z_{eff}) versus diferencias de constantes de Fuerza (Dif F)

Figura (d): Radio iónico (R.I.) (sistema periódico) versus diferencias de constantes de fuerzas (Dif. F.)

V.7 - Referencias.

- [1] M.F.Reid, F.S.Richardson. Chem.Phys. Lett, 95, 501(1983)
- [2] M.F.Reid, F.S.Richardson. J.Less.Common.Metals, 93, 113(1983)
- [3] M.F.Reid, F.S.Richardson. J.Chem.Phys, 79, 5735(1983)
- [4] M.F.Reid, J.J.Dallara, F.S.Richardson. J.Chem. Phys, 79, 5743(1983)
- [5] M.F.Reid, F.S.Richardson. Mol. Phys, 51, 1077(1984)
- [6] M.F.Reid, F.S.Richardson. J.Phys.Chem, 88, 3579(1984)
- [7] C.K.Jayasankar, F.S.Richardson, M.F.Reid, P.A.Tanner. Mol.Phys, 61, 635(1987)
- [8] P.A.Tanner, V.V.Rabi Kanth Kumar, C.K.Jayasankar, M.F.Reid. J.Alloys and Comp, 215, 349(1994)
- [9] S..MCrooks, M.F.Reid, P.A.Tanner, Y.Y.Zhao. J.Alloys and Comp, 250,297(1997)
- [10] R.Acevedo, A.Soto-Bubert, T.Meruane, G.Navarro. Rev.Méx.Fís, 51(4), 330(2005)
- [11] R.Acevedo, A.Soto-Bubert, V.Martín,G.Navarro. Rev.Méx.Fís, 51(1), 5(2005)
- [12] R.Acevedo, A.Soto-Bubert, G.Navarro, T.Meruane, W.Strek. Acta Phys.Polonica.A, 105(3), 233(2004)
- [13] R.Acevedo, C.Portillo, G.Navarro, T.Meruane. Advances in Quantum Chem, 44, 509(2004)
- [14] R.Acevedo, E.Cortés. Theor. Chem. Accounts, 107(4), 187(2002)
- [15] R.Acevedo,O.F.Hurtado, C.Portillo,W.Strek. Acta. Phys.Polonica.A, 100(6), 829(2001)
- [16] P.A.Tanner, R.Acevedo, O.Hurtado, T.Meruane. J.Alloys and Comp, 323, 718(2001)
- [17] R.Acevedo, G.Navarro, T.Meruane, P.A.Tanner, Y.Y, Zhao, Rev.Méx.Fís,47(3), 245(2001)
- [18] V.Poblete, R.Acevedo, P.A.Tanner. Rev. Méx. Fís, 44, 29(1998)
- [19] R.Acevedo, O.Hurtado, T.Meruane, G.Navarro, V.Díaz, J.Pozo. Rev.Méx. Fís, 44, 41(1998)
- [20] O.Hurtado, R.Acevedo, T.Meruane. Rev.Méx.Fís, 44, 44(1998)
- [21] R.Acevedo, C.D.Flint, T.Meruane, G.Muñoz, M.Passman, V.Poblete.Theochem. J. Mol. Structure, **390**109(1997)

[22] P.A.Tanner. Topics in Current Chemistry, 241,167(2004)

- [23] A.Lentz, J.Phys.Chem.Solids, 35, 827(1974)
- [24] P.A.Tanner, M.Yshen. Spectrochimica Acta, **50** A(5), 997(1994)
- [25] L.Ning, P.A.Tanner, X.Shangda. Vibrational Spectroscopy, 31, 51(2003)
- [26] R.Acevedo, G.Navarro. Vibraciones Moleculares en Compuestos de Coordinación. Ciencia Abierta. ISSN: 0717-8948. <u>http://cabierta.uchile.cl</u>
- [27] G.Navarro. Tesis de Doctorado en Ciencias de la Ingeniería con mención en Ciencias de los Materiales. Escuela de Postgrado. Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile, 2001
- [28] J. E. Gentle, "Cholesky Factorization." §3.2.2 in Numerical Linear Algebra for Applications in Statistics. Berlin: Springer-Verlag, pp. 93-95, 1998.
- [29] P.A.Tanner, M.Chua,, M.F.Reid. Chem. Phys. Lett, 209, 539 (1993)
- [30] M.Chua, P.A.Tanner. M.F. Reid. J. Luminiscence, 58, 356 (1994)
- [31] M.Chua, P.A.Tanner, M.F.Reid. J.Luminiscence, 60/61,838(1994)
- [32] P.A.Tanner, Y.L.Liu, M.Chua, M.F.Reid. J. Alloys. Compounds, 207/208, 83(1994)

[33] M.Chua, P.A.Tanner, M.F.Reid. Solid State Common, 90, 581(1994)

- [34] P.A.Tanner, M.Chua, M.F.Reid. J. Alloys. Comp, 225, 20(1995)
- [35] G-K.Liu, X.Y.Chen, N.M.Eldelstein, M.F.Reid, J.Huang. J. Alloys. Comp, 366, 240(2004)
- [36] P.S.Peijzel, A.Meijerink, R.T.Wegh, M.F.Reid, G.W.Burdock. J. Solid State Chem, 178, 448(2005)
- [37] P.A.Tanner, C.S.K.Mak, N.M.Eldelstein, G.Liu, J,Huang, L.Seijo,Z.Barandiaran. J. American Chemical Society, **125**, 13225(2003)

Capítulo VI

Intensidades Espectrales de las elpasolitas Cloradas de

Dy (+3) y Ho (+3)

VI.1 - Palabras preliminares.

Existe un conjunto importante de trabajos seminales en teoría para iones lantánidos y actínicos en cristales del tipo elpasolitas y relacionados [1 -14], los cuales han planteado la necesidad de abordar el tema de estos complejos sistemas desde diversos puntos de vistas y con énfasis en diversos grados de aproximación de los efectos relativistas asociados. En el caso de sistemas del tipo LnX_6^{-3} , donde Ln(+3) corresponde a un ión lantánido trivalente positivo y X(-1) es un ión halogenuro, podemos en una aproximación de orden uno, considerar un índice de coordinación 6 y los iones lantánidos "sentados" en simetrías de sitio octaédrica. Es histórico, pero de un gran valor científico invocar la teoría desarrollada en forma independiente por Judd y Olfet [1, 2] en artículos excepcionalmente citados en la literatura. Resulta, tal vez apropiado señalar que el modelo de Judd -Olfet, aplicable a transiciones electrónicas del tipo $f \to f$, alrededor de cuatro décadas atrás, fue originalmente desarrollado como una suerte de teoría no relativista. No obstante, generalizaciones a este modelo han sido desarrolladas por diversos autores, de modo de incluir la corrección relativista más importante al hamiltoniano electrónico (\hat{H}), correspondiente a la interacción espín electrónico-órbita (\hat{H}_{s-0}). La inclusión de los efectos

relativistas, tanto para la teoría de de intensidades espectrales debida a Judd - Ofelt como para los efectos de campo cristalino (por inclusión de dos parámetros adicionales de origen y naturaleza relativista) han aparecido en sendos debates académicos en la literatura científica comprendida entre las dos últimas décadas. En la actualidad, es posible realizar cálculos de integrales radiales con inclusión de efectos relativistas, en una forma bastante realista y en sus últimos trabajos en vida, el Profesor B.G.Wybourne dedicó parte importante de su energía a realizar trabajos en conjunto con la Profesora Lidia Smentek **[13 -19 y referencias incluidas].**

Este trabajo está dedicado a estructuras del tipo $Cs_2NaDyCl_6$ y $Cs_2NaHoCl_6$, las cuales exhiben espectros caracterizados por una alta resolución y un nivel de complejidad importante, con referencia a la asignación e identificación de los diversos picos del espectro (tanto en absorción como en emisión). En la Figura 1, que se indica a continuación, se entrega información con relación a los diagramas de correlación energéticos, para sistemas del tipo $LnCl_3$, en el rango: $58 \le Z \le 70$, para iones lantánidos trivalentes positivos en cloruro de ión lantánido (+3). Resulta interesante, enfatizar el número notable de niveles de energías identificados y en algunos casos, la proximidad energética entre éstos, todo lo cual nos conduce a la necesidad de formular modelos físicos y rutinas de cálculo de envergadura. Es evidente, que en un entorno en un cristal del tipo elpasolita,

243

estos niveles de energías experimentan rupturas energéticas adicionales y esta observación experimental debe ser considerada explícitamente. De igual forma, resulta ilustrativo mostrar los entornos directos de cada uno de los iones en las estructuras en cuestión, ver Figura 2.

Algunos antecedentes históricos que es menester destacar en esta introducción dice relación con el hecho conocido que nos indica que la teoría del campo cristalino asociada a la interpretación de los espectros energéticos, fue pioneramente desarrollada por Bethe (1929) y aplicada al estudio de excitaciones del tipo $f \rightarrow f$ centradas en los iones lantánidos, en cristales iónicos del tipo: $[Ln(H_2O)_9[C_2H_5SO_4]_3]$ y posteriormente, fue generalizada a complejos de los metales de transición en la década de los 50. En ambas aplicaciones, el trabajo inicial se relacionó en forma prácticamente única a energías de transición y posteriormente con el estudio de los espectros de los iones en fase gaseosa para Ln(+3) y la inclusión del efecto Stark del campo electrostático en una simetría dada, la cual fue determinada por cristalografía de ravos X. Las energías de transición correspondientes a transiciones electrónicas del tipo $f \rightarrow f$, son de gran interés en física del estado sólido. En este breve recuento histórico, las probabilidades de transición asociadas a estas excitaciones, fueron pioneramente analizadas en forma rigurosa por Van Vleck (1937) y posteriormente, trabajadas en detalle por Judd - Olfet. El progreso obtenido a nivel tecnológico como los avances en la teoría, 244

permitieron incorporar en forma explícita una contribución complementaria, en primer orden a la de campo cristalino y conocida ampliamente como el modelo dinámico de polarización de ligandos. En lo que dice relación con transiciones del tipo $f \rightarrow f$ en iones complejos de los lantánidos, los estados terminales de la excitación se acoplan por medio de una corrección de orden uno, en el caso de sistemas centrosimétricos. Estas correcciones de orden uno, son realizadas empleando el método de teoría de perturbaciones y de esta forma, los estados corregidos en orden uno, adoptan una forma del tipo que se indica a continuación: $Y_i^{(1)} = \Phi_i^{(0)} + \sum_k c_{k,i}^{(1)} \Phi_i^{(0)}$, de modo que los momentos de transición del tipo dipolar eléctrico se expresan como: $\vec{\mu}_{i \to j} = \left\langle \Psi_i^{(1)} \left| \vec{\mu} \right| \Psi_j^{(1)} \right\rangle$. Así, en el caso particular de una transición monoelectrónica del tipo $4f \rightarrow 4f$, podemos emplear el mecanismo simbólico $f \leftrightarrow d \leftrightarrow f$, es decir, para el caso de un entorno centrosimétrico, la excitación adquiere intensidad por medio de una transición vibrónica, del tipo: $4f \rightarrow 5d$, con al cooperación explícita de los modos normales de vibración impares del ión complejo. En esta formulación, los ligandos permanecen inalterados en sus estados electrónicos fundamentales, cuando se produce la interacción entre el ión complejo con el campo de radiación. Existe, no obstante, un esquema de primer orden complementario al de campo cristalino, corrientemente denominado método de polarización de ligandos.

En esta formulación, la teoría adopta el modelo en el cual, los estados fundamental (basal) y excitado (se supone que estamos empleando una base truncada de funciones) asociado a la transición $f \rightarrow f$ en el ión Ln(+3) del ión complejo, permanecen inalterados por los ligandos y su distribución de cargas. En este sentido, la alteración que se incorpora al modelo, consiste en la perturbación que experimentan los ligandos debido a la presencia de momentos multipolares ó momentos de una transición del tipo $f \to f\,$ en el cristal. De esta forma, el campo eléctrico debido a estos multipolos dipolares eléctricos, induce en los ligandos, un momento dipolar eléctrico el cual se supone, para todo efecto práctico como proporcional a la polarizabilidad dipolar eléctrica del ligando. La resultante de estos dipolos inducidos alineados se refleja en una interacción con el campo de radiación incidente (absorción) o con la energía liberada (emisión). Finalmente, los dipolos eléctricos inducidos, centrados en los ligandos, originan una corrección de primer orden (complementaria a la correspondiente al campo cristalino) en el modelo de polarización de ligandos [20]

Figura1: Diagrama de correlación energético para el caso de tierras raras trivalentes en $LaCl_3$. El ancho de un nivel representa la ruptura en $LaCl_3$.

247

Figura 2: Elpasolita. Grupo espacial. $Fm3m(O_h^5)$

VI.2.- Introducción.

Hemos señalado que las elpasolitas de fórmula estequiométrica A_2BMX_6 , donde A y B representan cationes monovalentes (+1), M es un catión trivalente (+3) y X es un anión monovalente (-1). En términos generales, A es un metal alcalino del grupo IA al igual que B, no obstante éste último presenta 1 electrón en la capa de valencia, pero un valor del número atómico *Z* menor, M es un ión lantánido trivalente positivo (en nuestro caso, Sí el lantánido es dopado en un cristal anfitrión, entonces el catión M(+3) en el anfitrión es por lo general otro lantánido (*Ln*), *La* y *Y*. Experimentalmente sabemos que a temperatura ambiente, todos los compuestos que responden a la estructura estequiométrica A_2BMX_6 son iso-estructurales, donde *M*(+3) es cualquier lantánido y X = F, Cl, I. En la Figura 3, mostramos la estructura correspondiente a Cs_2NaLaX_6 , en términos de la disposición octaédrica.

Es interesante señalar de la Figura 3, que los octaedros NaX_6 y LnX_6 , no obstante de apariencia similar, no tienen el mismo tamaño. Existen datos experimentales relevantes, para ilustrar las aseveraciones anteriores. Así, en el caso de la estructura $Cs_2NaHoBr_6$, empleando técnicas de difracción de rayos X y de neutrones elástico, es posible encontrar las posiciones relativas de los iones Bromuro con respecto de su entorno de iones Sodio y del ión de la tierra rara. De igual forma y para efectos ilustrativos, entregamos a continuación datos de posiciones en la celda unitaria, sitios de simetría y radios iónicos para la elpasolita $Cs_2NaTbBr_6$.

Algunos datos ilustrativos son los que se indican a continuación:

[Ion	R	X	Y	Ζ	Site symmetry
Cs^+	1,88	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	T_d
Na ⁺	1,02	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	O_h
Tb^{+3}	0,923	0	0	0	O_h
Br^{-}	1,96	0,245	0	0	$C_{4,v}$

Los datos anteriores, indican los valores de los radios iónicos en Ángstrom.

Las ventajas de un cristal anfitrión del tipo elpasolita, pueden ser resumidas de acuerdo al listado que indicamos a continuación:

(a) Los iones lantánidos ocupan sitios de simetría simples.

- (b) A temperatura ambiente, el índice de coordinación es seis y la estructura asociada es octaédrica.
- (c) Todas las combinaciones para todos los iones lantánidos y combinaciones de iones haluro del tipo F, Cl y Br son iso-estructurales a temperatura ambiente.
- (d) En el evento de la ocurrencia de una transición de fase, se produce solo una pequeña perturbación del sitio de simetría octaédrico.

- (e) Transiciones del tipo TPA puras, son potencialmente posibles por medio de un mecanismo del tipo dipolo eléctrico.
- (f) Se observa una separación ión lantánido-ión lantánido en el cristal del orden de $a/\sqrt{2}$ a través del espacio (o de valor "a" a través de los enlaces), lo cual produce una reducción de las interacciones entre los iones lantánidos, cuando se compara con sistema del tipo *LaBr*₃

Existe un tema que es preciso abordar y que dice relación con las transiciones de fases que mencionamos en (d). En cristales del tipo Cs_2NaLnX_6 , a bajas temperaturas se han observado transiciones de fases desde la simetría cúbica a la tetragonal. Para estas elpasolitas con X = Cl, Br existe una masa abundante de bibliografía especializada en la literatura [21]. De igual forma, se ha comprobado que el cristal Cs_2NaHoF_6 no se distorsiona hasta el punto en el cual alcanza el valor de 20mK. Desde un punto de vista, esencialmente práctico es posible inferir de los datos experimentales que la mejor forma de evitar estos cambios de fases es maximizando el tamaño del contra-ión A^+ , minimizando el tamaño de B^+, Ln^{3+} y X^- . Es altamente probable que este comportamiento sirva para explicar razonablemente algunas tendencias observadas en la temperatura

de transición de fase, T_c , como se observa en la Figura 4, que se entrega a continuación:

Figura 4: Temperaturas de transición de fases para elpasolitas del tipo Cs_2NaLnX_6 , X = Cl, Br

Desde un punto de vista de la espectroscopía electrónica, podemos argumentar que, a contar de la década de los 70, se han realizado una cantidad sorprendente de estudios espectroscópicos para cristales del tipo Cs_2NaLnX_6 , lográndose una asignación e identificación razonable para una

variedad de términos espectroscópicos asociados a configuraciones del ión libre del tipo $4f^n$.

La gran mayoría de los experimentos se han focalizado al estudio de sistemas cristalinos clorados, por las dificultades experimentales que presenta la síntesis de elpasolitas fluoradas como también es el caso de cristales Bromados de las tierras raras, las cuales exhiben una alta higroscopicidad. Basta con observar la Figura 1, para darse cuenta de las dificultades experimentales asociadas al proceso de asignación e identificación de los diversos niveles de energías permitidos. En todo caso, la experiencia sugiere que los datos más confiables corresponden a elpasolitas cloradas. A continuación, procedemos a entregar una recolección de datos experimentales de gran utilidad como referencia para estudios posteriores **[20]**. Un listado, bastante interesante de trabajo experimental en esta área, se entrega en el **Anexo 5 [20]**. A continuación, se reportan conjuntos de datos experimentales de mayor resolución y mejor establecidos para elpasolitas cloradas del tipo $Cs_2NaLnCl_6$.

Cloruros	Niveles	Referencias	$^{(2S+1)}L_{J}$ (más confiables)
Ln	empleados		
Се	3	Amberger et	² <i>F</i> _{7/2}
		al,1976	
	2	Tanner et	$^{2}F_{5/2}$
		al,1994b	
Pr	3	Tanner y	³ <i>F</i> ₃
		Siu,1992	
	25 ¹	Tanner et al,	${}^{3}H_{4-6}, {}^{3}F_{2,4}, {}^{1}G_{4}, {}^{1}D_{2}, {}^{3}P_{0-2}, {}^{1}I_{6}, {}^{1}S_{0}$
		19940	
NO	2-	Foster et	$^{2}P_{1/2},^{4}D_{3/2}$
		ai, 1905a	
	40 ³	Tanner et	
		al,1991	${}^{4}I_{9/2-15/2}, {}^{4}F_{3/2-9/2}, {}^{2}H_{9/2}, {}^{4}S_{3/2}, {}^{4}G_{5/2-9/2}, {}^{2}G_{7}$
0	074		
Sm	21	Banerjee	${}^{6}H_{5/2,7/2}, {}^{6}F_{1/2-9/2}, {}^{4}G_{5/2-9/2}, {}^{4}F_{3/2,5/2}, {}^{4}I_{9/2}, {}^{6}P_{5/2}$
		Schwartz	
		1981	
	3 ⁵	Foster et al	⁶ H ⁶ F
		1985b	** 11/2, * 7/2
	3 ⁶	Tanner,	6 11
		1989	<i>n</i> _{9/2}

 Tabla 1: Recolección de datos experimentales.

Eu	27	Morley et al, 1982	⁵ D ₃
	25	Tanner y Liu,1994	${}^{7}F_{0-6}, {}^{5}D_{0-2}$
Gd	36	Kundu et al,1991	${}^{8}S_{7/2}, {}^{6}P_{3/2-7/2}, {}^{6}I_{7/2-17/2}, {}^{6}D_{9/2-1/2}$
Tb	131	Berry et al,1998b	$[{}^{7}F_{6-0}, {}^{5}D(3)_{4-2}, {}^{5}G(3)_{6-2}, {}^{5}L_{10-6}, {}^{5}H_{7-4}, {}^{5}F_{5-3}, {}^{5}C_{5-3}, {}^{5}C_{5-$
Dy	3	Foster y Richardson, 1985	⁶ <i>H</i> _{11/2}
	37 ⁸	Tanner et al,1988	${}^{6}H_{15/2,13/2,9/2,7/2}, {}^{6}F_{11/2-1/2}, {}^{4}F_{9/2}, {}^{4}I_{15/2}$
Но	4 ⁹	Morley et al,1981	³ K ₇
	57 ¹⁰	Tanner,1987	${}^{5}I_{8-4}, {}^{5}F_{5-1}, {}^{5}S_{2}, {}^{3}K_{8}, {}^{5}G_{6,5}$
Er	31	Tanner, 1986a	${}^{4}I_{15/2-9/2}, {}^{4}F_{9/2-3/2}, {}^{4}S_{3/2}, {}^{2}H_{11/2}$
	10	Tanner et al,1994b	${}^{2}G_{9/2}, {}^{4}G_{11/2,9/2}, {}^{2}K_{15/2}$
Tm	20	Tanner, 1985a	${}^{3}H_{6,4}, {}^{3}F_{4-2}, {}^{1}G_{4}$

Tm	6	Tanner et al,	³ H _{6,5}
		1993	
	4	Tanner et al,	1 I 3 D
		1994b	<i>I</i> ₆ , <i>I</i> _{1,2}
Yb	5	Tanner,	$^{2}F_{5/2.7/2}$
		1986b	

1: nueve asignaciones adicionales, se proponen en forma tentativa

- 2: Nd^{+3} fue dopado en Cs_2NaYCl_6
- 3: Nd^{+3} fue dopado en $Cs_2NaGdCl_6$, de modo de impedir la transición de fase a baja temperatura en la elpasolita pura. Uno de los niveles, no obstante, pertenece a $Cs_2NaNdCl_6$ y los restantes niveles 3 en total, son considerados como tentativos.
- 4: nueve de estos niveles fueron determinados, empleando transiciones vibrónicas
- 5: Sm^{+3} fue dopado en Cs_2NaYCl_6
- 6: idem a (5)
- 7: Eu^{+3} fue dopado en Cs_2NaYCl_6
- 8: doce de estos niveles fueron obtenidos del ión Dy^{+3} dopado en $Cs_2NaGdCl_6$
- 9: el artículo no incluye, el término espectroscópico ${}^{3}K_{7}(aT_{1g})$ localizado en 26.058 cm^{-1} , el cual fue reportado por J.P.Morley. PhD dissertation. Department of Chemistry. Charlottesville. University of Virginia, USA.
- Dos asignaciones adicionales han sido propuestas tentativamente. Adicionalmente, 4 niveles de energías fueron re-asignados por Jayasankar et al (1987 a)

VI.3.- Elpasolitas $Cs_2NaDyCl_6$ y $Cs_2NaHoCl_6$.

En el artículo "Síntesis y caracterización estructural de las elpasolitas estequiométricas de Dy^{+3} y Ho^{+3} [22], reportamos un conjunto actualizado de datos experimentales de alta precisión, para cristales del tipo elpasolitas puras, $Cs_2NaLnCl_6$, donde: Ln = Dy, Ho, ambos caracterizados por sitios de simetría octaédrica. Existe un conjunto importante de datos espectroscópicos para este tipo de sistemas; tanto puros como dopados, de la misma forma que diversos intentos tendientes a la identificación y asignación de los diversos picos observados del espectro. Es directo señalar que, la interpretación de los datos experimentales resulta ser central para nuestros muy particularmente cuando se consideran las objetivos, diversas complejidades características asociadas a los espectros de estos cristales, tanto en los procesos de aniquilación como de creación de fotones en óptica lineal. De igual forma, estos sistemas se caracterizan por exhibir un número importante de superposiciones de picos, lo cual dificulta el proceso de asignación y de identificación en los espectros. En los Anexos IV y V, se realiza una discusión crítica de las fortalezas y debilidades del modelo vibrónico de campo cristalino – polarización de ligandos y de los elementos de matriz reducidos calculados para diversas situaciones de interés

258

asociadas a excitaciones del tipo $f \rightarrow f$. También, podemos argumentar que la introducción de modelos en dinámica de cristales representa una tarea formidable que hemos emprendido con el objeto de incluir en forma explícita en el cálculo de intensidades espectrales el acoplamiento entre las vibraciones internas y externas del cristal. Al respecto, pensamos haber avanzado el estado del arte en esta materia, en forma satisfactoria **[23 - 25]**. La condición que exigimos a nuestros modelos es, por una parte que gocen de generalidad y por otra que sean lo suficientemente flexibles de modo de acomodar diversos factores, de origen electrónico como vibracional simultáneamente.

En efecto, estos modelos deben ser capaces de acomodar las interacciones de largo alcance (Capítulo II) como también las de corto alcance (Capítulo V). De igual forma, la inclusión de las interacciones de corto alcance (campos de fuerzas vibracionales) ha sido realizada con éxito en el Capítulo IV y en un trabajo de revisión reciente **[23 - 25]**. Es interesante que el lector, revise con extremo cuidado la ref. **[22]**, por cuanto en esta componente experimental del trabajo, reportamos datos estructurales, los cuales han sido obtenidos como parte de una actualización realizada en este trabajo de tesis. Los cristales de Dy^{+3} y Ho^{+3} han sido sintetizados, empleando una reacción de estado sólido y caracterizados por medio de difracción de rayos X. También fue posible, reproducir el experimento de

difracción de neutrones para estos sistemas y por razones de disponibilidad del reactor de la Comisión Chilena de Energía Nuclear y las facilidades otorgadas, pudimos realizar el experimento para el sistema $Cs_2NaHoCl_6$.

VI.4.- Intensidades Espectrales. Modelo de 7-átomos.

Dedicaremos esta sección para mostrar los resultados obtenidos, empleando un modelo simplificado de 7-átomos para las elpasolitas de $Dy^{+3}(4f^9)$ y $Ho^{+3}(4f^{10})$. Como lo señalamos en su oportunidad, el análisis riguroso de estos sistemas debe ser realizado, empleando un modelo generalizado de intensidades en dinámica de cristales. Para estos efectos, es preciso avanzar en la parte experimental suministrando una masa más abundante y completa de datos espectroscópicos de las vertientes de la óptica lineal y no lineal. Hemos realizado intentos serios de implementar un modelo de cálculo consistente y físicamente razonable para estos sistemas, para lo cual hemos realizados sendos estudios en (a) potenciales de interacción en cristales iónicos (ver, Capítulo II) y (b) Análisis de coordenadas normales en un modelo de 10-átomos, introduciendo un conjunto importante de interacciones y al mismo tiempo introduciendo un criterio para la obtención de representaciones razonables para matrices de energía potencial (ver, Capítulo V). La suma de estos esfuerzos, nos lleva a las "puertas" de realizar cálculos más realistas en dinámica de cristales, formulando un modelo generalizado de racionalización y estimación de intensidades espectrales. No obstante, debemos reconocer que falta trabajo en esta área, tanto desde un punto de vista experimental como teórico. Hemos seleccionado un modelo, relativamente "simple" de 7-átomos con el propósito de ilustrar las complejidades inherentes al proceso de identificación y asignación de los picos espectrales, como también las dificultades asociadas al modelo teórico en cuestión.

Por razones de completitud y simplicidad, procederemos a entregar nuestra visión del problema en secciones separadas para cada una de las elpasolitas en estudio. La conveniencia de esta elección, esperamos sea apreciada por el lector, facilitando su lectura. VI.4.1. Espectro electrónico y análisis de campo cristalino para el ión $DyCl_6^{-3}$ en cristales del tipo elpasolitas.

Estudios experimentales e intentos de obtención de las funciones propias y valores propios para este sistema diluido y dopado como también para el cristal puro han sido realizados por Richardson y col **[27]** y por Reid y col **[28]**. En este caso, los espectros de luminiscencia de la elpasolita dopada y diluida del tipo $Cs_2NaGdCl_6:DyCl_6^{-3}$ como también los espectros de absorción correspondientes al cristal $Cs_2NaDyCl_6$, ha sido medidos en el rango de temperaturas entre 5-300K. Las excitaciones estudiadas en emisión, en la notación de los términos espectroscópicos relativistas del ión libre, son las siguientes (grupo SO_3)

$${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}, {}^{6}H_{13/2}, {}^{6}H_{11/2}, {}^{6}H_{9/2}, {}^{6}F_{11/2}, {}^{6}H_{7/2}, {}^{6}F_{9/2} \text{ y } {}^{6}F_{7/2}$$

La próxima etapa consiste en un descenso de simetría del tipo $SO_3 \supset O_h$, por cuanto los iones Dy^{+3} se localizan en simetría de sitio octaédrica. En este trabajo **[27]**, exhaustivo desde un punto de vista experimental, los niveles energéticos asociados a los estados espectroscópicos permitidos, adaptados por simetría, correspondientes al término espectroscópico ${}^{4}F_{9/2}$ son: $\left\{ \left| \left(\frac{3}{2}3\frac{9}{2}\right)\Gamma_{6}\gamma \right\rangle \right\}$, $\left\{ \left| \left(\frac{3}{2}3\frac{9}{2}\right)a\Gamma_{8}\gamma \right\rangle \right\}$ y $\left| \left(\frac{3}{2}3\frac{9}{2}\right)b\Gamma_{8} \right\rangle$. Estos niveles de energías asociados al estado emisor, fueron reasignados y adicionalmente, el experimento sugiere que un análisis detallado del espectro de luminiscencia permite, en principio, una serie de cambios y modificaciones al ordenamiento energético, propuesto por otros autores para el ión Dy^{+3} en simetría octaédrica. De los 44 niveles de energías más negativas (menores), este estudio permitió la localización de 40 de estos, empleando datos tanto de absorción como de emisión. Resulta, en este nivel de la discusión dimensionar el problema que se desea resolver.

1.-) Para configuraciones electrónicas del tipo l^n , el número de estados permitidos, funciones determinantales de Slater es: $\frac{N_l!}{n! (N_l - n)!}$, donde: $N_l = 2(2l+1)$. En nuestro caso, para el ión $Dy^{+3}(4f^9)$, tenemos: n = 9 y $N_3 = 2(2x3+1) = 14$, con lo cual: $\frac{N_3!}{n! (N_3 - n)!} = 2002$.

2.-) Estos estados son clasificados en términos espectroscópicos permitidos,
de acuerdo al Principio de antisimetría. Para esta configuración, los términos espectroscópicos son:

(a) Dobletes: *P*[4], *D*[5], *F*[7], *G*[6], *H*[7], *I*[5], *K*[5], *L*[3], *M*[2], *N*, *O*

(b) Cuadrupletes: *S*, *P*[2], *D*[3], *F*[4], *G*[4], *H*[3], *I*[3], *K*[2], *L*, *M*

(c) Hexupletes: P, F, H

*los números en corchetes cuadrados indican el número de funciones con igual valor de los números cuánticos S y L, las cuales deben necesariamente ser ortogonales entre sí. Es siempre necesario recordar la notación de estos términos. La multiplicidad de espín electrónico es (2S + 1) y de acuerdo a los valores de L, clasificamos nuestros estados permitidos: L = 0(S),1(P),2(D),3(F),4(G),5(H),6(I),7(K),8(L),9(M),10(N),11(O),12(Q). De esta forma, para los dobletes disponemos de un total de 980 funciones, para los cuadrupletes el número es 896 y finalmente para los hexupletes el valor es 126, dando un total de 2002 funciones.

3.-) Posteriormente construimos las funciones del tipo: { $|\alpha(LS)JM\rangle$ }, las cuales son combinaciones lineales de las funciones determinantales de Slater. En conformidad con nuestro esquema, estas funciones son auto-funciones de los operadores de momentum angular total $\{\hat{J}^2, \hat{J}_z\}$ en el grupo de la esfera SO_3 .

4.-) A continuación, procedemos a construir funciones adaptadas por simetría (en este caso en el grupo puntual molecular octaédrico), las cuales simbolizaremos por los conjuntos $\{\alpha(LSJ)\Gamma\gamma l\}$.

264

5.-) La próxima etapa natural del cálculo consiste en construir las funciones, adaptadas por simetría, por medio de la transformación:

$$|\alpha(LSJ)\Gamma\gamma l\rangle = \sum_{J,M} \langle \alpha(LSJ)\Gamma\gamma l | v(LS)JM\rangle * | v(LS)JM\rangle$$

6.-) Con el propósito de encontrar las auto funciones y auto valores del Hamiltoniano electrónico, es conveniente explicitar los diversos términos, corrientemente empleados en el proceso de diagonalización de la matriz de energías. Escribimos un operador de la forma: $\hat{H} = \hat{H}_A + \hat{H}_{CF}$, donde \hat{H}_A se introduce de modo de incorporar las componentes isotrópicas del hamiltoniano electrónico \hat{H} (incluyendo la componente esféricamente simétrica de las interacciones de campo cristalino correspondiente a los electrones 4f) con lo cual, el segundo operador de la partición, es decir: \hat{H}_{CF} representa las componentes de simetrías distintas a la esféricamente simétrica de los términos pares de campo cristalino. En este esquema, el operador correspondiente al hamiltoniano electrónico puede ser escrito como **[28]**:

$$\hat{H} = E_{ave} + \sum_{k} F^{k} \hat{f}_{k} + \xi_{s0} \hat{A}_{s0} + \alpha \hat{L} (\hat{L} + 1) + \beta \hat{G} (G_{2}) + \gamma \hat{G} (R_{7}) + \sum_{i} T^{i} \hat{t}_{i} + \sum_{k} P^{k} \hat{p}_{k} + \sum_{j} M^{j} \hat{m}_{j} + \sum_{k,m} \sum_{i} B_{m}^{(k)} \hat{U}_{m}^{k} = H_{A} + H_{CF}$$

265

En la expresión anterior del hamiltoniano electrónico, los parámetros atómicos incluidos en H_A son: (a) 3 del tipo de Slater, $F_k(k = 2,4,6)$ (b) 3 correspondientes a la interacción de configuraciones ("tress corrections"), designados por α, β, γ , (c) 6 referidos a interacciones electrostáticas de 3 cuerpos del tipo $T^{i}(i = 2,3,4,6,7,8)$, (d) 1 correspondiente a la interacción espín electrónico y su propia órbita, designado por ξ_{s0} , (e) 3 adicionales correspondientes a la interacción espín electrónica y otras órbitas, $M^{j}(j=0,2,4)$ y (f) 3 de ellos, correlacionados designados por electrostáticamente del tipo espín electrónica y su órbita y designados por $P^{k}(k=2,4,6).$ Debemos agregar que el primer términos que hemos designado por E_{ave} , es empleado de modo de fijar en forma conveniente el ordenamiento y energías relativas de los niveles de energías permitidos para el sistema en estudio. Una simple contabilidad nos sugiere un total de 20 parámetros atómicos asociados al término \hat{H}_A a lo cual es preciso agregarle 2 adicionales referidos a la contribución no relativista al hamiltoniano y originada en el potencial de campo cristalino $\hat{H}_{CF}[B_0^{(4)}, B_0^{(6)}]$. Para los iones Dy^{+3} y Ho^{+3} en elpasolitas del tipo $Cs_2NaLnCl_6$, los valores ajustados, empleando el algoritmo, pioneramente desarrollado por Richardson. F. S y posteriormente, refinado y optimizado por Reid [28 y referencias citadas] son los que se informan a continuación:

Tabla 2: Parámetros obtenidos a partir de ajustes numéricos de datosexperimentales para cristales del tipo $Cs_2NaLnCl_6 \rightarrow Ln = Dy, Ho$.

Cristales	$Cs_2NaDyCl_6$	$Cs_2NaHoCl_6$	
E_{ave}	55832	47968	
F^{2}	92760	94584	
F^4	66346	67847	
F^{6}	46358	47274	
α	18.40	15.04	
β	-625	-599	
γ	1445	1884	
T^{2}	[311]	[287]	
T^{3}	[116]	[37]	
T^4	[12]	[98]	
T^{6}	[-474]	[-313]	
T^7	[413]	[421]	
T^8	[315]	[351]	
ζ_{s0}	1904	2130	
M^{0}	[3.34]	[3.00]	
M^{2}	$0,56M^{0}$	$0,56M^{0}$	
M^4	$0.38M^{0}$	$0,38M^{0}$	
P^2	[579]	[523]	
P_4	$0,75P^2$	$0,75P^2$	
P^6	$0,50P^2$	$0,50P^2$	
$B_0^{(4)}$	1614	1593	
$B_0^{(6)}$	148	171	
N	40	61)	

Observaciones:

(a) Todas las energías se expresan en *cm*⁻¹. N indica el número de niveles de energías, empleados en el ajuste.

(b) Los valores entre paréntesis cuadrados para la tabulación anterior, fueron mantenidos fijos, durante el proceso de minimización de la desviación cuadrática media, cuyos valores calculados son 14,6 y 13,2 cm^{-1} , respectivamente. Las únicas excepciones corresponden a las elpasolitas $Cs_2NaGdCl_6$ y $Cs_2NaDyCl_6$, cristales para los cuales los valores correspondientes a los parámetros atómicos, $\alpha, \beta, \gamma, T^i, M^j$, fueron seleccionados directamente de la ref [29].

(c) No obstante que, en principio de los parámetros para el ión libre y los correspondientes al campo cristalino, se les permitió "variar libremente", la base completa para las configuraciones electrónicas del tipo $4f^n$, fueron empleadas, hasta 3 electrones del tipo 4f (u hoyos), como se observa:

 $Ce^{+3}(4f^{1}), Pr^{+3}(4f^{2}), Nd(4f^{3}), Er^{+3}(4f^{14-3}), Tm^{+3}(4f^{14-2}), Yb^{+3}(4f^{14-3})$

Para los otros iones lantánidos, distintos a los mencionados anteriormente, se siguió la estrategia de disminuir el tamaño de las matrices de energías a ser diagonalizadas. La estrategia seguida fue la siguiente: (*) Se procede a la diagonzalización de la matriz correspondiente al ión libre, con lo cual obtenemos los auto-vectores y auto-funciones correspondientes. Estas matrices como es de esperar se bloquean de acuerdo a los valores de J, siendo éste último el número cuántico correspondiente al momentum angular total. El lector debe observar que se satisfacen las ecuaciones de valores propios:

$$\hat{J}^{2}|\alpha(LS)JM\rangle = [J]\hbar^{2}|\alpha(LS)JM\rangle$$
 y $\hat{J}_{z}|\alpha(LS)JM\rangle = M\hbar|\alpha(LS)JM\rangle$

(**) A continuación se procede a la construcción de auto funciones, adaptadas por simetría, compatibles con la regla de la cadena de grupo-subgrupo $SO_3 \supset O_h$, obteniéndose el conjunto de funciones: $\{|\alpha(LSJ)\Gamma\gamma l\rangle\}$, satisfaciéndose: $|\alpha(LSJ)\Gamma\gamma l\rangle = \sum_{J,M} \langle \alpha(LSJ)\Gamma\gamma l | v(LS)JM \rangle * | v(LS)JM \rangle$.

(***) Un sub conjunto relativamente pequeño, ciertamente "truncado" a algunos miles de números de ondas, sobre el nivel de energía observado excitado de más alta energía, fueron utilizados para llevar a cabo el proceso de ajuste y optimización.

(d) Se procedió a la minimización de la desviación estándar, σ , definida por

medio de la identidad: $\sigma = \left(\frac{\sum_{i} \left(E_{i}^{exp} - E_{i}^{cal}\right)}{N}\right)^{1/2}$, donde N corresponde al

número de niveles de energías empleados en el proceso de diagonalización de la matriz de energías.

7.-) Con relación a las emisiones informadas por Richardson y col [27], las emisiones informadas, suponen el estado correspondiente al multiplete del ión central ${}^{4}F_{9/2}$ como emisor, siendo los receptores los estados ${}^{6}H_{J} \rightarrow J = 15/2, 13/2, 11/2, 9/2$. El proceso de diagonalización de estas funciones base, frente al Hamiltoniano: $\hat{H} = \hat{H}_{A} + \hat{H}_{CF}$, nos conduce a funciones propias, apropiadas para intentar cálculos de intensidades espectrales. A esta altura de la discusión es importante explicitar los estados involucrados en la emisión, a nuestro juicio más característica, $|\alpha_{1}({}^{4}F_{9/2})\Gamma_{l}\rangle \rightarrow |\alpha_{2}({}^{6}H_{15/2})\Gamma_{k}\rangle$. Es necesario por razones de completitud, explicitar la información disponible a nivel de energías calculadas y observadas (espectros de absorción y/o emisión) para este cristal [27]. La información a ser reportada corresponde a los estados terminales de las transiciones electrónicas que nos interesa estudiar en esta sección:

Estado	E(cal)	E(emission)	E(absorption)
$\left \left({}^{4}F_{9/2} \right) \Gamma_{6} \right\rangle$	20.973	29.955	20.949
$\left \left({}^{4}F_{9/2} \right) a \Gamma_{8} \right\rangle$	20.981	20.964	20.957
$\left \left({}^{4}F_{9/2}\right)b\Gamma_{8}\right\rangle$	21.204	21.248	21.246
$\left \left({}^{6}H_{15/2} \right) c \Gamma_{8} \right\rangle$	402	409	-
$\left \left({}^{6}H_{15/2} \right) b \Gamma_{8} \right\rangle$	327	339	_
$\left \left({}^{6}H_{15/2} \right) \Gamma_{7} \right\rangle$	189	181	_
$\left \left({}^{6}H_{15/2} \right) a \Gamma_{8} \right\rangle$	40	30	30
$\left \left({}^{6}H_{15/2} \right) \Gamma_{6} \right\rangle$	10	0	0)

En el artículo, reportado por Richardson y col [27], se menciona que la diagonalización de la matriz de energías para este sistema fue diagonalizada, en conformidad con la estrategia propuesta por Richardson y colaboradores en un trabajo previo [29]. En el cálculo que se reporta en esta sección [27], se consideran los 40 niveles de energías , discutidos previamente en el texto y adicionalmente 3 niveles adicionales correspondientes al término espectroscópico del ión libre ${}^{4}G_{11/2}$ [30]. Una tabulación más completa que la que reportamos en esta sección puede ser encontrada en las referencias [27, 29 - 30]. Es interesante, mencionar que los parámetros $M^{k}(k = 0,2,4)$ y $P^{k}(k = 2,4,6)$ variaron libremente en el proceso de refinamiento, obteniéndose una desviación estándar del orden de $14,6 cm^{-1}$ (valor menor que el reportado en cálculos previos por Richardson y colaboradores), no

obstante, existen discrepancias con los resultados reportados por Richardson et al **[29]**. El valor obtenido para el cuociente $\begin{pmatrix} B_0^{(4)} \\ B_0^{(6)} \end{pmatrix} = \frac{1614}{148} \approx 10.91$, parece ser un valor razonable a considerar. El propósito declarado por estos autores **[27]**, no es el de refinar con mayor precisión los parámetros energéticos, sino que más bien, el obtener un conjunto más representativo de funciones de ondas que el reportado en ref **[31]**, de modo de estimar intensidades de transición del tipo dipolo magnético. La comparación de los valores calculados con los observados, permite argumentar que los parámetros atómicos reportados para este sistema son razonables, en este esquema de trabajo.

VI.4.2. Intensidades vibrónicas. $Cs_2NaDyCl_6$. Modelo de 7-átomos.

A esta altura la discusión, es interesante observar en detalle algunos aspectos relacionados con las excitaciones $|\alpha_1({}^4F)\Gamma_1\rangle \rightarrow |\alpha_2({}^6H_{15/2})\Gamma_2\rangle$ en este sistema. A modo de ilustración y completitud, podemos indicar la forma de las funciones de ondas para el ión Dy^{+3} en el grupo SO_3 . Tenemos funciones del tipo: (a) Emisor:

$$\left|\binom{4}{F_{9/2}}\right| = 0.444 \left|\binom{4}{F^{(1)}}\right| = 0.818 \left|\binom{4}{F^{(3)}}\right| = 0.363 \left|\binom{4}{F^{(4)}}\right| = \dots$$

(b) Receptores:

$$\begin{split} \left| \binom{^{6}H_{15/2}}{} \right\rangle &= 0,975 \left| \binom{^{6}H}{} \right\rangle - 0,079 \left| \binom{^{4}I^{(1)}}{} \right\rangle - 0,207 \left| \binom{^{4}I^{(3)}}{} \right\rangle + \dots \\ \left| \binom{^{6}H_{13/2}}{} \right\rangle &= 0,970 \left| \binom{^{6}H}{} \right\rangle - 0,113 \left| \binom{^{4}I^{(1)}}{} \right\rangle - 0,216 \left| \binom{^{4}I^{(13)}}{} \right\rangle + \dots \\ \left| \binom{^{6}H_{11/2}}{} \right\rangle &= 0,997 \left| \binom{^{6}H}{} \right\rangle - 0,083 \left| \binom{^{4}I^{(3)}}{} \right\rangle + \dots \\ \left| \binom{^{6}H_{9/2}}{} \right\rangle &= 0,997 \left| \binom{^{6}H}{} \right\rangle - 0,066 \left| \binom{^{4}I^{(3)}}{} \right\rangle + \dots \end{split}$$

Con este sub conjunto de funciones de partida, procedemos a diagonalizar con respecto del operador de campo cristalino, cuya forma general es: $\hat{H}_{CF} = B_0^{(4)} \Big[U_0^4 + \sqrt{5/14} \Big\{ U_{+4}^4 + U_{-4}^4 \Big\} \Big] + B_0^{(6)} \Big[U_0^6 - \sqrt{7/2} \Big\{ U_{+4}^6 + U_{-4}^6 \Big\} \Big]$

A continuación, procedemos a construir funciones adaptadas por simetría (en este caso en el grupo puntual molecular octaédrico), las cuales simbolizaremos por los conjuntos $\{\alpha(LSJ)\Gamma\gamma l\rangle\}$ y posteriormente, procedemos a construir funciones, adaptadas por simetría, por medio de la transformación general:

$$\alpha(LSJ)\Gamma\gamma l\rangle = \sum_{J,M} \langle \alpha(LSJ)\Gamma\gamma l | v(LS)JM \rangle * | v(LS)JM \rangle$$

273
Los cálculos intermedios conducentes a la estimación teórica de las fuerzas del oscilador (mecanismo vibrónico) y de las distribuciones relativas de intensidades espectrales es un problema desde un punto de vista teórico formidable. Por razones de simplicidad en la exposición, para el "cluster" $DyCl_6^{-3}(O_h)$, supondremos un acoplamiento débil o despreciable entre las vibraciones internas y las externas. El lector es invitado a dar una mirada cuidadosa al Capítulo V y al Anexo II, de modo de tener una mejor calibración del problema que se desea resolver. Hemos avanzado en forma significativa, estando ad portas de efectuar cálculos de intensidades espectrales, empleando un modelo vibrónico generalizado en dinámica de cristales, con la inclusión explícita de una serie de acoplamientos, que a la fecha y basados en la información empírica existente, hemos despreciado. Los detalles finos del cálculo, pueden ser solicitados directamente al autor y por lo tanto, estimamos que no es preciso repetirlos en esta sección. Una serie de detalles del modelo de cálculo, como también de las ecuaciones maestras desarrolladas, pueden ser encontrados en la ref [24].

Para las emisiones $|\alpha_1({}^4F)\Gamma_1\rangle \rightarrow |\alpha_2({}^6H_{15/2})\Gamma_2\rangle$, las energías calculadas, las observadas en emisión y en absorción, nos permiten adelantar algunas cuestiones fundamentales. Resumiremos esta información en el listado que entregamos a continuación. En el punto (7) de esta sección, disponemos de las energía asociadas y solo debemos incluir en esta 274

aproximación las energías en unidades de $\binom{1}{hc}$, es decir, en número de ondas para las frecuencias vibracionales del estado fundamental asignables al "cluster", $DyCl_6^{-3}$, correspondiente en el modelo de 7-átomos a las tensiones de los enlaces $\tau_{1u}(Dy-Cl)$, las deformaciones de los ángulos de enlaces: $\tau_{1u}(Cl-Dy-Cl)$ y $\tau_{2u}(Cl-Dy-Cl)$. Estos modos normales de vibración resultan ser combinaciones lineales de las coordenadas de simetría (las cuales a su vez, son combinaciones lineales de las coordenadas internas) y se denotan, por convención en espectroscopia como $\tau_{14}(v_3, tensión)$, $\tau_{1u}(v_4, deformación)$ y $\tau_{2u}(v_6, deformación)$. Resulta evidente, del análisis del Capítulo V y del **Anexo II**, que especies de igual simetría se mezclan entre sí.

Así, la transformación S = LQ, que conecta las coordenadas de simetría con las coordenadas normales, resulta jugar un rol crucial sí se desea una descripción razonable para los modos normales de vibración. En este nivel de aproximación, hemos realizado los cálculos y concluido, en principio, las siguientes líneas para cada una de las excitaciones electrónicas en emisión y las energías corregidas de acuerdo a la participación jugada por cada uno de los modos normales de vibración. En efecto, nos interesa estudiar transiciones electrónicas del tipo:

$$\left|\alpha_{1}\left({}^{4}F\right)\Gamma_{1}\right\rangle \rightarrow \left|\alpha_{2}\left({}^{6}H_{15/2}\right)\Gamma_{2}\right\rangle + \nu_{k} \rightarrow k = 3,4,6$$

y debemos esperar líneas, de acuerdo la tabulación que presentamos a continuación (las frecuencias vibraciones del estado fundamental son: $v_3 = 256, v_4 = 106, v_6 = 83$, valores en cm^{-1} (las desviaciones medias esperadas son del orden de $\pm 2 cm^{-1}$)

VI.4.2.1. Energías para Transiciones Electrónicas.

$$\left|\alpha_{1}\left({}^{4}F\right)\Gamma_{1}\right\rangle \rightarrow \left|\alpha_{2}\left({}^{6}H_{15/2}\right)\Gamma_{2}\right\rangle + \nu_{k} \rightarrow k = 3,4,6$$

(Transición	V_3	${m u}_4$	ν_6
$\Gamma_6 \rightarrow \Gamma_6$	20699(-)	20847(-)	20872(-)
$\Gamma_6 \rightarrow \Gamma_7$	29518(26)	20636(-)	20661(18)
$\Gamma_6 \rightarrow a\Gamma_8$	20669(17)	20817(8)	20842(-)
$\Gamma_6 \rightarrow b\Gamma_8$	20360(35)	20508(28)	20553(23)
$\Gamma_6 \rightarrow c\Gamma_8$	20290(40)	20438(-)	20463(-)
$a\Gamma_8 \rightarrow \Gamma_6$	20708(14)	20856(6)	20881(5)
$a\Gamma_8 \rightarrow \Gamma_7$	20527(-)	20675(-)	20700(-)
$a\Gamma_8 \rightarrow a\Gamma_8$	20678(16)	20826(7)	20851(-)
$a\Gamma_8 \rightarrow b\Gamma_8$	20369(34)	20517(26)	20524(24)
$a\Gamma_8 \rightarrow c\Gamma_8$	20299(39)	20447(31)	20472(30)

Es interesante observar de la Tabla (8.A), que los números entre paréntesis, corresponden a las asignaciones propuestas por Richardson y col **[27]**. Para estos efectos, el lector es referido a la Tabla 4 de esta referencia, la cual reporta un conjunto incompleto de asignaciones para las transiciones $|\alpha_1({}^4F)\Gamma_1\rangle \rightarrow |\alpha_2({}^6H_{15/2})\Gamma_2\rangle + v_k \rightarrow k = 3,4,6$, correspondientes al espectro de luminiscencia del sistema $Cs_2NaDyCl_6$, a la temperatura de 20K.

Por razones de completitud, el espectro de luminiscencia a 20K, correspondiente al cristal $Cs_2NaGdCl_6:DyCl_6^{-3}$, en el rango de energías comprendido entre $20.230 - 21.500 cm^{-1}$, se entrega continuación:

Figura 5: Espectro de luminiscencia a 20K, $Cs_2NaGdCl_6 : DyCl_6^{-3}$.

Las líneas de esta asignación propuesta son numeradas del 1 al 41 y es importante señalar que los orígenes electrónicos para las transiciones del tipo $\Gamma_6 \rightarrow a\Gamma_7, b\Gamma_7, \Gamma_6$ se localizan, en este estudio experimental en 17376, 17295 y 17213 cm^{-1} , respectivamente. Los valores tentativos, empleados para la matriz *L* son los siguientes:

$$L = \begin{pmatrix} 0,2000 & 0,010 & 0\\ -0,1300 & -0,2900 & 0\\ 0 & 0 & 0,2375 \end{pmatrix}$$

VI.4.2.2. Intensidades espectrales.

Transiciones.
$$|\alpha_1({}^4F)\Gamma_1\rangle \rightarrow |\alpha_2({}^6H_{15/2})\Gamma_2\rangle + \nu_k \rightarrow k = 3,4,6$$

Importante: En nuestras tabulaciones, que se indican a continuación los valores de $f(v_3), f(v_4), f(v_6), f(v_i)$, han sido expresados en unidades de

$$2\left(\frac{C_4}{e}\right)^2 = 2(0,002416) = 4,832.10^{-3}$$
, donde: $C_k = \frac{2e^2 \langle r^k \rangle_{ff}}{(\Delta E)R_0^{k+1}}$. Los valores entre

paréntesis cuadrados, corresponden a datos experimentales.

VI.4.2.2.1. $\Gamma_6 \rightarrow \Gamma_6 + \nu_k$.

$$\begin{pmatrix} Transición & f(v_3) & f(v_4) & f(v_6) \\ \alpha' \rightarrow \alpha' & 1,95.10^{-9} & 2,76.10^{-7} & 0 \\ \alpha' \rightarrow \beta' & 6,19.10^{-8} & 1,08.10^{-6} & 1,52.10^{-7} \\ f(v_i) & 6,38.10^{-8} & 1,36.10^{-6} & 1,52.10^{-7} \end{pmatrix}$$

$$f[\Gamma_6 \to \Gamma_6] = 7,61.10^{-9} \text{ y } f(\nu_3): f(\nu_4): f(\nu_6) = 1,00:21,00:2,40$$

*La fuerza del oscilador total es 7,61.10⁻⁹ y de igual forma, observamos que las intensidades asociadas a cada una de las excitaciones son pequeñas, de modo que, en principio esto podría explicar la no existencia de evidencia experimental.

VI.4.2.2.2. $\Gamma_6 \rightarrow \Gamma_7 + \nu_k$

$$\begin{pmatrix} Transición & f(v_3) & f(v_4) & f(v_6) \\ \alpha' \to \beta'' & 1,06.10^{-7} & 1,38.10^{-7} & 6,23.10^{-8} \end{pmatrix}$$

$$f[\Gamma_6 \to \Gamma_7] = 1,48.10^{-8} \text{ y } f(v_3): f(v_4): f(v_6) = 1,00:1,13:0,60\{1,00:-:0,20\}$$

* En este caso, una explicación plausible consiste en argumentar que la excitación $\Gamma_6 \rightarrow \Gamma_7 + \nu_4$, no se observa y muy probablemente esto se debe a que debe encontrarse enmascarada por una excitación del tipo dipolo magnético de alta intensidad, correspondiente a: $|a\Gamma_8\rangle \rightarrow |b\Gamma_8\rangle$.

VI.4.2.2.3. $\Gamma_6 \rightarrow a\Gamma_8 + v_k$.

$$\begin{pmatrix} Transición & f(v_3) & f(v_4) & f(v_6) \\ \alpha' \rightarrow k & 3,45.10^{-6} & 6,01.10^{-10} & 2,35.10^{-7} \\ \alpha' \rightarrow \lambda & 2,12.10^{-8} & 2,06.10^{-10} & 5,00.10^{-10} \\ \alpha' \rightarrow \mu & 1,72.10^{-8} & 1,95.10^{-9} & 3,95.10^{-8} \\ \alpha' \rightarrow \nu & 4,20.10^{-10} & 2,27.10^{-10} & 3,07.10^{-9} \\ f(v_i) & 3,49.10^{-6} & 2,98.10^{-9} & 2,78.10^{-7} \end{pmatrix}$$

$$f[\Gamma_6 \to a\Gamma_8] = 1,82.10^{-8} \text{ y } f(v_3): f(v_4): f(v_6) = 1,00:0,00:0,08$$

*Para esta transición electrónica, experimentalmente solo se observa la excitación: $\Gamma_6 \rightarrow a\Gamma_8 + v_3$.

VI.4.2.2.4. $\Gamma_6 \rightarrow b\Gamma_8 + v_k$

(Transición	$f(v_3)$	$f(v_4)$	$f(v_6)$
$\alpha' \rightarrow k$	2,01.10 ⁻⁶	9,77.10 ⁻⁹	7,52.10 ⁻⁸
$\alpha' \rightarrow \lambda$	9,40.10 ⁻⁷	9,19.10 ⁻⁸	2,24.10 ⁻⁷
$\alpha' \rightarrow \mu$	$1,07.10^{-8}$	5,15.10 ⁻⁷	7,04.10 ⁻⁷
$\alpha' \rightarrow v$	$1,88.10^{-7}$	$1,04.10^{-7}$	1,38.10 ⁻⁶
$\int f(v_i)$	3,15.10 ⁻⁶	7,21.10 ⁻⁷	2,38.10 ⁻⁶

$$f[\Gamma_6 \rightarrow a\Gamma_8] = 3,02.10^{-8} \text{ y } f(\nu_3): f(\nu_4): f(\nu_6) = 1,00:0,20:0,80[1,00:0,50:20,00]$$

* Es importante, observar que la transición vibrónica $\Gamma_6 \rightarrow a\Gamma_8 + v_6$, coincide con una intensidad del tipo dipolo magnético asociada a la transición $a\Gamma_8 \rightarrow c\Gamma_8$, la cual es muy intensa, por cuanto la excitación $\Gamma_6 \rightarrow a\Gamma_8 + v_6$, es posible encontrarla enmascarada en esa región de energía.

VI.4.2.2.5. $\Gamma_6 \rightarrow c\Gamma_8 + v_k$

$$\begin{array}{ccccc} (Transición & f(v_3) & f(v_4) & f(v_6) \\ \alpha' \rightarrow k & 2,43.10^{-6} & 1,50.10^{-6} & 1,14.10^{-6} \\ \alpha' \rightarrow \lambda & 1,56.10^{-9} & 1,48.10^{-10} & 3,67.10^{-10} \\ \alpha' \rightarrow \mu & 5,04.10^{-7} & 5,10.10^{-6} & 2,47.10^{-6} \\ \alpha' \rightarrow \nu & 3,12.10^{-10} & 1,72.10^{-10} & 2,29.10^{-9} \\ f(v_i) & 2,94.10^{-6} & 6,60.10^{-6} & 3,61.10^{-6} \end{array}$$

$$f[\Gamma_6 \to c\Gamma_8] = 6,35.10^{-8} \text{ y } f(v_3): f(v_4): f(v_6) = 1,00:2,20:1,20$$

* En este caso, solo es identificable $\Gamma_6 \rightarrow c\Gamma_8 + \nu_3$, con una intensidad media.

VI.4.2.2.6. $a\Gamma_8 \rightarrow \Gamma_6 + v_k$.

Transición	$f(v_3)$	$f(v_4)$	$f(v_6)$
$k \rightarrow \alpha'$	$1,44.10^{-6}$	$2,22.10^{-7}$	$2,54.10^{-7}$
$\lambda \rightarrow \alpha$	9,42.10 ⁻⁸	$5,22.10^{-8}$	1,29.10 ⁻⁷
$\mu \rightarrow \alpha'$	6,74.10 ⁻⁸	$7,75.10^{-7}$	$1,06.10^{-6}$
$v \rightarrow \alpha'$	9,42.10 ⁻⁸	$5,22.10^{-8}$	6,89 .10 ⁻⁷
$f(v_i)$	3,39.10 ⁻⁶	$2,20.10^{-6}$	4,32.10 ⁻⁶

$$f[a\Gamma_8 \to \Gamma_6] = 2,39.10^{-8} \text{ y } f(v_3): f(v_4): f(v_6) = 1,00:0,60:1,30[1,00:1,00:0,20]$$

* En este caso, la transición electrónica $a\Gamma_8 \rightarrow \Gamma_6 + \nu_3$, aparece como una especie de "shoulder", incrustada en una excitación de alta intensidad.

VI.4.2.2.7. $a\Gamma_8 \rightarrow \Gamma_7 + \nu_k$

$$\begin{pmatrix} Transición & f(v_3) & f(v_4) & f(v_6) \\ k \to \alpha'' & 1,15.10^{-6} & 2,30.10^{-8} & 2,02.10^{-7} \\ \lambda \to \alpha'' & 1,80.10^{-7} & 1,00.10^{-7} & 1,33.10^{-6} \\ \mu \to \alpha'' & 8,89.10^{-7} & 6,10.10^{-7} & 2,14.10^{-6} \\ v \to \alpha'' & 1,02.10^{-8} & 1,12.10^{-7} & 2,15.10^{-7} \\ f(v_i) & 2,23.10^{-6} & 6,33.10^{-6} & 3,89..10^{-6} \end{pmatrix}$$

 $f[a\Gamma_8 \rightarrow \Gamma_7] = 6,02.10^{-8} \text{ y } f(v_3): f(v_4): f(v_6) = 1,00:2,80:1,70$

* No se informan valores experimentales para esta transición electrónica global.

VI.4.2.2.8. $a\Gamma_8 \rightarrow a\Gamma_8 + v_k$

(Transición	$f(v_3)$	$f(v_4)$	$f(v_6)$
$k \rightarrow k$	$2,05.10^{-6}$	$1,01.10^{-4}$	1,51.10 ⁻⁷
$k \rightarrow \lambda$	$1,40.10^{-10}$	3,40.10 ⁻⁸	1,98.10 ⁻⁷
$k \rightarrow \mu$	$1,27.10^{-7}$	7,03.10 ⁻⁸	9,34.10 ⁻⁷
$k \rightarrow v$	$1,02.10^{-7}$	3,39.10 ⁻⁷	3,68.10 ⁻⁸
$\lambda \to k$	$1,67.10^{-7}$	1,23.10 ⁻⁸	$2,24.10^{-9}$
$\lambda \to \lambda$	$2,64.10^{-8}$	9,09.10 ⁻⁵	1,51.10 ⁻⁷
$\lambda \to \mu$	6,33.10 ⁻¹⁰	0	1,32.10 ⁻⁸
$\lambda \rightarrow v$	$1,27.10^{-7}$	7,03.10 ⁻⁷	9,34.10 ⁻⁷
$\int f(v_i)$	$2,60.10^{-6}$	1,92.10 ⁻⁴	1,40.10-6

$$f[a\Gamma_8 \rightarrow a\Gamma_8] = 9,47.10^{-7} \text{ y } f(v_3): f(v_4): f(v_6) = 1,00:74,00:0,50[1,00:0,50:-]$$

* En esta transición global aparece muy sobre estimada la intensidad relativa de los orígenes vibrónicos v_4 y v_6 , respectivamente. Esta es una debilidad obvia del método empleado y los supuestos adoptados.

VI.4.2.2.9. $a\Gamma_8 \rightarrow b\Gamma_8 + v_k$

(Transición	$f(v_3)$	$f(v_4)$	$f(v_6)$
$k \rightarrow k$	2,04.10 ⁻⁶	$4,\!10.10^{-7}$	$1,00.10^{-8}$
$k \rightarrow \lambda$	6,00.10 ⁻⁹	$1,84.10^{-7}$	$1,55.10^{-7}$
$k \rightarrow \mu$	3,08.10 ⁻⁹	3,20.10 ⁻⁹	6,15.10 ⁻⁸
$k \rightarrow v$	4,65.10 ⁻⁶	1,11.10 ⁻⁸	$2,20.10^{-7}$
$\lambda \rightarrow k$	$2,67.10^{-7}$	3,03.10 ⁻¹⁰	$1,76.10^{-8}$
$\lambda \rightarrow \lambda$	2,73.10 ⁻⁶	4,21.10 ⁻⁷	9,99 .10 ⁻⁹
$\lambda \rightarrow \mu$	7,15.10 ⁻⁷	3,61.10 ⁻⁶	3,58.10 ⁻⁶
$\lambda \rightarrow v$	8,34.10 ⁻⁹	4,63.10 ⁻⁹	6,15.10 ⁻⁸
$f(v_i)$	$1,04.10^{-5}$	4,65.10 ⁻⁶	4,12.10-6

$$f[a\Gamma_8 \rightarrow b\Gamma_8] = 9,27.10^{-8} \text{ y } f(v_3): f(v_4): f(v_6) = 1,00:0,50:0,40[1,00:0,70:0,30]$$

*Para esta transición se encuentra un resultado bastante satisfactorio.

VI.4.2.2.10. $a\Gamma_8 \rightarrow c\Gamma_8 + v_k$

(Transición	$f(v_3)$	$f(v_4)$	$f(v_6)$
	$k \rightarrow k$	7,08.10 ⁻⁷	6,40.10 ⁻⁸	1,59.10 ⁻¹⁰
	$k \rightarrow \lambda$	7,10.10 ⁻⁷	1,41.10 ⁻⁵	1,11.10 ⁻⁵
	$k \rightarrow \mu$	$1,29.10^{-10}$	6,97.10 ⁻¹¹	3,66.10 ⁻¹¹
fly	$k \rightarrow v$	$2,30.10^{-6}$	1,43.10 ⁻⁷	2,90.10 ⁻⁷
$J(V_i)$	$\lambda \to k$	1,91.10 ⁻⁵	$2,56.10^{-6}$	2,71.10 ⁻⁷
	$\lambda \rightarrow \lambda$	6,10.10 ⁻⁷	7,22.10 ⁻⁸	1,59.10 ⁻¹⁰
	$\lambda \rightarrow \mu$	2,34.10-6	3,96.10 ⁻⁵	3,54.10 ⁻⁵
	$\lambda \rightarrow v$	$1,29.10^{-10}$	6,97.10 ⁻¹¹	3,66.10 ⁻¹¹
	$f(v_i)$	$2,60.10^{-5}$	5,60.10 ⁻⁵	4,70.10 ⁻⁵

$$f[a\Gamma_8 \rightarrow c\Gamma_8] = 6,24.10^{-7} \text{ y } f(v_3): f(v_4): f(v_6) = 1,00:2,20:1,80[1,00:1,20:1,20]$$

* Resultado bastante razonable, cuando se compara con los datos experimentales.

VI.4.3. Intensidades vibrónicas. Cs₂NaHoCl₆. Modelo de 7-átomos.

Este sistema, corresponde a una configuración electrónica del tipo $4f^{10}$ para los iones Ho^{+3} , asociados a sitios de simetría octaédrica. Para esta configuración del ión libre, los estados espectroscópicos permitidos singuletes, triples y quintupletes, y el total de estados permitidos es 1001. Se trata en consecuencia, de un problema de complejidad importante. Por razones ilustrativas y de completitud, entregamos a continuación los estados espectroscópicos permitidos. El lector es referido a la notación de los estados de acuerdo al valor de *L*, número cuántico de momentum angular orbital L = 0(S), 1(P), 2(D), 3(F), 4(G), 5(H), 6(I), 7(K), 8(L), 9(M), 10(N), 11(O), 12(Q)

a) $^{1}S[2], ^{1}D[4], ^{1}F, ^{1}G[4], ^{1}H[2], ^{1}I[3], ^{1}K, ^{1}L[2], ^{1}N$ (Singuletes)

b) ${}^{3}P[3], {}^{3}D[2], {}^{3}F[4], {}^{3}G[3], {}^{3}H[4], {}^{3}I[2], {}^{3}K[2], {}^{3}L, {}^{3}M$ (Tripletes)

c) ${}^{5}S, {}^{5}D, {}^{5}F, {}^{5}G, {}^{5}I$ (Quintupletes)

Un revisión cuidadosa de los términos espectroscópicos listados (a) -(c), nos indica que el número de estados permitidos (micro estados) es 1001, es decir se cumple: $\sum_{i} g_i (2S_i + 1)(2L_i + 1) = 1001$, donde g_i corresponde en un subconjunto dado, al número de términos permitidos con valores iguales de los números cuánticos de espín electrónico y de momentum angular orbital totales.

La información experimental, referida a este sistema es posible recopilarla de una serie de artículos, entre los cuales uno de los pioneros fue reportada por Richardson y col **[32]**, en el cual realizaron un estudio bastante exhaustivo para este sistema, incluyendo espectros de absorción y de emisión y también llevaron a cabo un cálculo con un esquema parametrizado de los niveles de energías para Ho^{+3} en sitios de simetría octaédricos. En un artículo posterior, Tanner **[26]**, repitió el experimento para el espectro de absorción de esta elpasolita pura a temperaturas inferiores a 10K y sugirió ciertas modificaciones a algunas asignaciones propuestas previamente por Richardson y col **[32]**. Tanner, argumenta que su investigación de este este sistema incluye un estudio acucioso de la dependencia en la temperatura de 286

los picos espectrales observados, lo cual le permitiría, en principio disponer de mayores y mejores herramientas para reasignar algunos picos espectrales del espectro de absorción asociada en la región del ultra violeta cercano y en consecuencia, llevar a cabo un nuevo cálculo de niveles de energías permitidos para este sistema. A esta altura de la discusión, resulta conveniente entregar algunos elementos con respecto de estos cálculos de niveles de energías de modo de orientar la lectura en forma más organizada para el lector. En la sección (VI.4.1), expusimos con claridad la metodología empleada de modo de obtener un ordenamiento de los niveles energéticos permitidos para las elpasolitas Cloradas de $Dy^{+3}(4f^9)$ y de $Ho^{+3}(4f^{10})$ en el grupo espacial $Fm3m(O_h^5)$. En virtud de los antecedentes, reportadas en (VI.4.1) resulta innecesario repetir conceptos y valores numéricos, por cuanto no aportan nada nuevo a esta lectura. Algunas funciones propias para el ión $Ho^{+3}(4f^{10})$, en conformidad con la notación: $\{\alpha(LS)\}J\}$ se entregan a continuación, no obstante que es un subconjunto truncado de éstas, por razones de espacio.

VI.4.3.1. Sub-conjunto mínimo de funciones propias para el ión $Ho^{+3}(4f^{10})$

$$|{}^{5}I_{8}\rangle = 0,980|{}^{5}I\rangle - 0,185|{}^{3}K^{(2)}\rangle + +$$
 E=-69.337 cm⁻¹

$$|{}^{5}I_{7}\rangle = 0.9898 |{}^{5}I\rangle - 0.131 |{}^{3}K^{(2)}\rangle + ..$$
 E=-64540

$$| {}^{5}I_{4} \rangle = 0.956 | {}^{5}I \rangle - 0.175 | {}^{5}G \rangle - 0.126 | {}^{3}H^{(1)} \rangle - 0.163 | {}^{3}H^{(3)} \rangle +$$

+ 0.101 | ${}^{3}H_{4} \rangle + ..$ E=-55.426

$$|{}^{5}F_{5}\rangle = 0.938 |{}^{5}F\rangle + 0.199 |{}^{3}G^{(1)}\rangle + 0.247 |{}^{3}G^{(2)}\rangle + ..$$
 E=-53616

$$| {}^{5}F_{4} \rangle = 0,871 | {}^{5}F \rangle + 0,109 | {}^{5}I \rangle + 0,287 | {}^{5}G \rangle + 0,248 | {}^{3}F^{(3)} \rangle + 0,178 | {}^{3}F^{(4)} \rangle + 0,126 | {}^{3}G^{(1)} \rangle + 0,109 | {}^{3}G^{(2)} \rangle + ..$$
 E=-51.150

$$|{}^{5}S_{2}\rangle = 0.932 |{}^{5}S\rangle + 0.117 |{}^{3}P^{(1)}\rangle + 0.338 |{}^{3}P_{2}\rangle + ..$$
 E=-50.899

$$| {}^{5}F_{3} \rangle = 0.944 | {}^{5}F \rangle + 0.209 | {}^{3}D^{(1)} \rangle + 0.108 | {}^{3}D^{(2)} \rangle - 0.103 | {}^{3}F^{(2)} \rangle + + 0.114 | {}^{3}F_{3} \rangle + 0.128 | {}^{3}G^{(2)} \rangle + ..$$
 E=-48.785

$$|{}^{3}K_{8}\rangle = 0.164 |{}^{5}I\rangle - 0.167 |{}^{3}K^{(1)}\rangle + 0.741 |{}^{3}K^{(2)}\rangle + 0.629 |{}^{3}L\rangle + ..$$
 E=-42.794

La información experimental disponible, sugiere que de los estados listados anteriormente, los estados receptores son $\left\{ {}^{5}I_{J} \right\} \rightarrow J = 8,7$. En

cambios buenos candidatos como estados emisores son los correspondientes a los subconjuntos $\left\{ {}^{5}F_{J} \right\} \rightarrow J = 3,4,5$. Como señalamos en la sección (VI.4.1), relacionada con los espectros electrónicos del sistema $Cs_2NaDyCl_6$, es preciso construir funciones, adaptadas por simetría de acuerdo a la cadena $SO_3 \supset O_h$. Las funciones resultantes son del tipo $|\alpha(LSJ)\Gamma\gamma l\rangle$ y estas son empleadas para proceder a la diagonalización frente al operador de campo cristalino $\hat{H}_{\rm CF}$, el cual ha sido definido previamente en (VI.4.1). El cálculo de niveles de energías propuesto por Richardson y colabores, Tanner y otros es el resultado del trabajo realizado por M.F.Reid, quién trabajó un paquete computacional denominado "DOCUMENTATION", y que ha sido ampliamente utilizado por diversos autores. La situación es complicada de analizar, por cuanto el número de parámetros se mueve en el rango de 22 a 23 y prácticamente nunca ha sido, es y será posible disponer de una masa de datos compatibles con este número significativo de parámetros a ser ajustados en forma transparente. Nuestro enfoque sugiere que en estos casos, es mejor (no obstante, soslayar ligeramente el valor de la desviación cuadrática media), trabajar en un modelo más simple en el cual se disponga de un número relativamente razonable de observables y parámetros ser ajustados, empleando un método semi empírico. Esta es la estrategia que ha sido empleada en diversos cálculos, reportados en la literatura [23 - 25], en

los cuales hemos examinado diversas elpasolitas bajo el supuesto que un modelo de 7-átomos es lo suficientemente flexible y general como para acomodar una serie de efectos, tanto relativistas como no relativista del hamiltoniano electrónico. A continuación, reportamos algunos niveles de energías, estimados con los datos experimentales disponibles y haciendo uso del programa "DOCUMENTATION" de M.F.Reid.

Tabla 3: Niveles de energías (cm^{-1}) de $HoCl_6^{-3}$ en elpasolitas cúbicas [26]

$^{(2S+1)}L_{J}$	$ lpha(LSJ)\Gamma angle$	$Cs_2NaHoCl_6$	_	$Cs_2 NaGdCl_6$:	exp	cal(a)
_	_	(1)	(2)	(2)	_	_
${}^{5}I_{8}$	$a\Gamma_3$	0	0	0	0	0
_	$a\Gamma_4$	10	10	10	10	8
_	Γ_1	39	39	39	39	29
_	$b\Gamma_4$	_	199	199	199	213
_	$a\Gamma_5$	_	239	239	239	243
_	$b\Gamma_3$	_	268	268	268	287
_	$b\Gamma_5$	_	268	268	268	287
${}^{5}I_{7}$	$a\Gamma_4$	5117(<i>NT</i>)	5118	5116	0	0
_	$a\Gamma_5$	5117	5118	5119	3	6
_	Γ_2	_	5209	5209	93	103
_	$b\Gamma_5$	5225(NT)	5222	5222	106	123
_	Γ_3	5240(NT)	5242	5241	125	137
_	$b\Gamma_4$	5266(NT)	5270	5268	152	170
${}^{5}I_{6}$	Γ_3	_	8620	8626	0	0
_	$a\Gamma_5$	_	8628	8633	8	8
_	Γ_2	—	8667	8674	47	51
_	$b\Gamma_5$	-	8705	8712	85	96
_	$\Gamma_{_{\mathcal{A}}}$	_	8726	8732	106	123

_	Г.	_	8744	8751	124	148
${}^{5}I_{5}$	$a\Gamma_4$	_	11198	11198	0	0
_	Γ_5	_	11229	11231	32	46
_	Γ_3	_	11258	11256	59	78
_	$b\Gamma_4$	_	11273	_	75	103
${}^{3}I_{4}$	Γ_1	_	13232	_	0	0
_	Γ_4	_	13241	_	9	13
_	Γ_3	_	13247	_	15	19
_	Γ_5	_	$13449(RT^{b})$	_	217	224
${}^{5}F_{5}$	$a\Gamma_4$	15353	15353	15356	0	0
_	Γ_5	15396	15395	15399	43	64
—	Γ_3	15527	_	_	174	221
_	$b\Gamma_4$	15546	—	—	193	253
${}^{2}S_{2}$	Γ_3	18365	—	18365	0	0
—	Γ_5	18387	_	18390	23	-8
${}^{5}F_{4}$	Γ_5	18497	_	18497(NT)	0	0
_	Γ_3	18511	_	18513(<i>NT</i>)	14	43
_	Γ_4	18516	_	18517(NT)	19	37
_	Γ_1	18550	_	18550(NT)	53	75
${}^{5}F_{3}$	Γ_2	20420	20420	20427	0	0
_	Γ_5	20552	_	20554(NT)	132	152
_	Γ_4	20609	_	20610(NT)	189	232
${}^{5}F_{2}$	Γ_5	20975	_	_	0	0
_	Γ_3	21080	—	—	105	134
${}^{3}K_{8}$	$a\Gamma_5$	(21210)	_	—	_	116

_	$a\Gamma_3$	_	_	—	—	114
_	$b\Gamma_5$	21264	_	—	132	92
_	$a\Gamma_4$	21307	_	—	89	81
_	Γ_1	21348	_	_	48	15
_	$b\Gamma_4$	21392	—	—	4	4
_	$b\Gamma_3$	21396	—	—	0	0
${}^{5}G_{6}$	Γ_1	21823	—	—	0	0
_	Γ_4	21869	—	—	46	43
_	$a\Gamma_5$	21926	—	—	103	96
_	Γ_2	22112	—	—	289	265
_	$b\Gamma_5$	22204	—	—	381	353
_	Γ_3	22230	—	—	407	380
${}^{5}F_{1}$	Γ_4	(22124)	—	—	_	_
${}^{5}G_{5}$	$a\Gamma_4$	23779	—	—	0	0
_	Γ_3	23801	—	—	22	13
_	$b\Gamma_4$	23956	_	—	177	128
_	Γ_5	23971	_	_	192	140

*(NT): Temperatura de $N_2(l)$

- (RT): Temperatura ambiente
- (a). Datos tomados directamente de la ref [29]

(b) Estos datos fueron obtenidos, a partir del análisis espectroscópico del cristal no estequiométrico $Cs_2NaHo_{0,99}Cl_6$ [33]

VI.4.3.2. Estimaciones de intensidades espectrales. Modelo de 7átomos.

Las emisiones ${}^{3}F_{3}, {}^{5}F_{5} \rightarrow {}^{5}I_{8}$ en el sistema $Cs_{2}NaHoCl_{6}$, fueron estudiadas por Richardson y col **[32]**. De igual forma, Tanner, en un trabajo posterior, sugiere la inclusión de un total de 6 excitaciones adicionales en el rango $21000 - 4000 \text{ cm}^{-1}$. También, una gran variedad de transiciones electrónicas en emisión han sido observadas para el cluster $HoCl_{6}^{-3}$ en otras elpasolitas cúbicas y estos estudios han sido reportados, en la literatura **[33 - 36]**.

El trabajo desde un punto de vista experimental es, sin lugar a dudas muy significativo, no obstante, es preciso focalizar la atención para el caso de situaciones especiales, ante las cuales el esfuerzo teórico es relevante.

Existe un conjunto de transiciones interesantes a ser estudiadas, sin embargo, un estudio cuidadoso de las posibilidades nos ha conducido a elegir la excitación a 488 nm en el caso de la emisión ${}^{5}F_{5} \rightarrow {}^{5}I_{7}$, la cual involucra estados terminales de igual multiplicidad de espín y su espectro es bastante "limpio y bien resuelto" en esta región de energías. En la Figura 8 de la ref **[26]** para el sistema dopado $Cs_2NaGdCl_6 : HoCl_6^{-3}$, en la región entre 10250 y

293

9830 cm^{-1} Para el sistema en estudio, las frecuencias vibracionales son las que se indican: $v_3(\tau_{1u}) = 254$, $v_4(\tau_{1u}) = 108$ y $v_6(\tau_{2u}) = 85$, siendo el error esperado del orden de $\pm 2cm^{-1}$. De esta forma, la ubicación de las transiciones vibrónicas correspondiente a las emisiones ${}^5F_5 \rightarrow {}^5I_7$, es en teoría la que se indica a continuación:

(–	V_3	${\cal V}_4$	ν_6
$a\Gamma_4 \rightarrow \Gamma_2$	9890(18)	10036(11)	10059(9)
$a\Gamma_4 \rightarrow \Gamma_3$	9857(20)	$10003(13)^1$	$10026(12)^2$
$a\Gamma_4 \rightarrow a\Gamma_4$	9981(14) ³	10127(5)	$10150(4)^4$
$a\Gamma_4 \rightarrow a\Gamma_5$	9981(14) ³	10127(5)	$10150(4)^4$
$a\Gamma_4 \rightarrow b\Gamma_4$	9829(21)	$9975(14)^3$	9981(13) ¹
$\left(a\Gamma_4 \rightarrow b\Gamma_2 \right)$	9877(19)	$10023(12)^2$	10046(10)

Es interesante observar la tabulación anterior. Al menos en teoría, las líneas 12, 13 y 14 coinciden para excitaciones vibrónicas del tipo $\Gamma_1 \rightarrow \Gamma_2 + \nu_3$, lo cual debe ser tomado en cuenta para efectos del cálculo de intensidades.

Es evidente que la fuerza del oscilador es una medida del área encerrada para cada uno de los picos espectrales, en consecuencia la sumatoria de áreas es un proceso que debe ser considerado en el cálculo de intensidades espectrales. De esta forma, sí en una primera aproximación consideramos las excitaciones vibrónicas como puras, entonces obtendríamos para las emisiones ${}^{5}F_{5} \rightarrow {}^{5}I_{7}$, los valores que se indican en la tabulación que se entrega a continuación.

Resultados finales correspondientes a las transiciones ${}^{5}F_{5} \rightarrow {}^{5}I_{7}$.

A continuación, precisamos hacer las correcciones relativas a las líneas 12, 13 y 14, para lo cual nos basta sumar las "fracciones de áreas" involucradas, lo cual nos conduce a los resultados que se indican a continuación.

a) $a\Gamma_4 \rightarrow \Gamma_2$. Estas son excitaciones puras, en consecuencia obtenemos: $f(v_3): f(v_4): f(v_6) = 1,00: 10,00: 23,00[1,00: 5,00: 6,00]$

b) $a\Gamma_4 \rightarrow \Gamma_2$. Esta no es una transición pura, en consecuencia los valores son:

$$f(v_3) = 1,04.10^{-4}, f(v_4) = 1,13.10^{-4} + 6,91.10^{-11} = 1,13.10^{-4},$$

 $f(v_6) = 5,25.10^{-5} + 3,12.10^{-5} = 8,37.10^{-5}$

$$f(v_3): f(v_4): f(v_6) = 1,00: 1,00: 0,80[1,00: 4,00: 4,00]$$

c) $a\Gamma_4 \rightarrow a\Gamma_4, a\Gamma_2$. En esta situación, las fuerzas del oscilador son de carácter aditivo, frecuencia a frecuencia. Adicionalmente a $f(v_3)$ se debe sumar $f(v_4)$ correspondiente a la excitación $a\Gamma_4 \rightarrow b\Gamma_4$, con lo cual obtenemos finalmente:

$$f(v_3) = 3,13.10^{-8} + 2,42.10^{-5} + 4,72.10^{-5} = 7,14.10^{-5}$$

$$f(v_4) = 2,16.10^{-5} + 1,10.10^{-4} = 1,32.10^{-4}$$

$$f(v_6) = 8,80.10^{-5} + 2,14.10^{-5} = 1,09.10^{-4}$$

$$f(v_3): f(v_4): f(v_6) = 1,00:1,80:1,50[1,00:0,60:1,50]$$

d) $a\Gamma_4 \rightarrow b\Gamma_4$. En este caso, a $f(v_4)$ se adiciona $f(v_3)$ de la transición $a\Gamma_4 \rightarrow a\Gamma_4, a\Gamma_5$. De igual forma, al valor final de $f(v_6)$ aporta $f(v_4)$ de $a\Gamma_4 \rightarrow \Gamma_3$. De esta forma, se obtienen los valores que se indican a continuación:

$$f(v_3) = 7,53.10^{-7}$$

 $f(v_4) = 4,72.10^{-5} + 3,13.10^{-8} = 4,72.10^{-5}$

$$f(v_6) = 6,91.10^{-11} + 1,13.10^{-4} = 1,13.10^{-4}$$

$$f(v_3): f(v_4): f(v_6) = 1,00: 63,00: 150[1,00: 7,00: 3,50]$$

e) $a\Gamma_4 \rightarrow b\Gamma_5$. En este caso, $f(v_4)$, recibe una contribución de $f(v_6)$ correspondiente a la excitación $a\Gamma_4 \rightarrow \Gamma_3$. Los valores, son los que se informan:

$$f(v_3) = 4,91.10^{-5}$$

 $f(v_4) = 3,12.10^{-5} + 5,25.10^{-5} = 8,37.10^{-5}$

$$f(v_6) = 2,68.10^{-5}[1,00:1,70:0,60[1,00:2,50:4,00]$$

Es importante señalar que en los valores informados, los resultados experimentales, se muestran entre paréntesis cuadrados. Los valores correspondientes a las fuerzas del oscilador total no han sido reportados, en consecuencia, es preciso ser cuidadoso al sumar los valores individuales correspondientes a las "fuerzas del oscilador" para cada una de las transiciones vibrónicas del tipo: $\Gamma_1 \rightarrow \Gamma_2 + \nu_k \rightarrow k = 3,4,6$. Es preciso, dividir por la degeneración orbital del estado inicial de la transición (o aún más ajustado a la realidad, asignar un factor de peso, digamos g_i , el cual debe a lo menos considerar la degeneración orbital del estado emisor).

Adicionalmente, será preciso dividir por el coeficiente de refractividad del medio. Esto explica, en parte la razón fundamental por la cual concentramos nuestros esfuerzos en las distribuciones relativas de intensidades vibrónicas más que en la fuerza del oscilador total. Debemos recordar que, en el modelo propuesto, hemos realizado un esfuerzo por identificar los reforzamientos de los picos espectrales, tal cual ha sido explicitado a propósito del sistema $Cs_2NaGdCl_6:HoCl_6^{-3}$.

Resulta interesante observar que las componentes de campo cristalino, de menor energía, correspondientes al término espectroscópico ${}^{5}F_{5}$ han sido localizadas a contar del valor $15.353 cm^{-1}$, considerando datos experimentales en emisión y en absorción. Las transiciones electrónicas a los estados ${}^{5}I_{7}$ se observan en la vecindad cercana a $1\mu m$ en muestras puras de $Cs_{2}NaHoCl_{6}$, sin embargo, en las muestras trabajadas por Tanner, aparecen otros recubrimientos de bandas debido a transiciones del tipo ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ del ión complejo $ErCl_{6}^{-3}$ [23, 24]. No obstante, estas bandas debido a impurezas desaparecen en los espectros de luminiscencia de $Cs_{2}NaGdCl_{6} : HoCl_{6}^{-3}$ esto puede ser observado en el espectro a la temperatura de 13K, el cual se informa a continuación. Figura 6: Espectro $Cs_2NaGdCl_6$: $HoCl_6^{-3}$ a 13 K.

El espectro de luminiscencia que se informa, corresponde al sistema $Cs_2NaGdCl_6:HoCl_6^{-3}$ a la temperatura de 13K, en el rango de energías comprendido entre $10.250-9830 cm^{-1}$ [26]

Los datos experimentales son complicados de ser examinados, al extremo que en la ref **[26]** se dice directamente: (a) transiciones al nivel son muy transparentes, esencialmente por cuanto son excitaciones puras y (b) los orígenes del tipo 0-0' (origen y naturaleza del tipo dipolo magnético) se observan ya sea superpuestos u obscurecidos por la abundante estructura vibrónica de los espectros.

VI.5 Resumen.

El trabajo realizado sugiere que es posible seguir avanzando en la formulación de modelos, estrategias de cálculo y mecanismos de intensidades sí se desea explicar en forma, relativamente razonable las intensidades espectrales observadas. Hemos visto como diversos autores, en su afán de disponer de una base de datos de mejor calidad (resolución y reproducibilidad), emplean cristales puros y dopados. De igual forma, se realizan estudios acuciosos de modo de racionalizar la dependencia de la forma global de las líneas y bandas del espectro con la temperatura. La idea es eliminar al máximo las impurezas y al mismo tiempo, basados en un esquema de cálculo directo (empleando alguna base razonable de auto vectores), se procede a evaluar los momentos magnéticos de transición asociados a las líneas 0-0'. Una de las dificultades importantes que es necesario enfrentar en ocasiones, dice relación con fenómenos de superposición y de estructura vibrónica asociada. Este estudio ha encontrado diversos aspectos interesantes a ser examinados, tales como los mecanismos de intensidades, cuando dos o más excitaciones prácticamente coinciden en sus posiciones y se ha sugerido una estrategia para enfrentar estas situaciones difíciles de manejar, tanto a nivel teórico como experimental. De igual forma, vemos que los esquemas propuestos en la literatura, tendientes a sobre parametrizar los modelos, de modo de minimizar las desviaciones cuadráticas medias no son aconsejables e introducen fuentes adicionales de error. También, observamos que la calidad de los ajustes de otros autores, no es lo suficientemente buena como podría esperarse para iones lantánidos dopados en $LaCl_3$, por varias razones: (a) recubrimiento de transiciones electrónicas y vibrónicas, (b) los anchos de líneas son mayores para los espectros electrónicos de los iones lantánidos trivalentes en cristales del tipo elpasolitas y (c) la precisión que se puede lograr para localizar los así llamados orígenes electrónicos (del orden de $\pm 2 cm^{-1}$) es ciertamente menor (menos precisa) que la que se puede lograr para las llamadas "zero phonon lines (0-0')" (del orden de $\pm 1 cm^{-1}$) para transiciones permitidas en el grupo de sitio en compuestos del tipo $LaCl_3$.

Resulta evidente que las herramientas que se entregan en este Capítulo forman parte de un modelo de mayor generalidad que se desea lograr, en una versión vibrónica en dinámica de cristales. La idea central es emplear la experiencia y conocimiento acumulado a la fecha y de esta forma, avanzar en la construcción de una matriz dinámica que acomode en forma natural las contribuciones de corto, mediano y largo alcance en el cristal. Una cantidad importante de información se entrega en los Capítulos II, V y VI de esta tesis de grado. El lector habrá apreciado, en el transcurso de la lectura

301

de esta tesis, que existe un conjunto importante de preguntas que a la fecha y no obstante, los esfuerzos de muchos grupos de investigación no existen respuestas convincentes ni mucho menos concluyentes.

Finalmente, en este Capítulo hemos considerado cristales del tipo elpasolitas para los iones Dy^{+3} y Ho^{+3} , evitando al máximo repetir ecuaciones y/o conceptos que han sido publicados en la literatura y que en este caso, se entregan en carácter de información complementaria en un CD anexo. La idea central fue el discutir algunas formalidades y complejidades en lo que dice relación con la estimación de intensidades espectrales para transiciones del tipo $f \rightarrow f$ en entornos centrosimétricos. El énfasis ha sido focalizado en la estimación de las distribuciones relativas de intensidades vibrónicas y ciertamente, cuando se consideran las dificultades experimentales y teóricas, vemos que el modelo empleado es razonable y permite realizar predicciones e intentar la proposición de mecanismos asociados a procesos radiativos.

VI.6 Referencias.

- [1] Judd. B.R. Phys.Rev, 127, 750(1962)
- [2] Ofelt. G.S. J.Chem.Phys, 37. 511(1962)
- [3] G.Racah. Phys.Rev, 76, 1352(1949)
- [4] Racah.G. Phys.Rev, 61, 186(1941)
- [5] Racah.G. Phys.Rev, 62, 438(1942)
- [6] Racah.G. Phys.Rev, 63, 367(1943)
- [7] Jahn. H.A. Proc.Royal Society A, 201, 516(1950)
- [8] Condon.E.E, Shortley. The Theory of Atomic Spectra. Cambridge.University Press, Cambridge, 1935
- [9] Judd. B.R. Proc.Royal Society A, 227, 552(1955)
- [10] Judd.B.R. Proc.Royal Society A, 228, 120(1955)
- [11] Judd.B.R. Proc.Royal Society A, 232, 458(1955)
- [12] Van.Veck. J.H. J.Phys.Chem, 41, 67(1937)
- [13] Wybourne.B.G. J.Chem.Phys, 43, 4506(1965)
- [14] Wybourne. B.G. Phys.Rev, 148, 317(1966)
- [15] Smentek.L, Wybourne.B.G, Kobus.J. J.Phys.B 34,1513(1001)
- [16] Smentek.L,Wybourne,.B.G,. J.Phys.B, 33, 3467(2000)

- [17] Smentek.L, Wybourne.B.G. J.Phys.B, 34, 625(2001)
- [18] Smentek.L, Wybourne.B.G, Hess.B.A.Jr. J.Alloys and Compounds, 31,645(2001)
- [19] Wybourne.B.G, Smentek.L. J.Alloys and Compounds, 341(1/2), 71(2002)
- [20] Stuart McCaw Charles. Magdalen College. Trinity Term. A thesis submitted in partial fulfillment requirements for the degree of Doctor of Philosophy in the University of Oxford, 1998. The United Kingdom.
- [21] Selgert.P, Lingner.C,Lüthi.B. Z.Phys.B- Condensed Matter, 55, 219(1984)
- [22] Acevedo.R, Soto-Bubert.A, Navarro.G. Martín.V. Rev.Méx.Fís, 51(1), 5(2005)
- [23] Acevedo.R, Soto-Bubert.A, Meruane.T, Navarro.G. Rev.Méx.Fís, 51(4), 330(2005)
- [24] Acevedo.R, Soto-Bubert.A, Navarro.G, Meruane.T, Strek.W. Acta Physica Polonica A, 105(3), 233(2004)
- [25] Acevedo.R, Portillo.C, Navarro.G, Meruane.T. Adv.Quantum Chem, 44, 509(2003)
- [26] Tanner.P.A. J.Chem.Soc. Faraday Transaction II, 83(8), 1367(1987)
- [27] Tanner.P.A, Jayasankar.C.K, Richardson.F.S. Mol. Phys, 65(1), 49(1988)

- [28] Tanner.P.A, Ravi Kant Kumar.V.V, Jayasankar.C.K, Reid.M.F. J.Alloys and Compounds, 215, 349(1994)
- [29] Richardson.F.S, Reid.M.F, Dallara.J.J, Smith.R.D. J.Chem.Phys, 83, 3813(1985)
- [30] Foster.D.R, Richardson.F.S. J.Chem.Phys, 82,1085(1985)
- [31] Morrinson.C.A, Leavitt.R.P, Wortman.D.E. J.Chem.Phys, 73, 2580(1980)
- [32] Morley.J.P, Faulkner. T.R, Richardson.F.S, Schwartz. R.W.J.Chem.Phys, 75,539(1981)
- [33] Tanner. P.A. J.Chem.Soc, Faraday Trans II, 83, 553(1987)
- [34] Tanner.P.A. Chem.Phys.Lett, 119,213(1985)
- [35] Tanner.P.A. Chem.Phys.Lett, 126, 137(1986)
- [36] Tanner.P.A. J.Chem.Phys, 90,5605(1986)

Anexo I

DATOS, PARAMETROS Y AJUSTES USADOS EN CAPITULO II.

átomo	Radio iónico [pm]	
La	103	
Ce	101	
Pr	99	
Nd	98	
Pm	97	
Sm	96	
Eu	95	
Gd	94	
Tb	92	
Dy	91	
Ho	90	
Er	89	
Tm	88	
Yb	87	
Lu	86	

Anexo I.1 – Radios iónicos de lantánidos. [1]

Anexo I.2 - Funciones para estimar parámetros de red (a) en función del radio iónico (r), para algunas series de elpasolitas.

$$Cs_2NaLnF_6$$
:
 $a = 1,42 \cdot r + 780$ [1]

$$\frac{Cs_2NaLnCl_6:}{a = 1,98 \cdot r + 894}$$
 [1]

$$\frac{Cs_2NaLnBr_6}{a = 1,884 \cdot r + 964}$$
 [1]

$$\frac{Rb_2NaLnF_6:}{a = 1,807 \cdot r + 725}$$
(*)

 $\frac{Cs_2KLnF_6:}{a = 1,872 \cdot r + 778}$ (*)

(*) Funciones obtenidas por ajuste sobre datos experimentales dados en anexo "I.3".

Anexo I.3 - Datos experimentales para parámetros de red en elpasolitas estequiométricas.

I.3.1) serie Cs₂NaLnBr₆: [2]

Lantánido	Се	Nd	Gd
Parámetro de red [pm]	1150	1142	1137

I.3.2) serie Rb_2NaLnF_6 : [3]

Lantánido	Yb	Er	Но	Tb	Sm
Parámetro de red [pm]	882,4	886,7	888,1	892,08	898,8

I.3.3) serie Cs_2KLnF_6 : [4, 5, 6, 7]

Lantánido	Gd	Pr	Nd	La	Er
Parámetro de red [pm]	953,1	962,5	959,8	972,8	946,0
I.3.4) serie Cs₂NaLnCl₆: [8, 9, 10]

Lantánido	Lu	Tm	Er	Dy	Gd
Parámetro de red [pm]	1065,5	1068,6	1070,4	1074,3	1079,2

Lantánido	Eu	Sm	Nd	Pr	Се
Parámetro de red [pm]	1080,9	1083,4	1088,9	1091,2	1094,6

I.3.5) serie Cs_2NaLnF_6 : [3]

Lantánido	Yb	Gd	Er	Tb	Sm
Parámetro de red [pm]	902,2	913,6	906,1	910,7	916,3

Lantánido	Cs ₂ NaLnCl ₆	Cs_2NaLnF_6	$Cs_2NaLnBr_6$	Rb_2NaLnF_6	Cs_2KLnF_6
La	1098,9	926,3	1153,9	911,7	970,8
Се	1094,9	923,4	1150,2	908,1	967,1
Pr	1091,5	920,6	1146,6	904,4	963,3
Nd	1088,5	919,2	1144,7	902,6	961,5
Pm	1085,8	917,7	1142,9	900,8	959,6
Sm	1083,4	916,3	1141,0	899,0	957,7
Eu	1081,1	914,9	1139,2	897,2	955,8
Gd	1078,9	913,5	1137,3	895,4	954,0
Tb	1076,8	910,6	1133,7	891,8	950,2
Dy	1074,7	909,2	1131,8	890,0	948,3
Но	1072,5	907,8	1130,0	888,2	946,5
Er	1070,5	906,4	1128,1	886,4	944,6
Tm	1068,5	905,0	1126,3	884,6	942,7
Yb	1066,9	903,5	1124,4	882,7	940,9
Lu	1065,6	902,1	1122,6	880,9	939,0

Anexo I.4. - Parámetros de red calculados en [pm] usando anexo I.2.

Anexo I.5 - Parámetro "x" del cristal.

Sea "x":

$$x = \frac{dis \tan cia \quad lantánido - halógeno}{Parámetro \ de \ red}$$

la distancia lantánido halógeno fue calculada por medio de la expresión:

$$dist_{Ln-ha\log} = R_{Ln} + R_{ha\log} - 0.08 \cdot \left| \chi_{Ln} - \chi_{ha\log} \right|;$$

donde R_{Ln} y $R_{ha \log}$ son los radios iónicos y χ_{Ln} , $\chi_{ha \log}$ las electronegatividades en la escala de Pauling, del catión lantánido y del anión halógeno respectivamente.

Se construye	la siguiente	tabla para	"x":
--------------	--------------	------------	------

Lantánido	Cs ₂ NaLnCl ₆	Cs_2NaLnF_6	$Cs_2NaLnBr_6$	Rb ₂ NaLnF ₆	Cs_2KLnF_6
La	0,2555	0,2459	0,2569	0,2499	0,2346
Се	0,2528	0,2424	0,2542	0,2465	0,2314
Pr	0,2517	0,2409	0,2533	0,2452	0,2302
Nd	0,2522	0,2411	0,2535	0,2455	0,2305
Pm	0,2511	0,2393	0,2522	0,2438	0,2288
Sm	0,2490	0,2366	0,2501	0,2412	0,2264
Eu	0,2479	0,2350	0,2490	0,2396	0,2249
Gd	0,2482	0,2351	0,2492	0,2399	0,2252
Tb	0,2476	0,2346	0,2489	0,2395	0,2248
Dy	0,2464	0,2329	0,2477	0,2380	0,2233
Но	0,2458	0,2320	0,2471	0,2371	0,2225
Er	0,2453	0,2313	0,2466	0,2365	0,2219
Tm	0,2448	0,2305	0,2461	0,2358	0,2213
Yb	0,2435	0,2289	0,2449	0,2343	0,2198
Lu	0,2436	0,2290	0,2451	0,2345	0,2200

lon	Polarizabilidad [A ³]	lon	Polarizabilidad [A ³]
Na⁺	0,179	Pr ⁺³	2,110
Cs⁺	2,420	Nd ⁺³	2,073
K⁺	0,830	Pm ⁺³	2,036
Li ⁺	0,029	Sm ⁺³	2,000
Rb⁺	1,400	Eu ⁺³	1,964
Br⁻	4,770	Gd ⁺³	1,928
Г	7,100	Tb ⁺³	1,893
CI	3,660	Dy ⁺³	1,859
F	1,040	Ho ⁺³	1,825
Sc ⁺³	0,286	Er ⁺³	1,791
Ga ⁺³	0,300	Tm ⁺³	1,757
La ⁺³	2,185	Yb ⁺³	1,724
Ce ⁺³	2,147	Lu ⁺³	1,692

Anexo I.6 - Polarizabilidades eléctricas de iones [A³]

Los datos anteriores se obtienen de Kittel [11] y Tosi [12]

Pareja de iones	A [ev]	ρ [A]
Na⁺ - Cl⁻	1321,5	0,30577
Na⁺ - Cs⁺	3689,3	0,2819
CI ⁻ - CI ⁻	1187,758	0,3399
Cl⁻ - Cs⁺	4904,516	0,3232
Li⁺ - Cl⁻	1380,6	0,2786
F ⁻ - F ⁻	1127,7	0,2753
Na⁺ - F⁻	1594,2	0,2555
K ⁺ - F ⁻	2426,8	0,2770
K ⁺ - Cl ⁻	4117,9	0,3048
Li⁺ - F [.]	485,6	0,2614
Rb⁺ - F⁻	6808,1	0,2945
Rb⁺- Cl⁻	3559,9	0,3233
Rb⁺ - Br⁻	4169,9	0,3321
Cs⁺ - F⁻	1327,0	0,3538
Y ⁺³ − Cl ⁻	3038,02	0,33177
Y ⁺³ – Cs ⁺	7501,60	0,29210
Sc ⁺³ – F ⁻	2630,34	0,26852
Sc ⁺³ – K ⁺	4962,77	0,24840
Ga ⁺³ – F⁻	3760,93	0,23872
Ga ⁺³ – K ⁺	8782,20	0,22810
Cs⁺– Br ⁻	4904,516	0,3232
Na⁺– Br ⁻	2593,1	0,3014
Br ⁻ – Br ⁻	2948,2	0,3164

Anexo I.7 - Parámetros de Born – Mayer. [13, 14, 15]

Anexo I.8 - Parámetros de Born Mayer para pares lantánido -

Pareja de iones (*)	A [ev]	ρ [A]
La ⁺³ – Cl⁻	3276,35	0,3349
Ce ⁺³ – Cl ⁻	3390,35	0,3349
Pr ⁺³ − Cl ⁻	2958,11	0,3349
Nd ⁺³ – Cl ⁻	3099,00	0,3349
Pm ⁺³ – Cl ⁻	2985,35	0,3349
Sm ⁺³ – Cl ⁻	1965,57	0,3552
Eu ⁺³ – Cl ⁻	2792,35	0,3349
Gd ⁺³ – Cl ⁻	2706,35	0,3349
Tb ⁺³ – Cl⁻	2623,35	0,3349
Dy ⁺³ − Cl ⁻	1117,00	0,3832
Ho ⁺³ – Cl ⁻	2465,35	0,3349
Er ⁺³ – Cl ⁻	2390,35	0,3349
Tm ⁺³ − Cl ⁻	2321,35	0,3349
Yb ⁺³ – Cl ⁻	1670,00	0,3515
Lu ⁺³ – Cl ⁻	1450,23	0,3587

halogenuro.

(*) MEG Valerio. Comunicación Personal.

Pareja de iones	A [ev]	ρ [A]
La ⁺³ – F ⁻	2817,74	0,2980
Ce ⁺³ – F ⁻	2627,13	0,2980
Pr ⁺³ – F ⁻	2453,39	0,2980
Nd ⁺³ – F ⁻	2488,27	0,2950
Sm ⁺³ – F ⁻	1764,57	0,3064
Eu ⁺³ – F ⁻	2085,74	0,2950
Gd ⁺³ − F ⁻	1667,02	0,3037
Tb ⁺³ – F ⁻	1541,15	0,3065
Dy ⁺³ − F ⁻	1536,68	0,3037
Ho ⁺³ – F ⁻	2590,91	0,2809
Er ⁺³ – F ⁻	1880,44	0,2920
Tm ⁺³ – F ⁻	1390,19	0,3037
Yb ⁺³ – F ⁻	2381,55	0,2808
Lu ⁺³ – F ⁻	1448,23	0,2990

Pareja de iones (*)	A [ev]	ρ [A]
La ⁺³ – Br⁻	4800,35	0,3377
Ce ⁺³ – Br⁻	4884,35	0,3349
Pr ⁺³ – Br⁻	4670,35	0,3349
Nd ⁺³ – Br⁻	4655,0	0,3340
Pm ⁺³ – Br⁻	4462,35	0,3349
Sm ⁺³ – Br⁻	4363,35	0,3349
Eu ⁺³ – Br⁻	4264,35	0,3349
Gd ⁺³ – Br⁻	4169,00	0,3349
Tb ⁺³ – Br⁻	3980,55	0,3349
Dy ⁺³ – Br⁻	3890,35	0,3349
Ho ⁺³ – Br ⁻	3800,35	0,3349
Er ⁺³ – Br⁻	3713,35	0,3349
Tm ⁺³ – Br⁻	3629,9	0,3349
Yb ⁺³ – Br⁻	3545.35	0.3349
Lu ⁺³ – Br ⁻	5860.35	0.3349

(*) MEG Valerio. Comunicación Personal.

Anexo I.9 - Potenciales de ionización (primer, segundo y tercer potencial) para lantánidos. [16]

$$M_{(g)} \rightarrow M^{+3}_{(g)} + 3e, \quad E_{tot}$$

Lantánido	1 ^{er} pot. [ev/át]	2 ^{do} pot. [ev/át]	3 ^{er} pot. [ev/át]	E _{tot} [ev/át]	E _{tot} [KJ/mol]
La	5,577	11,060	19,177	35,814	3455,4
Се	5,539	10,850	20,198	36,587	3530,0
Pr	5,470	10,550	21,624	37,644	3632,0
Nd	5,525	10,730	22,100	38,355	3700,6
Pm	5,582	10,900	22,300	38,782	3741,8
Sm	5,644	11,070	23,400	40,114	3870,3
Eu	5,670	11,241	24,920	41,831	4036,0
Gd	6,150	12,090	20,630	38,870	3750,3
Tb	5,864	11,520	21,910	39,294	3791,2
Dy	5,939	11,670	22,800	40,409	3898,8
Но	6,022	11,800	22,840	40,662	3923,2
Er	6,108	11,930	22,740	40,778	3934,4
Tm	6,184	12,050	23,680	41,914	4044,0
Yb	6,254	12,170	25,050	43,474	4194,5
Lu	5,426	13,900	20,959	40,285	3886,8

Anexo I.10 - Potenciales de ionización (primer potencial) de metales alcalinos. [16]

$$M_{(g)} \rightarrow M_{(g)}^+ + 1e, \quad En1$$

Metal	En1 [ev/mol]	En1 [KJ/mol]
Na	5,14	495,9
К	4,34	418,7
Rb	4,18	403,3
Cs	3,89	375,3

Anexo I.11 - Electroafinidades de Halógenos. [17]

Halógeno	E.A. [ev/mol]	E.A. [KJ/mol]
F	3,5	332,9
CI	3,7	358,0
Br	3,5	336,7
I	3,2	307,8

Molécula	D [Kcal/mol]	D [KJ/mol]
F ₂	36,6	153,2
Cl_2	57,8	242,0
Br ₂	46,1	193,0
I_2	36,1	151,1

Anexo I.12 - Calores de disociación o de enlace. [17]

Anexo I.13 - Calores de sublimación de metales. [17, 18]

Metal	S [KJ/mol]	Metal	S [KJ/mol]
Na	108,9	Eu	175,3
K	90,9	Gd	397,5
Rb	83,3	Тb	388,7
Cs	80,0	Dy	290,4
La	431,0	Но	300,8
Се	422,6	Er	317,1
Pr	355,6	Tm	232,2
Nd	327,6	Yb	152,1
Pm	348,0	Lu	427,6
Sm	206,7		

Anexo I.14 - Cálculos de valores N_{eff}.

Los valores N_{eff} se obtuvieron por medio de ajuste de los valores sugeridos por Kenneth Pitzer **[19]**. En este artículo se sugiere como fórmula para estimar N_{eff} en átomos de gases nobles al promedio que se obtiene de sumar el total de electrones y los de la capa más externas del átomo. Esta es una aproximación que puede aplicarse al Radón (z = 86). Los otros valores los reporta Pitzer en su artículo.

Gas noble	N _{eff}	N _{capa externa}	Z	N _{eff} estimado
Не	1,7	2	2	2
Ne	8,8	6	10	8
Ar	17,3	6	18	12
Kr	22,2	6	36	21
Хе	30,6	6	54	30
Rn	-	6	86	46

Los valores en negritas, permiten realizar ajustes que proyecten valores para el resto de los átomos. En el artículo de Scott y Scheraga se graficó N_{eff} versus el número atómico (*Z*), hasta el Xenón. **[20]**. En un nuevo cálculo se estima el valor de N_{eff} para Radón y se construyen funciones usando Matemática que estimen N_{eff} (*Z*).

Se obtienen las siguientes funciones:

$$f[Z] = 0,14375 + 0,75625 \cdot Z + 0,0109375 \cdot Z^{2}$$

$$g[Z] = 18,52932353 - 0,28724591 \cdot Z + 0,01351643 \cdot Z^{2} - 0,00007514 \cdot Z^{3}$$

$$N_{eff}[Z] = \begin{cases} f[Z] & 1 \le Z \le 18 \\ g[Z] & 18 < Z \le 86 \end{cases}$$

La función N_{eff} [Z], reproduce los valores reportados por Pitzer y en particular los valores que se requieran para cualquier átomo.

Anexo I.15 - Estimación de parámetros de Born – Mayer para el par lantánido – halogenuro.

Para estimar los parámetros de Born - Mayer entre un catión lantánido trivalente y un anión halogenuro, es necesario recordar la ecuación del Capitulo 2 (2.23) dada por:

$$U_{ij}(r) = A_{ij}e^{-b_{ij}r} = A_{ij}e^{-\frac{r}{\rho_{ij}}}$$

En la ecuación anterior, es posible identificar los parámetros A_{ij} y ρ_{ij} en función de otros parámetros que a continuación se presentan **[12]**:

$$A_{ij} = f(\lambda_i + \lambda_j) Exp \left[\frac{(R_i + R_j)}{(\lambda_i + \lambda_j)} \right]$$
$$\rho_{ij} = \frac{1}{b_{ij}} = (\lambda_i + \lambda_j)$$

323

donde λ_k es conocido como parámetro de dureza, R_k es el radio iónico del átomo k-ésimo. Se usaron para el cálculo los valores reportados por H. Tatiplinar et al. **[21]** los cuales fueron determinados para sistemas del tipo LnX₃, donde Ln es un ion lantánido trivalente y X un ion halogenuro.

El parámetro *f* presenta el valor $0,05 \begin{bmatrix} e^2 \\ 0 \\ A \end{bmatrix}$ para los iones cloro y bromo. **[12]**

Anexo I.16 - Referencias.

- [1] P. Tanner, Top Curr Chem, 241:1-112 (2004).
- [2] G. Mermant, J. Primot, J. Mater. Res. ,Bull, 14, 45 (1979).
- [3] S. Aleonard , C. Pouzet, J. Appl. Crystallogr., 1, 113 (1968).
- [4] F. Feldner, R. Hoppe, Z. Anorg. Allg. Chem., 471, 131 (1980).
- [5] P. Merchandt et al, Mater. Res., Bull, 15, 1113 (1980).
- [6] A. Vedrine et al, Rev. Chim. Miner., 7, 593 (1970).
- [7] Siddiqi, Hoppe, Z. Anorg. Allg. Chem., 374, 225 (1970).
- [8] L.R. Morss et al, Inorganic Chemistry, 9, 7, 1771 (1970).
- [9] R. Acevedo et al, Powder Difraction, 10, 241 (1995).
- [10] R. Acevedo et al, Rev. Mex. Fis., 44, 29 (1998).
- [11] C. Kittel, Introduction to Solid State Physics. 5th ed., Wiley, New York, 1976.
- [12] Z. Akdeniz, Z. Cicek, and M. P. Tosi, Z. Naturforsch, 55a, 861 866 (2000).
- [13] R. S.Sinkovits and R.H.Bartram, J. Phys. Chem. Solids, 52, 1137 (1991).
- [14] CRA Catlow, KM Diller, MJ Norgett, J. Phys C., Solid State Phys., 10, 1395 (1977).

- [15] MEG Valerio, RA Jackson and JF de Lima, J. Phys. Condens. Matter 12 (2000)
- [16] D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed, 10-183, (2004-2005)
- [17] T. Meruane, A. Morales, Problemas y ejercicios de Química inorgánica, Departamento Central de Cs. Matemáticas y Naturales, Facultad de Filosofía y Educación, U. de Chile, Santiago, Chile (1964).
- [18] D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed, 4-125, (2004-2005)
- [19] I. Prigogine, K. Pitzer, Advances in Chemical Physics volume II, London (1959).
- [20] R.A. Scott and H.A. Scheraga, J. Chem. Phys. 42,2209 (1965).
- [21] H. Tatiplinar et al, J.Phys.: Condens. Matter., 4, 8933 (1992).

Anexo II

Coordenadas, Matrices y Cálculos desarrollados para Capítulo V.

Anexo II.1.- Definición de Coordenadas Internas.

Figura: Coordenadas Δr (6)

Figura: Coordenadas ΔR (6)

Figura: Coordenadas $\Delta \alpha$ (12)

Figura: Coordenadas $\Delta\beta$ (12)

Figura: Coordenadas Δq (12)

Figura: Coordenadas Δd (24)

x[1]: r consigo misma x[2]: r con r en 90° x[3]: r con r en 180° x[4]: R consigo misma x[5]: R con R en 90° x[6]: R con R en 180° x[7]: r con R con Cl común x[8]: r con R en 90°

- x[9]: r con R en el mismo eje
- x[10]: α consigo misma
- x[11]: α con α coplanar, lado común
- x[12]: α con α coplanar opuestos por el vértice.

x[13]: α con α lado común en 90° x[14]: α con α opuesto por vértice, 90° x[15]: β consigo misma

x[16]: β con β coplanar, lado común

- x[17]: β con β coplanar opuestos por x[21]: α con β en 90° con Cl común el vértice
- x[18]: β con β lado común en 90°
- x[20]: α con β coplanar con Cl común (bote)

x[22]: α con β en 90° sin Cl común

- x[19]: β con β opuesto por vértice, 90° x[23]: α con β coplanar sin Cl común
 - x[24]: α con β coplanar con Cl común (silla)

x[25]: d con q en mismo plano con Cl común x[29]: d con q, cloros en distintos

- x[26]: d con q planos 90°, cloros en mismo plano sin Cl común
- x[27]: d con q plano paralelo
- x[28]: d con q en mismo plano sin Cl común
- planos
- x[30]: q consigo misma
- x[31]: q con q en "L" x[32]: q con q en 90º a ¼

- x[33]: q con q paralelas mismo plano x[34]: q con q paralelas distinto plano x[35]: q con q cruz. x[36]: q con q en 90° a $\frac{1}{2}$
- x[37]: r con d, Cl común. x[38]: r con d, cloros a $\sqrt{2}/4$ x[39]: r con d, cloros a $\frac{1}{2}$ x[40]: r con d, cloros a $\sqrt{3}/8$

x[41]: R con d, Cl común. x[42]: R con d, cloros a $\sqrt{2}/4$ x[43]: R con d, cloros a $\frac{1}{2}$ x[44]: R con d, cloros a $\sqrt{3}/8$ x[45]: R con α coplanar Cl común x[46]: R con α coplanar sin Cl común x[47]: R con α en 90° x[48]: r con β coplanar Cl común

x[49]: r con β coplanar sin Cl común	x[53]: r con α coplanar
x[50]: r con β en 90º	x[54]: α con d Cl común
x[51]: r con α lado común	x[55]: α con d con α en cara inf der
x[52]: r con $lpha$ en 90º	x[56]: α con d en con α en cara sup izq

x[57]: α con d en con α en cara izq sup. x[61]: β con d Cl común x[58]: α con d en con α en cara der inf. x[62]: β con d con β en cara inf izq x[59]: α con d en con α en cara izq inf. x[63]: β con d en con β en cara sup der x[60]: α con d en con α en cara pos izq. x[64]: β con d en con β en cara der sup

x[65]: β con d en con β en cara izq inf x[66]: β con d en con β en cara der inf x[67]: β con d en con β en cara pos izq x[68]: R con β lado común x[69]: R con β en 90° x[70]: R con β coplanar x[71]: r con q en 90° Cl común x[72]: r con q paralelo coplanar

- x[92]: d con d, Cs común, en 180º
- x[96]: d con d, Cs distintos, paralelo, distinta dirección.

Anexo II.3. - Matrices representativas del subgrupo de las rotaciones.

$C_{4x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix},$	$C_{4y} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix},$	$C_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$C_{4x}^{*} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix},$	$C_{4y}^{*} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$	$C_{4z}^{*} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$C_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$	$C_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$	$C_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$C_{111} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$ $C_{11\overline{1}} * = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix},$	$C_{111}^{*} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix},$ $C_{\bar{1}1\bar{1}} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix},$	$C_{11\overline{1}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix}$ $C_{\overline{1}1\overline{1}} * = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$
$C_{\overline{1}11} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$	$C_{\bar{1}11}^{*} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix},$	$C_{2xy} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
$C_{2xy}^{*} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix},$	$C_{2yz} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix},$	$C_{2yz}^{} * = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
$C_{2zx} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$	$C_{2zx}^{*} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix},$	$Inv = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

$S_{111} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix},$	$S_{111}^{*} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix},$	$S_{\bar{1}11} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$
$S_{\overline{1}11} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix},$	$S_{\overline{1}\overline{1}1} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix},$	$S_{\overline{1}\overline{1}1}^{*} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$
$S_{1\overline{1}1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix},$	$S_{1\bar{1}1}^{*} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$	$S_{4xy} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
$S_{4xy}^{*} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix},$	$S_{4yz} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix},$	$S_{4yz}^{} * = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$
$S_{4zx} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$	$S_{4zx}^{*} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix},$	$\sigma_{hx} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$\sigma_{hy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$	$\sigma_{hz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$	$\sigma_{dx} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
$\sigma_{dx}' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix},$	$\sigma_{dy} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$	$\sigma_{dy}' = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$
$\sigma_{dz} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$	$\sigma_{dz}' = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$	$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Anexo II.4. - Operaciones de Simetría sobre coordenadas internas

a) Operaciones de simetría sobre coordenadas internas " Δr ":

Е	C2 x	С2 у	C2 z	C4 z	C4 x	С4 у	C4 z′	C4 x′	C4 y′	C11 1	C11 1 *	cīıī	cī1ī*	C111	C111*
r[1]	r[1]	r[5]	r[5]	r[2]	r[1]	r[3]	r[4]	r[1]	r[6]	r[3]	r[2]	r[6]	r[4]	r[2]	r[6]
r[2]	r[4]	r[2]	r[4]	r[5]	r[6]	r[2]	r[1]	r[3]	r[2]	r[1]	r[3]	r[5]	r[3]	r[6]	r[1]
r[3]	r[6]	r[6]	r[3]	r[3]	r[2]	r[5]	r[3]	r[4]	r[1]	r[2]	r[1]	r[2]	r[5]	r[5]	r[4]
r[4]	r[2]	r[4]	r[2]	r[1]	r[3]	r[4]	r[5]	r[6]	r[4]	r[5]	r[6]	r[1]	r[6]	r[3]	r[5]
r[5]	r[5]	r[1]	r[1]	r[4]	r[5]	r[6]	r[2]	r[5]	r[3]	r[6]	r[4]	r[3]	r[2]	r[4]	r[3]
r[6]	r[3]	r[3]	r[6]	r[6]	r[4]	r[1]	r[6]	r[2]	r[5]	r[4]	r[5]	r[4]	r[1]	r[1]	r[2]

cī11*	cī11	С2 ху	C2 xy *	C2 yz	C2 yz *	C2 zx	C2 zx*	Inv	S111	S111*	sī11	sī11*	sīī1	sīī1*	s1 ī 1
r[3]	r[4]	r[4]	r[2]	r[5]	r[5]	r[6]	r[3]	r[5]	r[4]	r[3]	r[6]	r[2]	r[6]	r[4]	r[3]
r[5]	r[6]	r[5]	r[1]	r[3]	r[6]	r[4]	r[4]	r[4]	r[3]	r[5]	r[1]	r[3]	r[5]	r[6]	r[1]
r[4]	r[1]	r[6]	r[6]	r[2]	r[4]	r[5]	r[1]	r[6]	r[1]	r[2]	r[2]	r[5]	r[4]	r[5]	r[4]
r[1]	r[3]	r[1]	r[5]	r[6]	r[3]	r[2]	r[2]	r[2]	r[6]	r[1]	r[5]	r[6]	r[1]	r[3]	r[5]
r[6]	r[2]	r[2]	r[4]	r[1]	r[1]	r[3]	r[6]	r[1]	r[2]	r[6]	r[3]	r[4]	r[3]	r[2]	r[6]
r[2]	r[5]	r[3]	r[3]	r[4]	r[2]	r[1]	r[5]	r[3]	r[5]	r[4]	r[4]	r[1]	r[2]	r[1]	r[2]

s111*	S4xy	S4xy*	S4yz	S4yz*	S4zx	S4zx*	σ hx	σ hy	σ hz	σdz	σdz '	$\sigma d\mathbf{x}$	σdx '	σ dy	σdy
r[2]	r[4]	r[2]	r[5]	r[5]	r[6]	r[3]	r[5]	r[1]	r[1]	r[2]	r[4]	r[1]	r[1]	r[6]	r[3]
r[6]	r[1]	r[5]	r[3]	r[6]	r[4]	r[4]	r[2]	r[4]	r[2]	r[1]	r[5]	r[6]	r[3]	r[2]	r[2]
r[1]	r[6]	r[6]	r[4]	r[2]	r[1]	r[5]	r[3]	r[3]	r[6]	r[3]	r[3]	r[4]	r[2]	r[5]	r[1]
r[3]	r[5]	r[1]	r[6]	r[3]	r[2]	r[2]	r[4]	r[2]	r[4]	r[5]	r[1]	r[3]	r[6]	r[4]	r[4]
r[4]	r[2]	r[4]	r[1]	r[1]	r[3]	r[6]	r[1]	r[5]	r[5]	r[4]	r[2]	r[5]	r[5]	r[3]	r[6]
r[5]	r[3]	r[3]	r[2]	r[4]	r[5]	r[1]	r[6]	r[6]	r[3]	r[6]	r[6]	r[2]	r[4]	r[1]	r[5]

b) Operaciones de simetría sobre coordenadas internas " ΔR ":

Е	C2 x	С2 у	C2 z	C4 z	C4 x	С4 у	C4 z'	C4 x′	C4 y′	C11 1	C11 1 *	cīıī	cī1ī*	C111	C111*	
R[1]	R[1]	R[5]	R[5]	R[2]	R[1]	R[3]	R[4]	R[1]	R[6]	R[3]	R[2]	R[6]	R[4]	R[2]	R[6]	
R[2]	R[4]	R[2]	R[4]	R[5]	R[6]	R[2]	R[1]	R[3]	R[2]	R[1]	R[3]	R[5]	R[3]	R[6]	R[1]	
R[3]	R[6]	R[6]	R[3]	R[3]	R[2]	R[5]	R[3]	R[4]	R[1]	R[2]	R[1]	R[2]	R[5]	R[5]	R[4]	
R[4]	R[2]	R[4]	R[2]	R[1]	R[3]	R[4]	R[5]	R[6]	R[4]	R[5]	R[6]	R[1]	R[6]	R[3]	R[5]	
R[5]	R[5]	R[1]	R[1]	R[4]	R[5]	R[6]	R[2]	R[5]	R[3]	R[6]	R[4]	R[3]	R[2]	R[4]	R[3]	
R[6]	R[3]	R[3]	R[6]	R[6]	R[4]	R[1]	R[6]	R[2]	R[5]	R[4]	R[5]	R[4]	R[1]	R[1]	R[2]	
cī11,	cī1	1 C2 3	cy C2	xy* (2 yz	C2 vz*	C2 zx	C2 zx	* In	r S111	L S111*	sī11	sī11*	sīī1	sīī1*	s1 1 1
R[3]	R[4]		- 11 RI	21	- R[5]	- R[5]	R[6]	R[3]	I R[5	1 R[4]	R[3]	R[6]	R[2]	R[6]	R[4]	R[3]
R[5]	R[6]		-][5] RÍ	11	R[3]	R[6]	R[4]	R[4]	I R[4] R[3]	R[5]	R[1]	R[3]	R[5]	R[6]	R[1]
R[4]	R[1]		5] RI	.] 61]	R[2]	R[4]	R[5]	R[1]	 1 R[6] R[1]	R[2]	R[2]	R[5]	R[4]	R[5]	R[4]
R[1]	R[3]	 1 R[1	LI RI	51 1	R[6]	R[3]	R[2]	R[2]	R[2	1 R[6]	R[1]	R[5]	R[6]	R[1]	R[3]	R[5]
R[6]	R[2]	 1 R[2	21 RI	41	R[1]	R[1]	R[3]	R[6]	 R[1] R[2]	R[6]	R[3]	R[4]	R[3]	R[2]	R[6]
R[2]	R[5]	1 R[3	31 RI	31 1	R[4]	R[2]	R[1]	R[5]	 1 R[3	R[5]	R[4]	R[4]	R[1]	R[2]	R[1]	R[2]
<u>01 1 1 </u>	0.4			0/		· · · · ·	C 4	<i>σ</i> h	<i>σ</i> h	a h-			n or day i	<i>a</i>	or also I	
5111,	• 54xy	54X	Y* 54	yz 54	iyz*	54ZX	54ZX*	onx	o ny	onz	Jaz Ja			oay	o ay	
R[2]	R[4]	R[2	2] R[5] R	[5] 1	R[6]	R[3]	R[5]	R[1]	R[1] 1	R[2] R[4] R[1] R[1]	R[6]	R[3]	
R[6]	R[1]	R[5	5] R[3] R	[6] 1	R[4]	R[4]	R[2]	R[4]	R[2] 1	R[1] R[5] R[6] R[3]	R[2]	R[2]	
R[1]	R[6]	R[6	5] R[4] R	[2] 1	R[1]	R[5]	R[3]	R[3]	R[6] 1	R[3] R[3] R[4] R[2]	R[5]	R[1]	
R[3]	R[5]	R[1	.] R[6] R	.[3] 1	R[2]	R[2]	R[4]	R[2]	R[4] 1	R[5] R[1] R[3] R[6]	R[4]	R[4]	
R[4]	R[2]	R[4	l] R[1] R	.[1] 1	R[3]	R[6]	R[1]	R[5]	R[5] 1	R[4] R[2] R[5] R[5]	R[3]	R[6]	
R[5]	R[3]	R[3	3] R[2] R	.[4] 1	R[5]	R[1]	R[6]	R[6]	R[3] 1	R[6] R[6] R[2] R[4]	R[1]	R[5]	

c) Operaciones de simetría sobre coordenadas internas " $\Delta \alpha$ ":

C2 z C4 z C4 z' C4 x' С4 у′ C11 Ī C11Ī* CĪ1Ī CĪ1Ī* C111 C2 x C2 v C4 x C4 y $\alpha[1, 2]$ $\alpha[1, 4]$ $\alpha[2, 5]$ $\alpha[4, 5]$ $\alpha[2, 5]$ $\alpha[1, 6]$ $\alpha[2, 3]$ $\alpha[1, 4]$ $\alpha[1, 3]$ $\alpha[2, 6]$ $\alpha[1, 3]$ $\alpha[2, 3]$ $\alpha[5, 6]$ $\alpha[3, 4]$ $\alpha[2, 6]$ $\alpha[1, 6]$ $\alpha[2, 5]$ $\alpha[4, 5]$ $\alpha[1, 2]$ $\alpha[1, 4]$ $\alpha[4, 5]$ $\alpha[5, 6]$ $\alpha[2, 6]$ $\alpha[1, 2]$ $\alpha[3, 5]$ $\alpha[2, 3]$ $\alpha[1, 6]$ $\alpha[3, 4]$ $\alpha[3, 5]$ $\alpha[2, 3]$ $\alpha[4, 6]$ $\alpha[1, 3]$ $\alpha[4, 5] \alpha[2, 5] \alpha[1, 4] \alpha[1, 2] \alpha[1, 4] \alpha[3, 5] \alpha[4, 6] \alpha[2, 5] \alpha[5, 6] \alpha[3, 4] \alpha[5, 6] \alpha[4, 6] \alpha[1, 3] \alpha[2, 6] \alpha[3, 4] \alpha[3, 5]$ $\alpha[1, 4] \ \alpha[1, 2] \ \alpha[4, 5] \ \alpha[2, 5] \ \alpha[1, 2] \ \alpha[1, 2] \ \alpha[1, 3] \ \alpha[3, 4] \ \alpha[4, 5] \ \alpha[1, 6] \ \alpha[4, 6] \ \alpha[3, 5] \ \alpha[2, 6] \ \alpha[1, 6] \ \alpha[4, 6] \ \alpha[2, 3] \ \alpha[5, 6] \ \alpha[5,$ $\alpha[2, 6] \alpha[3, 4] \alpha[2, 3] \alpha[4, 6] \alpha[5, 6] \alpha[4, 6] \alpha[1, 2] \alpha[1, 6] \alpha[2, 3] \alpha[2, 5] \alpha[1, 4] \alpha[3, 5] \alpha[4, 5] \alpha[1, 3] \alpha[1, 6] \alpha[1, 2] \alpha[1, 6] \alpha[2, 3] \alpha[2, 5] \alpha[3, 5] \alpha[4, 5] \alpha[4, 5] \alpha[3, 6] \alpha[3,$ $\alpha[4, 6] \alpha[2, 3] \alpha[3, 4] \alpha[2, 6] \alpha[1, 6] \alpha[3, 4] \alpha[1, 4] \alpha[5, 6] \alpha[2, 6] \alpha[4, 5] \alpha[4, 5] \alpha[5, 6] \alpha[1, 4] \alpha[1, 6] \alpha[1, 3] \alpha[2, 5] \alpha[2, 5] \alpha[4, 5] \alpha[5, 6] \alpha[5, 6] \alpha[1, 4] \alpha[1, 6] \alpha[1, 3] \alpha[2, 5] \alpha[2, 5] \alpha[3, 4] \alpha[5, 6] \alpha[5,$ α[3, 4] α[2, 6] α[4, 6] α[2, 3] α[1, 3] α[2, 3] α[4, 5] α[3, 5] α[4, 6] α[1, 4] α[2, 5] α[1, 6] α[1, 2] α[5, 6] α[3, 5] α[4, 5] α[2, 3] α[4, 6] α[2, 6] α[3, 4] α[3, 5] α[2, 6] α[2, 5] α[1, 3] α[3, 4] α[1, 2] α[1, 2] α[1, 3] α[2, 5] α[3, 5] α[5, 6] α[1, 4] α[1, 6] α[1, 3] α[3, 5] α[5, 6] α[2, 6] α[1, 4] α[1, 3] α[4, 6] α[1, 2] α[5, 6] α[3, 4] α[2, 5] α[4, 6] α[1, 4] α[1, 2] α[2, 6] α[5, 6] α[3, 5] α[1, 3] α[1, 6] α[4, 6] α[4, 5] α[1, 6] α[2, 6] α[2, 5] α[3, 5] α[4, 6] α[4, 5] α[3, 4] α[1, 2] α[1, 4] α[2, 3] $\alpha[3,5] \ \alpha[5,6] \ \alpha[1,6] \ \alpha[1,3] \ \alpha[3,4] \ \alpha[2,5] \ \alpha[5,6] \ \alpha[2,3] \ \alpha[4,5] \ \alpha[1,3] \ \alpha[2,6] \ \alpha[1,4] \ \alpha[2,3] \ \alpha[2,5] \ \alpha[4,5] \ \alpha[3,4] \ \alpha[2,5] \ \alpha[3,4] \ \alpha[2,5] \ \alpha[3,4] \ \alpha[2,5] \ \alpha[3,4] \ \alpha[3,5] \ \alpha[3,4] \ \alpha[3,5] \ \alpha$ α[1, 3] α[1, 6] α[5, 6] α[3, 5] α[2, 3] α[1, 2] α[3, 5] α[3, 4] α[1, 4] α[1, 6] α[2, 3] α[1, 2] α[2, 6] α[4, 5] α[2, 5] α[4, 6]

cī11* cī11 C2 xy C2 xy * C2 yz C2 yz * C2 zx C2 zx* Inv S111 S111* sī11 sī11* sīī1 sīī1* s1ī1 $\alpha[3, 5]$ $\alpha[4, 6]$ $\alpha[4, 5]$ $\alpha[1, 2]$ $\alpha[3, 5]$ $\alpha[5, 6]$ $\alpha[4, 6]$ $\alpha[3, 4]$ $\alpha[4, 5]$ $\alpha[3, 4]$ $\alpha[3, 5]$ $\alpha[1, 6]$ $\alpha[2, 3]$ $\alpha[5, 6]$ $\alpha[4, 6]$ $\alpha[1, 3]$ $\alpha[5, 6]$ $\alpha[2, 6]$ $\alpha[2, 5]$ $\alpha[1, 4]$ $\alpha[1, 3]$ $\alpha[1, 6]$ $\alpha[3, 4]$ $\alpha[4, 6]$ $\alpha[1, 4]$ $\alpha[2, 3]$ $\alpha[5, 6]$ $\alpha[1, 3]$ $\alpha[3, 4]$ $\alpha[3, 5]$ $\alpha[2, 6]$ $\alpha[1, 6]$ $\alpha[1, 6]$ $\alpha[2, 3]$ $\alpha[1, 2]$ $\alpha[4, 5]$ $\alpha[1, 6]$ $\alpha[1, 3]$ $\alpha[2, 3]$ $\alpha[2, 6]$ $\alpha[1, 2]$ $\alpha[2, 6]$ $\alpha[1, 6]$ $\alpha[3, 5]$ $\alpha[4, 6]$ $\alpha[1, 3]$ $\alpha[2, 3]$ $\alpha[5, 6]$ $\alpha[1, 3] \alpha[3, 4] \alpha[1, 4] \alpha[2, 5] \alpha[5, 6] \alpha[3, 5] \alpha[2, 6] \alpha[2, 3] \alpha[2, 5] \alpha[4, 6] \alpha[1, 3] \alpha[5, 6] \alpha[2, 6] \alpha[1, 6] \alpha[3, 4] \alpha[3, 5]$ $\alpha[2, 5] \alpha[5, 6] \alpha[3, 5] \alpha[1, 3] \alpha[3, 4] \alpha[2, 6] \alpha[1, 4] \alpha[4, 5] \alpha[3, 4] \alpha[3, 5] \alpha[4, 5] \alpha[1, 4] \alpha[1, 3] \alpha[2, 5] \alpha[1, 6] \alpha[1, 2]$ $\alpha[1, 2] \alpha[3, 5] \alpha[1, 3] \alpha[3, 5] \alpha[4, 6] \alpha[2, 3] \alpha[1, 2] \alpha[2, 5] \alpha[2, 3] \alpha[5, 6] \alpha[1, 4] \alpha[4, 5] \alpha[1, 6] \alpha[1, 2] \alpha[1, 3] \alpha[2, 5]$ $\alpha[1, 4] \ \alpha[1, 3] \ \alpha[1, 6] \ \alpha[5, 6] \ \alpha[2, 6] \ \alpha[3, 4] \ \alpha[2, 5] \ \alpha[1, 2] \ \alpha[2, 6] \ \alpha[1, 6] \ \alpha[1, 2] \ \alpha[2, 5] \ \alpha[5, 6] \ \alpha[1, 4] \ \alpha[3, 5] \ \alpha[4, 5] \ \alpha[4, 5] \ \alpha[4, 5] \ \alpha[5, 6] \ \alpha[5,$ $\alpha[4,5] \ \alpha[1,6] \ \alpha[5,6] \ \alpha[1,6] \ \alpha[2,3] \ \alpha[4,6] \ \alpha[4,5] \ \alpha[1,4] \ \alpha[4,6] \ \alpha[1,3] \ \alpha[2,5] \ \alpha[1,2] \ \alpha[3,5] \ \alpha[4,5] \ \alpha[5,6] \ \alpha[1,4] \ \alpha[4,6] \ \alpha[1,4] \ \alpha[4,6] \ \alpha[2,5] \ \alpha[3,5] \ \alpha[4,5] \ \alpha[5,6] \ \alpha[1,4] \ \alpha[4,6] \ \alpha[2,5] \ \alpha[3,5] \ \alpha[4,5] \ \alpha[5,6] \ \alpha$ α[2, 3] α[4, 5] α[3, 4] α[2, 3] α[4, 5] α[2, 5] α[1, 6] α[3, 5] α[3, 5] α[4, 5] α[3, 4] α[4, 6] α[1, 2] α[2, 6] α[1, 4] α[2, 3] α[2, 6] α[2, 5] α[2, 3] α[3, 4] α[1, 4] α[1, 2] α[1, 3] α[5, 6] α[1, 3] α[2, 5] α[4, 6] α[3, 4] α[1, 4] α[2, 3] α[1, 2] α[2, 6] α[4, 6] α[1, 2] α[2, 6] α[4, 6] α[1, 2] α[1, 4] α[3, 5] α[1, 6] α[1, 6] α[1, 2] α[2, 6] α[2, 3] α[4, 5] α[3, 4] α[2, 5] α[4, 6] α[3, 4] α[1, 4] α[4, 6] α[2, 6] α[2, 5] α[4, 5] α[5, 6] α[1, 3] α[5, 6] α[1, 4] α[2, 3] α[2, 6] α[2, 5] α[4, 6] α[4, 5] α[3, 4]

S111* S4xy S4xy* S4yz S4yz* S4zx S4zx* σ hx σ hy σ hz σdz $\sigma dz'$ σdx $\sigma \, dx'$ σdy $\sigma dy'$ $\alpha[2, 6] \quad \alpha[1, 4] \quad \alpha[2, 5] \quad \alpha[3, 5] \quad \alpha[5, 6] \quad \alpha[4, 6] \quad \alpha[3, 4] \quad \alpha[2, 5] \quad \alpha[1, 4] \quad \alpha[1, 2] \quad \alpha[1, 2] \quad \alpha[4, 5] \quad \alpha[1, 6] \quad \alpha[1, 3] \quad \alpha[2, 6] \quad \alpha[2, 3] \quad \alpha[2, 6] \quad \alpha[2, 3] \quad \alpha[3, 6] \quad \alpha[3,$ $\alpha[4, 6] \alpha[1, 2] \alpha[4, 5] \alpha[1, 3] \alpha[1, 6] \alpha[3, 4] \alpha[4, 6] \alpha[1, 2] \alpha[4, 5] \alpha[2, 5] \alpha[1, 4] \alpha[2, 5] \alpha[5, 6] \alpha[3, 5] \alpha[2, 3] \alpha[2, 6]$ $\alpha[3, 4] \ \alpha[2, 5] \ \alpha[1, 4] \ \alpha[1, 6] \ \alpha[1, 3] \ \alpha[2, 3] \ \alpha[2, 6] \ \alpha[1, 4] \ \alpha[2, 5] \ \alpha[4, 5] \ \alpha[4, 5] \ \alpha[1, 2] \ \alpha[3, 5] \ \alpha[5, 6] \ \alpha[3, 4] \ \alpha[4, 6] \ \alpha[4,$ $\alpha[2, 3] \ \alpha[4, 5] \ \alpha[1, 2] \ \alpha[5, 6] \ \alpha[3, 5] \ \alpha[2, 6] \ \alpha[2, 3] \ \alpha[4, 5] \ \alpha[1, 2] \ \alpha[1, 4] \ \alpha[2, 5] \ \alpha[1, 4] \ \alpha[1, 3] \ \alpha[1, 6] \ \alpha[4, 6] \ \alpha[3, 4]$ $\alpha[5, 6] \quad \alpha[1, 3] \quad \alpha[3, 5] \quad \alpha[2, 3] \quad \alpha[4, 6] \quad \alpha[4, 5] \quad \alpha[1, 4] \quad \alpha[2, 6] \quad \alpha[4, 6] \quad \alpha[2, 3] \quad \alpha[1, 6] \quad \alpha[5, 6] \quad \alpha[2, 6] \quad \alpha[3, 4] \quad \alpha[1, 2] \quad \alpha[2, 5] \quad \alpha[4, 6] \quad \alpha[4,$ $\alpha[3, 5] \alpha[3, 5] \alpha[1, 3] \alpha[2, 6] \alpha[3, 4] \alpha[2, 5] \alpha[1, 2] \alpha[4, 6] \alpha[2, 6] \alpha[3, 4] \alpha[5, 6] \alpha[1, 6] \alpha[2, 3] \alpha[4, 6] \alpha[1, 4] \alpha[4, 5]$ $\alpha[1,3] \ \alpha[5,6] \ \alpha[1,6] \ \alpha[4,6] \ \alpha[2,3] \ \alpha[1,2] \ \alpha[2,5] \ \alpha[3,4] \ \alpha[2,3] \ \alpha[4,6] \ \alpha[3,5] \ \alpha[1,3] \ \alpha[3,4] \ \alpha[2,6] \ \alpha[4,5] \ \alpha[4,5] \ \alpha[1,4] \ \alpha[2,6] \ \alpha[4,5] \ \alpha$ $\alpha[1, 6] \ \alpha[1, 6] \ \alpha[5, 6] \ \alpha[3, 4] \ \alpha[2, 6] \ \alpha[1, 4] \ \alpha[4, 5] \ \alpha[2, 3] \ \alpha[3, 4] \ \alpha[2, 6] \ \alpha[1, 3] \ \alpha[3, 5] \ \alpha[4, 6] \ \alpha[2, 3] \ \alpha[2, 5] \ \alpha[1, 2] \ \alpha[2, 5] \ \alpha[2,$ α[2, 5] α[3, 4] α[2, 3] α[2, 5] α[4, 5] α[5, 6] α[1, 3] α[5, 6] α[1, 6] α[1, 3] α[2, 6] α[4, 6] α[1, 2] α[1, 4] α[1, 6] α[3, 5] α[4,5] α[2,3] α[3,4] α[1,2] α[1,4] α[3,5] α[1,6] α[1,6] α[5,6] α[3,5] α[4,6] α[2,6] α[2,5] α[4,5] α[4,5] α[1,3] α[5,6] α[1, 4] α[2, 6] α[4, 6] α[1, 4] α[1, 2] α[1, 3] α[5, 6] α[1, 3] α[3, 5] α[5, 6] α[3, 4] α[2, 3] α[4, 5] α[2, 5] α[3, 5] α[1, 6] α[1, 2] α[4, 6] α[2, 6] α[4, 5] α[2, 5] α[1, 6] α[3, 5] α[3, 5] α[1, 3] α[1, 6] α[2, 3] α[3, 4] α[1, 4] α[1, 2] α[5, 6] α[1, 3]

d) Operaciones de simetría sobre coordenadas internas " $\Delta\beta$ ":

E	C2 x	С2 у	C2 z	C4 z	C4 x	С4 у	C4 z′	C4 x′	C4 y′	C11 Ī	C11 Ī *	cīıī	cī1ī*	C111	C111 *
β[1, 2]	β[1, 4]	β[2,5]	β[4,5]	β[2,5]	β[1,6]	β[2,3]	β[1, 4]	β[1, 3]	β[2,6]	β[1, 3]	β[2,3]	β[5,6]	β[3, 4]	β[2,6]	β[1, 6]
β[2, 5]	β[4,5]	β[1, 2]	β[1, 4]	β[4,5]	β[5,6]	β[2,6]	β[1, 2]	β[3,5]	β[2,3]	β[1, 6]	β[3, 4]	β[3,5]	β[2,3]	β[4,6]	β[1, 3]
β[4,5]	β[2,5]	β[1, 4]	β[1,2]	β[1, 4]	β[3,5]	β[4,6]	β[2,5]	β[5,6]	β[3,4]	β[5,6]	β[4,6]	β[1,3]	β[2,6]	β[3,4]	β[3,5]
β[1, 4]	β[1, 2]	β[4,5]	β[2,5]	β[1,2]	β[1, 3]	β[3,4]	β[4,5]	β[1, 6]	β[4,6]	β[3,5]	β[2,6]	β[1,6]	β[4,6]	β[2,3]	β[5,6]
β[2,6]	β[3, 4]	β[2,3]	β[4,6]	β[5,6]	β[4,6]	β[1,2]	β[1, 6]	β[2,3]	β[2,5]	β[1, 4]	β[3,5]	β[4,5]	β[1,3]	β[1,6]	β[1, 2]
β[4,6]	β[2,3]	β[3, 4]	β[2,6]	β[1,6]	β[3,4]	β[1, 4]	β[5,6]	β[2,6]	β[4,5]	β[4,5]	β[5,6]	β[1, 4]	β[1,6]	β[1,3]	β[2,5]
β[3, 4]	β[2,6]	β[4,6]	β[2,3]	β[1, 3]	β[2,3]	β[4,5]	β[3,5]	β[4,6]	β[1, 4]	β[2,5]	β[1, 6]	β[1,2]	β[5,6]	β[3,5]	β[4,5]
β[2,3]	β[4,6]	β[2,6]	β[3, 4]	β[3,5]	β[2,6]	β[2,5]	β[1, 3]	β[3, 4]	β[1, 2]	β[1, 2]	β[1,3]	β[2,5]	β[3,5]	β[5,6]	β[1, 4]
β[1, 6]	β[1, 3]	β[3,5]	β[5,6]	β[2,6]	β[1,4]	β[1,3]	β[4,6]	β[1, 2]	β[5,6]	β[3,4]	β[2,5]	β[4,6]	β[1, 4]	β[1,2]	β[2,6]
β[5,6]	β[3,5]	β[1,3]	β[1,6]	β[4,6]	β[4,5]	β[1,6]	β[2,6]	β[2,5]	β[3,5]	β[4,6]	β[4,5]	β[3, 4]	β[1,2]	β[1, 4]	β[2,3]
β[3, 5]	β[5,6]	β[1,6]	β[1, 3]	β[3, 4]	β[2,5]	β[5,6]	β[2,3]	β[4,5]	β[1, 3]	β[2,6]	β[1, 4]	β[2,3]	β[2,5]	β[4,5]	β[3, 4]
β[1, 3]	β[1, 6]	β[5,6]	β[3, 5]	β[2, 3]	β[1, 2]	β[3, 5]	β[3, 4]	$\beta[1, 4]$	β[1, 6]	β[2, 3]	β[1, 2]	β[2,6]	$\beta[4, 5]$	β[2, 5]	β[4, 6]

cī11*	cī11	С2 ху	C2 xy *	C2 yz	C2 yz *	C2 zx	C2 zx *	Inv	S111	S111 *	s111	s111*	sīīı	sīī1*	S1 11
β[3,5]	β[4,6]	β[4,5]	β[1,2]	β[3,5]	β[5,6]	β[4,6]	β[3, 4]	β[4,5]	β[3,4]	β[3,5]	β[1,6]	β[2,3]	β[5,6]	β[4,6]	β[1, 3]
β[5,6]	β[2,6]	β[2,5]	β[1, 4]	β[1,3]	β[1,6]	β[3,4]	β[4,6]	β[1, 4]	β[2,3]	β[5,6]	β[1, 3]	β[3, 4]	β[3,5]	β[2,6]	β[1,6]
β[1,6]	β[2,3]	β[1, 2]	β[4,5]	β[1,6]	β[1,3]	β[2,3]	β[2,6]	β[1, 2]	β[2,6]	β[1,6]	β[3,5]	β[4,6]	β[1,3]	β[2,3]	β[5,6]
β[1, 3]	β[3, 4]	β[1, 4]	β[2,5]	β[5,6]	β[3,5]	β[2,6]	β[2,3]	β[2,5]	β[4,6]	β[1, 3]	β[5,6]	β[2,6]	β[1,6]	β[3, 4]	β[3, 5]
β[2,5]	β[5,6]	β[3, 5]	β[1,3]	β[3, 4]	β[2,6]	β[1,4]	β[4,5]	β[3, 4]	β[3,5]	β[4,5]	β[1, 4]	β[1,3]	β[2,5]	β[1,6]	β[1, 2]
β[1, 2]	β[3, 5]	β[1, 3]	β[3,5]	β[4,6]	β[2,3]	β[1,2]	β[2,5]	β[2,3]	β[5,6]	β[1, 4]	β[4,5]	β[1,6]	β[1,2]	β[1,3]	β[2,5]
β[1, 4]	β[1, 3]	β[1,6]	β[5,6]	β[2,6]	β[3,4]	β[2,5]	β[1, 2]	β[2,6]	β[1,6]	β[1,2]	β[2,5]	β[5,6]	β[1, 4]	β[3,5]	β[4,5]
β[4,5]	β[1, 6]	β[5,6]	β[1,6]	β[2,3]	β[4,6]	β[4,5]	β[1, 4]	β[4,6]	β[1, 3]	β[2,5]	β[1, 2]	β[3,5]	β[4,5]	β[5,6]	β[1, 4]
β[2,3]	β[4, 5]	β[3, 4]	β[2,3]	β[4,5]	β[2,5]	β[1,6]	β[3,5]	β[3,5]	β[4,5]	β[3, 4]	β[4,6]	β[1,2]	β[2,6]	β[1,4]	β[2,3]
β[2,6]	β[2,5]	β[2,3]	β[3, 4]	β[1, 4]	β[1,2]	β[1,3]	β[5,6]	β[1,3]	β[2,5]	β[4,6]	β[3, 4]	β[1, 4]	β[2,3]	β[1,2]	β[2,6]
β[4,6]	β[1, 2]	β[2,6]	β[4,6]	β[1, 2]	β[1, 4]	β[3,5]	β[1, 6]	β[1, 6]	β[1,2]	β[2,6]	β[2,3]	β[4,5]	β[3,4]	β[2,5]	β[4,6]
β[3, 4]	β[1, 4]	β[4,6]	β[2,6]	β[2,5]	β[4,5]	β[5,6]	β[1, 3]	β[5,6]	β[1, 4]	β[2,3]	β[2,6]	β[2,5]	β[4,6]	β[4,5]	β[3, 4]
S111*	S4xy	S4xy*	S4yz	S4yz*	S4zx	S4zx*	σ hx	σhy	σ hz	σdz	σdz'	σdx	σdx'	σ dy	σdy'
s1ī1∗ β[2,6]	S4xy β[1, 4]	S4xy* β[2,5]	S4yz β[3, 5]	S4yz* β[5,6]	S4zx β[4, 6]	S4zx* β[3, 4]	σhx β[2,5]	σhy β[1,4]	σ hz $\beta[1, 2]$	σdz β[1, 2]	σdz' β[4,5]	σdx β[1,6]	σdx' β[1,3]	σdy β[2,6]	σdy' β[2,3]
s1ī1* β[2,6] β[4,6]	S4xy β[1, 4] β[1, 2]	S4xy* β[2,5] β[4,5]	S4yz β[3, 5] β[1, 3]	S4yz★ β[5,6] β[1,6]	S4zx β[4,6] β[3,4]	S4zx* β[3,4] β[4,6]	σhx β[2,5] β[1,2]	σhy β[1,4] β[4,5]	σhz β[1, 2] β[2, 5]	σdz $\beta[1, 2]$ $\beta[1, 4]$	σdz' β[4,5] β[2,5]	σdx β[1,6] β[5,6]	σdx' β[1,3] β[3,5]	σdy β[2,6] β[2,3]	σdy' β[2,3] β[2,6]
s1ī1* β[2,6] β[4,6] β[3,4]	S4xy β[1, 4] β[1, 2] β[2, 5]	S4xy* β[2,5] β[4,5] β[1,4]	S4yz β[3, 5] β[1, 3] β[1, 6]	S 4yz * β[5,6] β[1,6] β[1,3]	S4zx β[4,6] β[3,4] β[2,3]	S4zx* β[3,4] β[4,6] β[2,6]	σhx β[2,5] β[1,2] β[1,4]	σ hy β[1, 4] β[4, 5] β[2, 5]	σ hz β[1, 2] β[2, 5] β[4, 5]	σdz β[1,2] β[1,4] β[4,5]	σdz' β[4,5] β[2,5] β[1,2]	σdx β[1,6] β[5,6] β[3,5]	σ dx ' β[1,3] β[3,5] β[5,6]	σdy β[2,6] β[2,3] β[3,4]	σ dy ' β[2,3] β[2,6] β[4,6]
s1ī1* β[2,6] β[4,6] β[3,4] β[2,3]	S4xy β[1, 4] β[1, 2] β[2, 5] β[4, 5]	S4xy* β[2,5] β[4,5] β[1,4] β[1,2]	S4yz β[3, 5] β[1, 3] β[1, 6] β[5, 6]	S4yz* β[5, 6] β[1, 6] β[1, 3] β[3, 5]	S4zx β[4, 6] β[3, 4] β[2, 3] β[2, 6]	S4zx* β[3, 4] β[4, 6] β[2, 6] β[2, 3]	σ hx $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$	σ hy β[1, 4] β[4, 5] β[2, 5] β[1, 2]	σ hz β[1, 2] β[2, 5] β[4, 5] β[1, 4]	σdz β[1, 2] β[1, 4] β[4, 5] β[2, 5]	$\sigma dz'$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$	σdx β[1,6] β[5,6] β[3,5] β[1,3]	$\sigma dx '$ $\beta [1, 3]$ $\beta [3, 5]$ $\beta [5, 6]$ $\beta [1, 6]$	σdy β[2,6] β[2,3] β[3,4] β[4,6]	σ dy ' β[2,3] β[2,6] β[4,6] β[3,4]
s1 $\overline{1}$ + β [2, 6] β [4, 6] β [3, 4] β [2, 3] β [5, 6]	S4×y β[1, 4] β[1, 2] β[2, 5] β[4, 5] β[1, 3]	S4xy* β[2,5] β[4,5] β[1,4] β[1,2] β[3,5]	S4yz β[3, 5] β[1, 3] β[1, 6] β[5, 6] β[2, 3]	S4yz* β[5, 6] β[1, 6] β[1, 3] β[3, 5] β[4, 6]	S4zx β[4, 6] β[3, 4] β[2, 3] β[2, 6] β[4, 5]	S4zx* β[3, 4] β[4, 6] β[2, 6] β[2, 3] β[1, 4]	σ hx $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 6]$	σ hy β[1, 4] β[4, 5] β[2, 5] β[1, 2] β[4, 6]	σ hz $\beta[1, 2]$ $\beta[2, 5]$ $\beta[4, 5]$ $\beta[1, 4]$ $\beta[2, 3]$	σdz β[1, 2] β[1, 4] β[4, 5] β[2, 5] β[1, 6]	$\sigma dz'$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[5, 6]$	σdx $\beta [1, 6]$ $\beta [5, 6]$ $\beta [3, 5]$ $\beta [1, 3]$ $\beta [2, 6]$	$\sigma dx'$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[3, 4]$	σ dy β[2, 6] β[2, 3] β[3, 4] β[4, 6] β[1, 2]	σ dy' β[2, 3] β[2, 6] β[4, 6] β[3, 4] β[2, 5]
$ \begin{array}{c} {\rm S1}\bar{1}1*\\ \beta[2,6]\\ \beta[4,6]\\ \beta[3,4]\\ \beta[2,3]\\ \beta[5,6]\\ \beta[3,5] \end{array} $	S4xy $\beta[1, 4]$ $\beta[1, 2]$ $\beta[2, 5]$ $\beta[4, 5]$ $\beta[1, 3]$ $\beta[3, 5]$	S4xy* β[2, 5] β[4, 5] β[1, 4] β[1, 2] β[3, 5] β[1, 3]	S4yz β[3, 5] β[1, 3] β[1, 6] β[5, 6] β[2, 3] β[2, 6]	S4yz* β[5, 6] β[1, 6] β[1, 3] β[3, 5] β[4, 6] β[3, 4]	S4zx $\beta[4, 6]$ $\beta[3, 4]$ $\beta[2, 3]$ $\beta[2, 6]$ $\beta[4, 5]$ $\beta[2, 5]$	S4zx* $\beta[3, 4]$ $\beta[4, 6]$ $\beta[2, 6]$ $\beta[2, 3]$ $\beta[1, 4]$ $\beta[1, 2]$	σ hx $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 6]$ $\beta[4, 6]$	σ hy $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[4, 6]$ $\beta[2, 6]$	σ hz $\beta[1, 2]$ $\beta[2, 5]$ $\beta[4, 5]$ $\beta[1, 4]$ $\beta[2, 3]$ $\beta[3, 4]$	σdz $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 6]$ $\beta[5, 6]$	$\sigma dz'$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[5, 6]$ $\beta[1, 6]$	σdx $\beta[1, 6]$ $\beta[5, 6]$ $\beta[3, 5]$ $\beta[1, 3]$ $\beta[2, 6]$ $\beta[2, 3]$	$\sigma dx'$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[3, 4]$ $\beta[4, 6]$	σdy $\beta[2, 6]$ $\beta[2, 3]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[1, 2]$ $\beta[1, 4]$	$\sigma dy'$ $\beta[2, 3]$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[3, 4]$ $\beta[2, 5]$ $\beta[4, 5]$
$ \begin{array}{c} {\rm S1}\bar{1}1*\\ \beta[2,6]\\ \beta[4,6]\\ \beta[3,4]\\ \beta[2,3]\\ \beta[5,6]\\ \beta[3,5]\\ \beta[1,3] \end{array} $	S4xy β[1, 4] β[1, 2] β[2, 5] β[4, 5] β[1, 3] β[3, 5] β[5, 6]	S4xy* β[2, 5] β[4, 5] β[1, 4] β[1, 2] β[3, 5] β[1, 3] β[1, 6]	S4yz β [3, 5] β [1, 3] β [1, 6] β [5, 6] β [2, 3] β [2, 6] β [4, 6]	S4yz* β[5, 6] β[1, 6] β[3, 5] β[4, 6] β[3, 4] β[2, 3]	S4zx β[4, 6] β[3, 4] β[2, 3] β[2, 6] β[4, 5] β[2, 5] β[1, 2]	S4zx* β[3, 4] β[4, 6] β[2, 6] β[2, 3] β[1, 4] β[1, 2] β[2, 5]	σ hx $\beta[2, 5]$ $\beta[1, 2]$ $\beta[4, 5]$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[3, 4]$	σ hy β [1, 4] β [4, 5] β [2, 5] β [1, 2] β [4, 6] β [2, 6] β [2, 3]	σ hz $\beta[1, 2]$ $\beta[2, 5]$ $\beta[4, 5]$ $\beta[1, 4]$ $\beta[2, 3]$ $\beta[3, 4]$ $\beta[4, 6]$	σdz $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 6]$ $\beta[5, 6]$ $\beta[3, 5]$	$\sigma dz'$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[1, 3]$	σdx $\beta[1, 6]$ $\beta[5, 6]$ $\beta[1, 3]$ $\beta[2, 6]$ $\beta[2, 3]$ $\beta[3, 4]$	$\sigma dx'$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[2, 6]$	σdy $\beta[2, 6]$ $\beta[2, 3]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$	$\sigma dy'$ $\beta[2, 3]$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[3, 4]$ $\beta[2, 5]$ $\beta[4, 5]$ $\beta[1, 4]$
$ \begin{array}{c} {\rm s1}\bar{1}{\rm l}{\rm *}\\ \beta[2,6]\\ \beta[4,6]\\ \beta[3,4]\\ \beta[2,3]\\ \beta[5,6]\\ \beta[3,5]\\ \beta[1,3]\\ \beta[1,6] \end{array} $	S4xy β[1, 4] β[1, 2] β[2, 5] β[4, 5] β[1, 3] β[3, 5] β[5, 6] β[1, 6]	S4xy* β[2, 5] β[4, 5] β[1, 4] β[1, 2] β[3, 5] β[1, 3] β[1, 6] β[5, 6]	S4yz β[3, 5] β[1, 3] β[1, 6] β[5, 6] β[2, 3] β[2, 6] β[4, 6] β[3, 4]	S4yz * β[5, 6] β[1, 6] β[3, 5] β[4, 6] β[3, 4] β[2, 3] β[2, 6]	S4zx β[4, 6] β[3, 4] β[2, 3] β[2, 6] β[4, 5] β[2, 5] β[1, 2] β[1, 4]	S4zx* β[3, 4] β[4, 6] β[2, 6] β[2, 3] β[1, 4] β[1, 2] β[2, 5] β[4, 5]	σ hx $\beta[2, 5]$ $\beta[1, 2]$ $\beta[4, 5]$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[3, 4]$ $\beta[2, 3]$	σ hy β [1, 4] β [4, 5] β [2, 5] β [1, 2] β [4, 6] β [2, 6] β [2, 3] β [3, 4]	σ hz $\beta[1, 2]$ $\beta[2, 5]$ $\beta[4, 5]$ $\beta[1, 4]$ $\beta[2, 3]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[2, 6]$	σdz $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 6]$ $\beta[5, 6]$ $\beta[3, 5]$ $\beta[1, 3]$	$\sigma dz'$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[1, 3]$ $\beta[3, 5]$	σdx $\beta [1, 6]$ $\beta [5, 6]$ $\beta [3, 5]$ $\beta [1, 3]$ $\beta [2, 6]$ $\beta [2, 3]$ $\beta [3, 4]$ $\beta [4, 6]$	$\sigma dx'$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[2, 6]$ $\beta[2, 3]$	σ dy β[2, 6] β[2, 3] β[3, 4] β[4, 6] β[1, 2] β[1, 4] β[4, 5] β[2, 5]	$\sigma dy'$ $\beta[2, 3]$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[3, 4]$ $\beta[2, 5]$ $\beta[4, 5]$ $\beta[1, 4]$ $\beta[1, 2]$
$s1\bar{1}*$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[3, 4]$ $\beta[2, 3]$ $\beta[5, 6]$ $\beta[3, 5]$ $\beta[1, 3]$ $\beta[1, 6]$ $\beta[2, 5]$	S4xy β [1, 4] β [1, 2] β [2, 5] β [1, 3] β [3, 5] β [5, 6] β [1, 6] β [3, 4]	S4xy* β[2, 5] β[4, 5] β[1, 4] β[3, 5] β[1, 3] β[1, 6] β[5, 6] β[2, 3]	S4yz β[3, 5] β[1, 3] β[1, 6] β[5, 6] β[2, 3] β[2, 6] β[4, 6] β[3, 4] β[2, 5]	S4yz * β[5, 6] β[1, 6] β[3, 5] β[4, 6] β[3, 4] β[2, 3] β[2, 6] β[4, 5]	S4zx β[4, 6] β[3, 4] β[2, 3] β[2, 6] β[4, 5] β[2, 5] β[1, 2] β[1, 4] β[5, 6]	S4zx* β[3, 4] β[4, 6] β[2, 6] β[2, 3] β[1, 4] β[1, 2] β[2, 5] β[4, 5] β[1, 3]	σ hx $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 6]$ $\beta[3, 4]$ $\beta[2, 3]$ $\beta[5, 6]$	σ hy β [1, 4] β [4, 5] β [2, 5] β [1, 2] β [4, 6] β [2, 6] β [2, 3] β [3, 4] β [1, 6]	σ hz β [1, 2] β [2, 5] β [4, 5] β [1, 4] β [2, 3] β [3, 4] β [4, 6] β [2, 6] β [1, 3]	σdz $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 6]$ $\beta[5, 6]$ $\beta[3, 5]$ $\beta[1, 3]$ $\beta[2, 6]$	$\sigma dz'$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[4, 6]$	σdx $\beta [1, 6]$ $\beta [5, 6]$ $\beta [3, 5]$ $\beta [1, 3]$ $\beta [2, 6]$ $\beta [2, 3]$ $\beta [3, 4]$ $\beta [4, 6]$ $\beta [1, 2]$	$\sigma dx'$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[2, 6]$ $\beta[2, 3]$ $\beta[1, 4]$	σdy $\beta[2, 6]$ $\beta[2, 3]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 6]$	$\sigma dy'$ $\beta[2, 3]$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[2, 5]$ $\beta[4, 5]$ $\beta[1, 4]$ $\beta[1, 2]$ $\beta[3, 5]$
$\begin{array}{c} \text{S1}\overline{1}1*\\ \beta[2, 6]\\ \beta[4, 6]\\ \beta[3, 4]\\ \beta[2, 3]\\ \beta[5, 6]\\ \beta[5, 5]\\ \beta[1, 3]\\ \beta[1, 6]\\ \beta[2, 5]\\ \beta[4, 5]\end{array}$	S4xy β[1, 4] β[2, 5] β[4, 5] β[1, 3] β[5, 6] β[1, 6] β[1, 6] β[3, 4] β[2, 3]	S4xy* β[2, 5] β[4, 5] β[1, 4] β[1, 2] β[1, 3] β[1, 6] β[5, 6] β[2, 3] β[3, 4]	S4yz β[3, 5] β[1, 3] β[5, 6] β[2, 3] β[2, 6] β[4, 6] β[3, 4] β[2, 5] β[1, 2]	S4yz* β[5, 6] β[1, 6] β[3, 5] β[4, 6] β[2, 3] β[2, 6] β[4, 5] β[1, 4]	S4zx β [4, 6] β [3, 4] β [2, 3] β [2, 6] β [4, 5] β [2, 5] β [1, 2] β [1, 4] β [5, 6] β [3, 5]	S4zx* β[3, 4] β[4, 6] β[2, 3] β[1, 4] β[1, 2] β[2, 5] β[4, 5] β[1, 3] β[1, 6]	σ hx β [2, 5] β [1, 2] β [1, 4] β [2, 6] β [2, 6] β [3, 4] β [2, 3] β [5, 6] β [1, 6]	σ hy β[1, 4] β[4, 5] β[2, 5] β[1, 2] β[4, 6] β[2, 6] β[2, 3] β[3, 4] β[5, 6]	σ hz β [1, 2] β [2, 5] β [4, 5] β [4, 4] β [2, 3] β [3, 4] β [4, 6] β [2, 6] β [1, 3] β [3, 5]	σdz $\beta [1, 2]$ $\beta [1, 4]$ $\beta [4, 5]$ $\beta [2, 5]$ $\beta [1, 6]$ $\beta [3, 5]$ $\beta [1, 3]$ $\beta [2, 6]$ $\beta [4, 6]$	$\sigma dz'$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[4, 6]$ $\beta[2, 6]$	σdx $\beta [1, 6]$ $\beta [5, 6]$ $\beta [1, 3]$ $\beta [2, 6]$ $\beta [2, 3]$ $\beta [3, 4]$ $\beta [4, 6]$ $\beta [1, 2]$ $\beta [2, 5]$	$\sigma dx'$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[4, 6]$ $\beta[2, 6]$ $\beta[2, 3]$ $\beta[1, 4]$ $\beta[4, 5]$	σdy $\beta [2, 6]$ $\beta [2, 3]$ $\beta [3, 4]$ $\beta [1, 2]$ $\beta [1, 2]$ $\beta [1, 4]$ $\beta [4, 5]$ $\beta [2, 5]$ $\beta [1, 3]$	σ dy' β[2, 3] β[2, 6] β[4, 6] β[3, 4] β[2, 5] β[4, 5] β[1, 4] β[1, 2] β[5, 6]
$\begin{array}{c} \text{S1}\bar{1}1*\\ \beta[2,6]\\ \beta[4,6]\\ \beta[3,4]\\ \beta[2,3]\\ \beta[5,6]\\ \beta[3,5]\\ \beta[1,3]\\ \beta[1,6]\\ \beta[2,5]\\ \beta[4,5]\\ \beta[1,4] \end{array}$	S4xy β[1, 4] β[2, 5] β[4, 5] β[3, 5] β[5, 6] β[3, 4] β[2, 3] β[2, 6]	S4xy* β[2, 5] β[4, 5] β[1, 4] β[3, 5] β[1, 3] β[1, 6] β[5, 6] β[2, 3] β[3, 4] β[4, 6]	$\begin{array}{c} S4yz\\ \beta[3,5]\\ \beta[1,3]\\ \beta[1,6]\\ \beta[5,6]\\ \beta[2,3]\\ \beta[2,6]\\ \beta[4,6]\\ \beta[3,4]\\ \beta[2,5]\\ \beta[1,2]\\ \beta[1,4] \end{array}$	S4yz* β[5, 6] β[1, 6] β[3, 5] β[4, 6] β[3, 4] β[2, 3] β[4, 5] β[4, 5] β[1, 4] β[1, 2]	S4zx $\beta[4, 6]$ $\beta[3, 4]$ $\beta[2, 3]$ $\beta[2, 6]$ $\beta[4, 5]$ $\beta[1, 2]$ $\beta[1, 2]$ $\beta[5, 6]$ $\beta[3, 5]$ $\beta[1, 3]$	S4zx* $\beta[3, 4]$ $\beta[4, 6]$ $\beta[2, 6]$ $\beta[1, 4]$ $\beta[1, 2]$ $\beta[1, 2]$ $\beta[1, 5]$ $\beta[1, 3]$ $\beta[5, 6]$	σ hx $\beta[2, 5]$ $\beta[1, 2]$ $\beta[4, 5]$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[3, 4]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[1, 3]$	σ hy $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[4, 6]$ $\beta[2, 3]$ $\beta[3, 4]$ $\beta[5, 6]$ $\beta[3, 5]$	σ hz $\beta[1, 2]$ $\beta[2, 5]$ $\beta[1, 4]$ $\beta[2, 3]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[2, 6]$ $\beta[3, 5]$ $\beta[5, 6]$	σdz $\beta[1, 2]$ $\beta[1, 4]$ $\beta[2, 5]$ $\beta[2, 5]$ $\beta[5, 6]$ $\beta[3, 5]$ $\beta[1, 3]$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[3, 4]$	$\sigma dz'$ $\beta[4, 5]$ $\beta[2, 5]$ $\beta[1, 2]$ $\beta[1, 4]$ $\beta[5, 6]$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[4, 6]$ $\beta[2, 3]$	σdx $\beta[1, 6]$ $\beta[5, 6]$ $\beta[1, 3]$ $\beta[2, 6]$ $\beta[2, 3]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[1, 2]$ $\beta[2, 5]$	$\sigma dx'$ $\beta[1, 3]$ $\beta[3, 5]$ $\beta[5, 6]$ $\beta[1, 6]$ $\beta[3, 4]$ $\beta[4, 6]$ $\beta[2, 6]$ $\beta[2, 3]$ $\beta[1, 4]$ $\beta[4, 5]$ $\beta[2, 5]$	σ dy β[2, 6] β[2, 3] β[3, 4] β[4, 6] β[1, 2] β[1, 4] β[4, 5] β[2, 5] β[1, 3] β[3, 5]	$\sigma dy'$ $\beta[2, 3]$ $\beta[2, 6]$ $\beta[4, 6]$ $\beta[3, 4]$ $\beta[2, 5]$ $\beta[4, 5]$ $\beta[1, 4]$ $\beta[1, 2]$ $\beta[5, 6]$ $\beta[1, 6]$

e) Operaciones de simetría sobre coordenadas internas " Δq ":

Е	C2 x	С2 у	C2 z	C4 z	C4 x	С4 у	C4 z′	C4 x′	C4 y′	C11	ī c	11 Ī *	cī1	īc	:111*	C111 0	C111 *	
q1	q7	q7	q1	q 8	q6	q10	q 8	q12	q4	q11		q 9	q11	-	q3	q3	q5	
q2	q 8	q 8	q2	q7	q5	q 9	q7	q11	q3	q12		q10	q12	2	q4	q4	q 6	
q3	q3	q 9	q 9	q12	q10	q2	q6	q10	q 8	q7		q5	q1		q11	q5	q1	
q4	q4	q10	q10	q11	q 9	q1	q5	q 9	q7	q 8		q 6	q2		q12	q6	q2	
q5	q11	q5	q11	q4	q 8	q12	q10	q2	q12	q3		q7	q 9		q7	q1	q3	
q6	q12	q6	q12	q3	q7	q11	q 9	q1	q11	q4		q 8	q1()	q 8	q2	q4	
q7	q1	q1	q7	q2	q12	q4	q2	q6	q10	q5		q3	q5		q 9	q 9	q11	
q8	q2	q2	q 8	q1	q11	q3	q1	q5	q 9	q6		q4	q 6		q10	q10	q12	
q 9	q 9	q3	q3	q6	q4	q 8	q12	q 4	q2	q1		q11	q7		q5	q11	q 7	
q10	q10	q4	q4	q5	q3	q7	q11	q 3	ql	q 2		q12	q 8		q6	q12	q 8	
q11	q5	q11	q5	q10	q2	q 6	q4	q 8	q6	q 9		q1	q 3		q1	q7	q9	
q12	q6	q12	q6	q 9	q1	q5	q3	q7	q5	q10		q2	q4		q2	q 8	q10	
cī1:	l∗ C	ī11 (С2 ху	С2 ху	* C2 :	yz C2	?yz∗	C2 zx	C2 zx *	Inv	S11	1 S11	1* S	ī 11	sī11,	• sīī1	. sīī1*	S1 Ī 1
q5		q9	q2	q2	qe	5	q12	q10	q4	q1	q3	q	5	q5	q 9	q11	q 9	q11
q6	c	q10	q1	ql	q	5 (q11	q 9	q3	q2	q4	q	6	q6	q10	q12	q10	q12
q7	Ċ	q11	q6	q12	q	1	q4	q 8	q2	q3	q5	q	1	q7	q11	q7	q 5	q1
q 8	Ċ	q12	q5	q11	q	3	q 3	q7	ql	q4	q6	q	2	4 8	q12	4 8	q 6	q2
q9		q1	q4	q10	q2	2	q 8	q6	q6	q5	q1	q	3	q9	ql	q 3	q7	q 9
q10		q2	q3	q 9	ql	L	q 7	q5	q 5	q 6	q2	q	4	q10	q2	q4	q 8	q10
q11		q 3	q 8	q 8	q1	2	q6	q4	q10	q7	q 9	q 1	.1	q11	q 3	q 5	q 3	q 5
q12		q 4	q7	q7	q1	1	q5	q3	q 9	q 8	q10) q1	.2	q12	q4	q 6	q4	q6
q1		q5	q12	q 6	q1	0 0	q10	q2	q 8	q 9	q11	q	7	q1	q 5	ql	q11	q7
q2		q 6	q11	q5	đ	9	q9	ql	q7	q10	q12	2 q	8	q2	q6	q2	q12	đ 8
q3		q 7	q10	q4	q	3	q2	q12	q12	q11	q7	q	9	q3	q 7	q9	ql	q3
q4		q 8	q9	q 3	q	7	q1	q11	q11	q12	q 8	q1	.0	q4	q 8	q10	q2	q4

S4xy	S4xy*	S4yz	S4yz *	S4zx	S4zx*	σ hx	σ hy	$\sigma \; \mathtt{hz}$	σdz	σdz '	$\sigma d\mathbf{x}$	$\sigma dx '$	σdy	σdy'
q 8	q 8	q6	q12	q10	q4	q7	q7	q1	q2	q2	q6	q12	q4	q10
q7	q7	q5	q11	q 9	q3	q 8	q 8	q2	q1	q1	q5	q11	q3	q 9
q12	q6	q10	q10	q2	q 8	q3	q 9	q 9	q6	q12	q4	q4	q2	q 8
q11	q5	q 9	q 9	q1	q7	q4	q10	q10	q5	q11	q3	q3	q1	q7
q4	q10	q 8	q2	q12	q12	q11	q5	q11	q4	q10	q2	q 8	q6	q 6
q3	q 9	q7	q1	q11	q11	q12	q6	q12	q3	q9	q1	q7	q5	q5
q2	q2	q12	q6	q4	q10	q1	q1	q7	q 8	q 8	q12	q6	q10	q4
q1	q1	q11	q5	q3	q 9	q2	q2	q 8	q7	q7	q11	q5	q 9	q3
q6	q12	q4	q4	q 8	q2	q 9	q3	q3	q12	q6	q1 0	q10	q 8	q2
q5	q11	q3	q3	q7	q1	q10	q4	q4	q11	q5	q 9	q 9	q7	q1
q10	q4	q2	q 8	q6	q6	q5	q11	q5	q10	q4	q 8	q2	q12	q12
q 9	q3	q1	q7	q5	q5	q6	q12	q6	q 9	q3	q7	q1	q11	q11
	S4xy q8 q7 q12 q11 q4 q3 q2 q1 q6 q5 q10 q9	S4xy S4xy* q8 q8 q7 q7 q12 q6 q11 q5 q4 q10 q3 q9 q2 q2 q1 q1 q6 q12 q1 q1 q6 q12 q5 q11 q10 q4 q5 q11 q9 q3	S4xy S4yz q8 q6 q7 q5 q12 q6 q10 q14 q5 q9 q4 q10 q8 q4 q10 q8 q4 q10 q8 q4 q10 q8 q5 q9 q7 q2 q2 q12 q1 q1 q11 q6 q12 q4 q5 q11 q3 q10 q4 q2 q5 q13 q4 q9 q3 q1	S4xy S4yz S4yz q8 q6 q12 q7 q7 q5 q11 q12 q6 q10 q10 q12 q6 q10 q10 q11 q5 q9 q9 q4 q10 q8 q2 q3 q9 q7 q1 q2 q2 q12 q6 q1 q1 q11 q5 q6 q12 q4 q4 q5 q11 q3 q3 q10 q4 q2 q8 q9 q3 q1 q7	S4xy S4yz S4yz S4zx q8 q6 q12 q10 q7 q7 q5 q11 q9 q12 q6 q10 q10 q2 q11 q5 q9 q1 q1 q4 q10 q8 q2 q12 q3 q9 q7 q1 q11 q4 q10 q8 q2 q12 q3 q9 q7 q1 q11 q2 q2 q12 q4 q10 q1 q11 q11 q11 q11 q4 q12 q4 q4 q8 q5 q11 q3 q3 q7 q40 q4 q4 q8 q4 q5 q11 q3 q3 q7 q40 q4 q4 q6 q4 q5 q14 q4 q4 q6 q9	S4xy S4yz S4yz S4zz S4zz q8 q6 q12 q10 q4 q7 q7 q5 q11 q9 q3 q12 q6 q10 q10 q2 q8 q11 q5 q9 q9 q1 q7 q4 q10 q8 q2 q12 q12 q3 q9 q7 q1 q11 q11 q2 q2 q12 q6 q12 q12 q4 q10 q8 q2 q12 q12 q4 q10 q8 q2 q12 q12 q4 q10 q1 q1 q1 q1 q2 q2 q12 q6 q4 q1 q4 q1 q5 q3 q9 q1 q5 q11 q3 q3 q7 q1 q5 q3 q1 q7 q5<	S4xyS4yzS4yzS4zzS4zz α σ q8q8q6q12q10q4q7q7q7q5q11q9q3q8q12q6q10q10q2q8q3q11q5q9q9q1q7q4q4q10q8q2q12q12q11q3q9q7q1q11q11q12q4q10q11q5q3q9q2q5q12q12q6q4q8q2q6q12q4q4q8q2q9q5q11q3q3q6q6q5q9q3q1q7q5q5q6	S4xyS4yzS4yzS4zxS4zx σ hyq8q8q6q12q10q4q7q7q7q7q5q11q9q3q8q8q12q6q10q10q2q8q3q9q11q5q9q9q1q7q4q10q4q10q8q2q12q12q11q5q3q9q7q1q11q11q12q6q4q10q1q5q3q9q2q2q6q12q4q4q8q2q9q3q5q11q3q3q6q6q5q11q9q3q1q7q5q5q6q12	S4xyS4yzS4yzS4zxS4zx σ hz σ hzq8q8q6q12q10q4q7q7q1q7q7q5q11q9q3q8q8q2q12q6q10q10q2q8q3q9q9q11q5q9q9q1q7q4q10q10q4q10q8q2q12q11q5q11q3q9q7q1q11q12q6q12q4q10q11q5q3q9q2q2q8q5q12q14q5q3q9q2q2q8q6q12q4q4q8q2q9q3q3q5q11q3q3q6q6q5q11q5q9q3q1q7q5q5q6q12q6	S4xyS4yzS4yzS4zxS4zx σ hz σ hz σ hz σ hzq8q8q6q12q10q4q7q7q1q2q7q7q5q11q9q3q8q8q2q1q12q6q10q10q2q8q3q9q9q6q11q5q9q9q1q7q4q10q10q5q4q10q8q2q12q11q5q1q4q3q9q7q1q11q12q6q12q1q4q10q11q5q3q9q2q2q8q7q5q12q6q4q10q1q1q5q5q5q5q6q12q4q4q8q2q9q3q3q1q1q10q4q2q8q6q6q5q1q5q5q5q5q5q5q5q6q12q6q4q1q5q5	S4xyS4yzS4yzS4yzS4zxS4zx σ hx σ hy σ hz σ dz σ dz σ dzq8q8q6q12q10q4q7q7q1q2q2q7q7q5q11q9q3q8q8q2q1q1q12q6q10q10q2q8q3q9q9q6q12q11q5q9q9q1q7q4q10q10q5q11q4q10q8q2q12q12q11q5q1q4q10q3q9q7q1q11q11q12q6q12q3q9q4q10q11q5q3q9q2q2q8q7q1q5q1q11q5q3q9q2q2q8q7q1q6q12q4q4q8q2q9q3q1q5q1q6q11q3q3q7q1q10q4q4q1q5q6q11q3q3q7q1q10q4q4q1q5q1q5q6q11q3q3q7q1q10q4q4q1q5q1q5q1q6q11q3q3q7q1q10q4q4q1q5q1q5q6q11q3q3q5<	S4xyS4yzS4yzS4yzS4zxS4xx σ hx σ hy σ hz σ dz σ dz σ dzq8q8q6q12q10q4q7q7q1q2q2q6q7q7q5q11q9q3q8q8q2q1q1q5q12q6q10q10q2q8q3q9q9q6q12q4q11q5q9q9q1q7q4q10q10q5q11q3q4q10q8q2q12q12q11q5q1q4q10q2q3q9q7q1q11q11q12q6q12q3q9q1q4q10q11q5q3q9q2q2q8q6q12q1q4q10q1q11q11q11q12q6q12q3q9q1q5q1q1q1q11q11q12q6q12q8q1q1q6q12q1q5q3q9q2q2q8q7q1q1q6q12q4q4q8q2q9q3q3q12q6q1q6q12q4q4q8q2q9q3q3q12q6q1q6q11q3q3q7q1q10q4q4q1q5 <td< th=""><th>S4xyS4yzS4yzS4zxS4zxσ hxσ hyσ hzσ dzσ dz<th< th=""><th>S4xyS4yzS4yzS4zzS4zzS4zzσ nσ n</th></th<></th></td<>	S4xyS4yzS4yzS4zxS4zx σ hx σ hy σ hz σ dz <th< th=""><th>S4xyS4yzS4yzS4zzS4zzS4zzσ nσ n</th></th<>	S4xyS4yzS4yzS4zzS4zzS4zz σ n

f) Operaciones de simetría sobre coordenadas internas " Δd ":

Е	C2 x	С2 у	C2 z	C4 z	C4 x	С4 у	C4 z'	C4 x'	C4 y′	C11 1	C11 1 *	cīıī	cī1ī*	C111	C111*
d1	d7	d11	d5	d20	d13	d15	d16	d19	d24	d3	d8	d12	d4	d2	d6
d2	d4	d8	d10	d17	d18	d14	d13	d15	d20	d7	d9	d5	d3	d6	d1
d3	d6	d12	d9	d15	d14	d23	d21	d16	d13	d8	d1	d2	d5	d11	d10
d4	d2	d10	d8	d19	d15	d22	d23	d18	d16	d11	d6	d1	d12	d9	d5
d5	d11	d7	d1	d16	d23	d18	d20	d17	d21	d12	d10	d3	d2	d4	d9
d6	d3	d9	d12	d24	d16	d19	d18	d14	d17	d4	d11	d10	d7	d1	d2
d7	d1	d5	d11	d14	d19	d21	d22	d13	d18	d9	d2	d6	d10	d8	d12
d8	d10	d2	d4	d23	d24	d20	d19	d21	d14	d1	d3	d11	d9	d12	d7
d9	d12	d6	d3	d21	d20	d17	d15	d22	d19	d2	d7	d8	d11	d5	d4
d10	d8	d4	d2	d13	d21	d16	d17	d24	d22	d5	d12	d7	d6	d3	d11
d11	d5	d1	d7	d22	d17	d24	d14	d23	d15	d6	d4	d9	d8	d10	d3
d12	d9	d3	d6	d18	d22	d13	d24	d20	d23	d10	d5	d4	d1	d7	d8
d13	d19	d23	d17	d2	d7	d3	d10	d1	d12	d21	d20	d18	d16	d14	d24
d14	d16	d20	d22	d11	d6	d8	d7	d3	d2	d19	d15	d17	d21	d24	d13
d15	d18	d24	d21	d9	d2	d11	d3	d4	d1	d14	d19	d20	d23	d17	d16
d16	d14	d22	d20	d1	d3	d4	d5	d6	d10	d23	d24	d13	d18	d15	d17
d17	d23	d19	d13	d10	d5	d6	d2	d11	d9	d18	d22	d21	d14	d16	d15
d18	d15	d21	d24	d6	d4	d7	d12	d2	d5	d22	d17	d16	d13	d19	d20
d19	d13	d17	d23	d8	d1	d9	d4	d7	d6	d15	d14	d24	d22	d20	d18
d20	d22	d14	d16	d5	d12	d2	d1	d9	d8	d13	d21	d23	d15	d18	d19
d21	d24	d18	d15	d3	d8	d5	d9	d10	d7	d20	d13	d14	d17	d23	d22
d22	d20	d16	d14	d7	d9	d10	d11	d12	d4	d17	d18	d19	d24	d21	d23
d23	d17	d13	d19	d4	d11	d12	d8	d5	d3	d24	d16	d15	d20	d22	d21
d24	d21	d15	d18	d12	d10	d1	d6	d8	d11	d16	d23	d22	d19	d13	d14

cī11*	cī11	С2 ху	C2 xy *	C2 yz	C2 yz *	C2 zx	C2 zx	* Inv	S111	S111 *	sī11	sī11*	sīī1	sīī1*	\$1 Ī 1
d9	d10	d22	d14	d23	d17	d18	d21	d23	d22	d21	d18	d14	d24	d16	d15
d11	d12	d23	d19	d21	d24	d16	d22	d22	d21	d23	d13	d15	d17	d18	d19
d4	d7	d18	d24	d20	d22	d17	d19	d24	d13	d14	d20	d17	d16	d23	d22
d7	d3	d13	d17	d24	d21	d20	d14	d20	d18	d19	d17	d24	d13	d21	d23
d6	d8	d14	d22	d13	d19	d15	d24	d19	d20	d18	d21	d16	d15	d14	d24
d8	d5	d21	d15	d22	d20	d13	d23	d21	d23	d22	d16	d19	d20	d13	d14
d3	d4	d16	d20	d17	d23	d24	d15	d17	d16	d15	d24	d20	d18	d22	d21
d5	d6	d17	d13	d15	d18	d22	d16	d16	d15	d17	d19	d21	d23	d24	d13
d10	d1	d24	d18	d14	d16	d23	d13	d18	d19	d20	d14	d23	d22	d17	d16
d1	d9	d19	d23	d18	d15	d14	d20	d14	d24	d13	d23	d18	d19	d15	d17
d12	d2	d20	d16	d19	d13	d21	d18	d13	d14	d24	d15	d22	d21	d20	d18
d2	d11	d15	d21	d16	d14	d19	d17	d15	d17	d16	d22	d13	d14	d19	d20
400 012	dzz	4	48	d5	410	410	d9	410	410	a.3	a12	az -10	46	d4 -11.0	d9
423	412	d5 d1 2	ar	49	d12	45	04 47	d10	a3 47	40	42	d9 d11	d5 d10	d12 d5	d/
d1 0	d21	d12	d11	412	40	42	49	49	d12	47	d5	46	d1	43	411
424	420	48	d1	47	d1	43	412	47	49	d12	43	44	40	42	46
d14	d23	43	49	d10	48	d1	d11	49	d5	d4	d10	d1	d2	d7	48
d21	d16	d10	d2	d11	d5	d12	43	d5	d4	d9	d6	48	d12	d10	d3
d17	d24	d11	d7	d3	d6	d4	d10	d4	d9	d5	d7	d3	d11	d6	d1
d16	d19	d6	d12	d2	d4	d11	d1	d6	d1	d2	d8	d5	d4	d11	d10
d13	d15	d1	d5	d6	d3	d8	d2	d2	d6	d1	d11	d12	d7	d9	d5
d18	d14	d2	d10	d1	d7	d9	d6	d1	d2	d6	d9	d10	d3	d8	d12
d20	d17	d9	d3	d4	d2	d7	d5	d3	d11	d10	d4	d7	d8	d1	d2
s111*	S4xy	S4xy*	S4yz	S4yz*	S4zx S	4zx*	σhxc	σhy σ	hz σ	dz σdz	'σdx	σdx.'	σdy	σdy'	
s1ī1∗ d20	S4xy d4	S4xy* d8	S4yz d11	S4yz* d5	S4zx S d12	4zx * d3	σhx c d17 d	σhy σ d13 d	hz σ 19 c	dz σdz 12 d1(:'	σdx.' d7	σdy d6	σ dy ' d9	
s1 1 1 ★ d20 d24	S4xy d4 d7	S4xy* d8 d11	S4yz d11 d9	S4yz * d5 d12	S4zx S d12 d10	64zx * d3 d4	σhx c d17 c d20 c	σhyσ d13 d d16 d	hzσ 19α 14α	dz σdz 32 d10 31 d5	:'	σ dx ' d7 d3	σdy d d6 d2	σ dy ' d9 d8	
s1 1 1 * d20 d24 d19	S4xy d4 d7 d12	S4xy* d8 d11 d6	S4yz d11 d9 d10	S4yz * d5 d12 d8	S4zx S d12 d10 d1	64zx * d3 d4 d11	σhx d d17 d d20 d d21 d	σhy σ d13 d d16 d d15 d	hz σ 19 α 14 α 18 α	dz σdz 12 d10 11 d5 19 d3	a' σdx 0 d1 d6 d4	σ dx ' d7 d3 d2	σ dy d6 d2 d5	ग dy ' d9 d8 d7	
s1 1 1 * d20 d24 d19 d15	S4xy d4 d7 d12 d5	S4xy* d8 d11 d6 d1	S4yz d11 d9 d10 d12	S4yz * d5 d12 d8 d9	S4zx S d12 d10 d1 d2	34zx * d3 d4 d11 d8	σ hx c d17 c d20 c d21 c d22 c	τhy τ d13 d d16 d d15 d d14 d	hz σ 19 α 14 α 18 α 16 d	dz σdz 32 d10 31 d5 39 d3 11 d7	:'	σ dx ' d7 d3 d2 d6	σ dy d d6 d2 d5 d10	ठ dy ' d9 d8 d7 d4	
S1 1 1 * d20 d24 d19 d15 d22	S4xy d4 d7 d12 d5 d8	S4xy* d8 d11 d6 d1 d4	S4yz d11 d9 d10 d12 d1	S4yz * d5 d12 d8 d9 d7	S4zx S d12 d10 d1 d2 d9	54zx * d3 d4 d11 d8 d6	σ hx c d17 c d20 c d21 c d22 c d13 c	σhy σ d13 d d16 d d15 d d14 d d17 d	hz σ 19 α 14 α 18 α 16 d 23 d	dz σdz 12 d10 11 d5 19 d3 11 d7 11 d2	:' σ dx 0 d1 d6 d4 d3 d11	σ dx ' d7 d3 d2 d6 d5	σ dy d d6 d2 d5 d10 d3	o dy ' d9 d8 d7 d4 d12	
s1 1 1 * d20 d24 d19 d15 d22 d17	S4xy d4 d7 d12 d5 d8 d3	S4xy* d8 d11 d6 d1 d4 d9	S4yz d11 d9 d10 d12 d1 d8	S4yz * d5 d12 d8 d9 d7 d10	S4zx S d12 d10 d1 d2 d9 d5	54zx * d3 d4 d11 d8 d6 d7	σ hx c d17 c d20 c d21 c d22 c d13 c d24 c	τ hy τ d13 d d16 d d15 d d15 d d14 d d17 d d18 d	hz σ 19 α 14 α 18 α 16 d 23 d 15 α	dz σdz 32 d10 31 d5 39 d3 111 d7 110 d2 36 d12	:' σ dx 0 d1 d6 d4 d3 d11 2 d2	σ dx ' d7 d3 d2 d6 d5 d4	σ dy d d6 d2 d5 d10 d3 d1	σ dy ' d9 d8 d7 d4 d12 d11	
\$1 1 1* d20 d24 d19 d15 d22 d17 d14	S4xy d4 d7 d12 d5 d8 d3 d10	S4xy* d8 d11 d6 d1 d4 d9 d2	S4yz d11 d9 d10 d12 d1 d8 d5	S4yz * d5 d12 d8 d9 d7 d10 d11	S4zx S d12 d10 d1 d2 d9 d5 d6	34zx * d3 d4 d11 d8 d6 d7 d9	σ hx c d17 c d20 c d21 c d22 c d13 c d24 c d23 c	τ hy τ d13 d d16 d d15 d d14 d d17 d d18 d d19 d	hz σ 19 c 14 c 18 c 16 d 23 d 15 c 13 c	dz σdz 12 d10 11 d5 19 d3 111 d7 110 d2 16 d12 18 d4	:' σ dx 0 d1 d6 d4 d3 d11 2 d2 d7	σ dx ' d7 d3 d2 d6 d5 d4 d1	σ dy d d6 d2 d5 d10 d3 d1 d12	σ dy ' d9 d8 d7 d4 d12 d11 d3	
\$1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18	S4xy d4 d7 d12 d5 d8 d3 d10 d1	S4xy* d8 d11 d6 d1 d4 d9 d2 d5	S4yz d11 d9 d10 d12 d1 d8 d5 d3	S4yz * d5 d12 d8 d9 d7 d10 d11 d6	S4zx S d12 d10 d1 d2 d9 d5 d6 d4	42x * d3 d4 d11 d8 d6 d7 d9 d10	σ hx c d17 c d20 c d21 c d22 c d13 c d24 c d23 c d14 c	σ hy σ d13 d d16 d d15 d d14 d d17 d d18 d d19 d d22 d	hz σ 19 c 14 c 18 c 16 d 23 d 15 c 13 c 20 c	dz σ dz 12 d1 11 d5 19 d3 111 d7 10 d2 16 d1 18 d4 17 d1	:' σ dx 0 d1 d6 d4 d3 d11 2 d2 d7 1 d12	σ dx ' d7 d3 d2 d6 d5 d4 d1 d9	σ dy d d6 d2 d5 d10 d3 d1 d12 d8	o dy ' d9 d8 d7 d4 d12 d11 d3 d2	
\$1 1 1* d20 d24 d19 d15 d22 d17 d14 d18 d13	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5	σ hx c d17 c d20 c d21 c d22 c d13 c d24 c d23 c d14 c d15 c	σ hy σ d13 d d16 d d15 d d14 d d17 d d18 d d19 d d122 d d221 d	hz σ 19 α 14 α 18 α 23 d 15 α 13 α 20 α 24 α	dz σ dz 12 d10 11 d5 19 d3 11 d7 11 d7 11 d7 13 d4 13 d9	 σ dx d1 d6 d3 d11 d2 d2 d7 d12 d10 	σ dx ' d7 d3 d2 d6 d5 d4 d1 d9 d8	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11	o dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1	
S1 1 1* d20 d24 d19 d15 d22 d17 d14 d18 d13 d21	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d2	σ hx c d17 c d20 c d21 c d22 c d13 c d24 c d23 c d14 c d15 c d16 c	σ hy σ d13 d d16 d d15 d d14 d d17 d d18 d d19 d d22 d d211 d d22 d d21 d	hz σ 19 c 14 c 18 c 16 d 23 d 15 c 13 c 20 c 24 c 22 c	dz 7 dz 12 d1(11 d5 19 d3 11 d7 10 d2 16 d1(18 d4 17 d1(13 d9 15 d1	 σ dx d1 d6 d4 d3 d11 2 d2 d7 d12 d12 d10 d9 	σ dx ' d7 d2 d6 d5 d4 d1 d9 d8 d12	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d8 d11 d4	o dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d1 d10	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d2 d2 d12	σ hx c d17 c d20 c d21 c d22 c d13 c d24 c d13 c d14 c d15 c d16 c d19 c	Thy Thy d13 d d16 d d15 d d14 d d17 d d18 d d19 d d22 d d221 d d223 d	hz σ 19 α 14 α 18 α 16 d 15 α 13 α 20 α 24 α 22 α 17 α	dz σdz 12 d1(11 d5 19 d3 11 d7 10 d2 16 d1 18 d4 17 d1 13 d9 15 d1 14 d8	 σ dx d1 d6 d4 d3 d11 d2 d2 d7 d12 d10 d9 d5 	σ dx ' d7 d3 d2 d6 d5 d4 d1 d9 d8 d12 d11	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9	o dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d10 d6	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d1 d4	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d2 d12 d1	σ hx d d17 d d20 d d21 d d22 d d13 d d24 d d23 d d14 d d15 d d19 d d18 d	Thy Thy d13 d d16 d d15 d d14 d d17 d d18 d d19 d d22 d d221 d d223 d d223 d	hz σ 19 c 14 c 18 c 23 d 15 c 13 c 20 c 24 c 22 c 21 d	dz σ dz ii d5 i9 d3 i1 d7 i0 d2 i8 d4 i7 d1 i3 d9 i5 d1 i4 d8 i2 d6	 σ dx d1 d6 d4 d3 d11 d2 d2 d7 d12 d10 d9 d5 d8 	σ dx ' d7 d3 d2 d6 d5 d4 d1 d9 d8 d12 d11 d10	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7	dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d10 d6 d5	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 e3	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9 d22	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d2	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d2 3	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11 d24	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d2 d12 d12 d1 5 20	σ hx c d17 c d20 c d21 c d22 c d13 c d24 c d23 c d14 c d15 c d16 c d19 c d18 c d5 c d18 c d5 c d18 c d5 c d2 c	Thy Thy dl3 d dl6 d dl6 d dl7 d dl4 d dl7 d dl14 d dl17 d dl18 d dl19 d dl22 d dl21 d dl22 d dl21 d dl22 d dl23 d dl24 d dl23 d	hz σ 19 α 14 α 18 α 16 d 23 d 15 α 20 α 22 α 22 α 17 α 21 d 17 d	dz σdz 12 d1(11 d5 19 d3 11 d7 10 d2 16 d1(18 d4 17 d1(13 d9 15 d1 44 d8 12 d6 12 d6 13 d7 14 d7 15 d7 16 d7 16 d7 16 d7 17 d7 18 d4 18 d4 19 d7 10 d2 10 d7 10 d2 10 d7 10 d	 σ dx d1 d6 d4 d3 d11 d2 d2 d7 d12 d10 d9 d5 d8 d19 	σ dx ' d7 d3 d2 d6 d5 d4 d1 d9 d8 d12 d11 d10 d13	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18	dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d10 d6 d5 d21	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 d6 d6	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9 d22 d13	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14 d17 c10	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d2	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d23 d24	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11 d24 d16	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d2 d12 d12 d15 d22	σ hx c d17 c d20 c d21 c d22 c d13 c d22 c d13 c d24 c d23 c d14 c d15 c d16 c d19 c d18 c d5 d 8	Thy Thy dl3 d dl6 d dl5 d dl4 d dl17 d dl18 d dl19 d dl22 d dl21 d dl22 d dl21 d dl21 d dl22 d dl21 d dl22 d dl21 d dl22 d dl23 d dl24 d dl2 d dl2 d	hz o 19 o 14 o 18 o 16 d 23 d 15 o 20 o 24 o 22 o 21 d 17 d 17 d 12 d 12 d	dz σ dz ii d5 i9 d3 i1 d7 i0 d2 i6 d13 i8 d4 i7 d13 i3 d9 i5 d1 i4 d8 i2 d6 i20 d1 i31 d9	 σ dx d1 d6 d4 d3 d11 d2 d2 d7 d12 d10 d9 d5 d8 d19 3 d18 	σ dx ' d7 d3 d2 d6 d5 d4 d1 d9 d8 d12 d11 d10 d13 d15	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20	dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d10 d6 d5 d21 d14	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 d6 d1 22	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9 d22 d13 d18 202	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14 d17 d24	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d21 d22 22	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d23 d24 d20 22	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11 d24 d16 d13 v2	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d12 d12 d12 d15 d22 d1 d15 d22 d1	σ hx c d17 c d20 c d21 c d22 c d13 c d22 c d13 c d24 c d23 c d14 c d15 c d16 c d19 c d18 c d5 d g g	Thy Thy dl3 d dl6 d dl5 d dl7 d dl14 d dl17 d dl18 d dl22 d dl21 d dl22 d dl21 d dl22 d dl21 d dl22 d dl23 d dl3 d	hz σ 19 α 14 α 18 α 16 d 13 α 23 d 13 α 24 α 224 α 17 α 417 d 412 d 416 d	dz σ dz ii d5 i9 d3 i1 d7 i10 d2 i6 d13 i8 d4 i7 d13 i3 d9 i5 d1 i4 d8 i20 d1 i19 d23 i19 d23	 σ dx α α<td>σ dx ' d7 d3 d2 d6 d5 d4 d1 d1 d10 d13 d15 d14</td><td>σ dy d d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d18 d20 d17</td><td>dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d10 d6 d5 d21 d14 d19 d12</td><td></td>	σ dx ' d7 d3 d2 d6 d5 d4 d1 d1 d10 d13 d15 d14	σ dy d d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d18 d20 d17	dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d10 d6 d5 d21 d14 d19 d12	
S1 1 1* d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 d6 d1 d9 d10	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9 d22 d13 d18 d23 d18 d23	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14 d17 d24 d19 200	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d21 d22 d24	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d23 d24 d20 d21	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11 d24 d16 d13 d20 201	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d12 d12 d12 d15 d22 d12 d15 d22 d14 d12	σ hx c d17 c d20 c d21 c d22 c d13 c d22 c d13 c d24 c d23 c d14 c d15 c d16 c d19 c d18 c d18 c d18 c d18 c d2 d2 d d2 d d2 d d2 d d2 d d2 d d2 d	Thy Thy dl3 d dl6 d dl5 d dl7 d dl14 d dl17 d dl18 d dl20 d dl21 d dl22 d dl21 d dl22 d dl21 d dl22 d dl2 d dl2 d dl3 d dl3 d	hz σ 19 4 14 6 18 6 16 6 13 6 224 6 217 6 6 6 6 6 6 6 6 6	dz σ dz ii d5 i9 d3 i1 d7 i10 d2 i6 d13 i8 d4 i7 d1 i3 d9 i5 d1 i4 d8 i12 d6 i13 d9 i5 d1 i4 d8 i12 d6 i13 d9 i5 d1 i4 d8 i12 d6 i20 d10 i13 d2 i14 d8 i12 d6 i20 d10 i31 d2 i4 d8 i21 d6 i33 d2 i4 d6 i20 d11 i21 d11	 σ dx α α<td>σ dx ' d7 d3 d2 d6 d5 d4 d1 d1 d10 d13 d15 d14 d18 d12</td><td>σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d16 d15</td><td>dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d10 d6 d5 d21 d14 d19 d21 d14 d19 d21 d14 d19 d22</td><td></td>	σ dx ' d7 d3 d2 d6 d5 d4 d1 d1 d10 d13 d15 d14 d18 d12	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d16 d15	dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d10 d6 d5 d21 d14 d19 d21 d14 d19 d21 d14 d19 d22	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 d6 d1 d9 d10 d10 d10 d11	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d6 d11 d2 d9 d22 d13 d18 d23 d14 d21	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14 d17 d24 d19 d22 d15	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d21 d22 d24 d19 d22	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d23 d24 d20 d21 d22 d21 d22	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11 d24 d16 d13 d20 d21 d21	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d12 d12 d15 d22 d12 d15 d22 d14 d18 d12 d14 d15 d22 d12 d12 d12 d12 d12 d12 d12 d12 d12	σ hx c d17 c d20 c d21 c d22 c d13 c d22 c d13 c d24 c d13 c d14 c d15 c d14 c d16 c d19 c d18 c d18 c d18 c d18 c d19 c d18 c d11 c d21 c d21 c d22 c d21	Thy Thy dl13 d dl16 d dl15 d dl14 d dl17 d dl18 d dl19 d dl21 d dl22 d dl22 d dl21 d dl22 d dl2 d dl2 d dl3 d dl4 d dl5 d	hz σ 19 4 14 6 18 6 16 6 13 6 22 6 17 6 16 6 17 6 16 6 17 6 16 6 11 6 12 6 13 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 σ dx d1 d6 d4 d3 d11 d2 d2 d7 d12 d10 d9 d5 d18 d16 d16 d18 d16 d15 d16 d15 d16 d15 d17 	σ dx ' d7 d3 d2 d6 d5 d4 d1 d1 d10 d13 d15 d14 d18 d12 d14 d18 d12 d14 d13 d15 d14 d18 d12 d14 d13 d15 d12 d13 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d16 d15 d12	o dy ' d9 d8 d7 d4 d12 d11 d3 d2 d10 d6 d5 d21 d14 d19 d22 d14 d19 d22 d21 d14 d19 d22 d24 d24	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 d6 d1 d9 d10 d11 d2	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9 d22 d13 d18 d23 d18 d23 d14 d21 c16	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14 d17 d24 d19 d22 d15 d22 d15 d22	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d21 d22 d24 d19 d20 d20	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d23 d24 d20 d21 d13 d22	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11 d24 d16 d13 d20 d21 d17 d12	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d12 d12 d15 d22 d12 d15 d22 d14 d18 d19 d14 d15 d22 d12 d15 d22 d14 d15 d23 d14 d15 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d3 d3 d4 d2 d3 d4 d2 d2 d3 d4 d2 d2 d3 d4 d2 d4 d2 d3 d4 d2 d4 d2 d4 d2 d4 d5 d2 d2 d4 d2 d4 d2 d4 d2 d4 d2 d4 d5 d5 d2 d2 d2 d4 d2 d2 d3 d4 d2 d3 d4 d5 d5 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2	σ hx c dl7 c d20 c d21 c d22 c dl3 c d24 c d23 c d14 c d15 c d16 c d19 c d18 c d18 c d18 c d18 c d19 c d18 c d19 c d11 c d22 c d13 c d24 c d23 c d14 c d15 c d14 c d15 c d14 c d15 c d11 c d12 c d11 c d22 c d13 c d12 c d13 c d12 c d13 c d14 c d15 c d14 c d15 c d11 c d12 c d11 c d12 c d13 c d12 c d13 c d14 c d15 c d14 c d15 c d14 c d15 c d11 c d11 c d12 c d11 c d12 c d11 c d12 c d11 c d12 c d11 c d12 c d11 c d111	Thy Thy dl13 d dl16 d dl15 d dl14 d dl17 d dl18 d dl19 d dl22 d dl21 d dl22 d dl22 d dl23 d dl23 d dl23 d dl23 d dl2 d dl3 d dl4 d dl5 d dl6 d	hz σ 19 4 14 6 15 6 13 6 224 6 17 6 16 6 17 6 16 6 11 6 12 6 13 6 14 1 13 6	dz σ dz ii d5 ii d5 ii d5 ii d6 iii d7 iii d7 iii d7 iii d7 d1 d7 d1 d7 d1 d7 d1 d1 d2 d1 d3 d9 d5 d1 d4 d8 l12 d6 l20 d1 l15 d2 l16 d2 l21 d1 l16 d2 l14 d1	3 σ dk 0 d1 d6 d4 d3 d11 d2 d2 d7 1 d12 d10 d9 d5 d18 d d16 3 d112 d11 d12 d10 d9 d5 d18 d11 d16 d11 d16 d12 d10	σ dx ' d7 d3 d2 d6 d5 d4 d1 d1 d10 d13 d15 d14 d18 d12 d14 d13 d15 d14 d12 d16 d16 d12 d16 d12 d16 d12 d13 d12 d13 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d16 d15 d13 d24	o dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d3 d2 d1 d10 d6 d5 d21 d14 d19 d22 d24 d23 d24	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 d6 d1 d9 d10 d11 d2 d2 d12	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9 d22 d13 d18 d23 d14 d21 d16 d10	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14 d17 d24 d19 d22 d15 d20 d22 d15 d20 d22	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d21 d22 d24 d19 d20 d23 d15	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d23 d24 d20 d21 d13 d22 d17 d19	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11 d24 d16 d13 d20 d21 d17 d18 d22	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d12 d12 d15 d22 d12 d15 d22 d14 d18 d19 d14 d15 d23 d14 d18 d12 d14 d15 d2 d14 d15 d2 d12 d15 d2 d12 d15 d2 d12 d15 d2 d12 d15 d2 d12 d15 d15 d15 d15 d15 d15 d15 d15 d15 d15	σ hx a dl7 a dl20 a dl21 a dl21 a dl21 a dl21 a dl21 a dl21 a dl22 a dl3 a dl4 a dl5 a dl0 a dl10 a dl12 a dl11 a dl2 a	Thy Thy dl13 d dl16 d dl15 d dl14 d dl17 d dl18 d dl19 d dl22 d dl21 d dl22 d dl23 d dl3 d dl4 d dl3 d dl4 d dl5 d dl6 d dl7 d	hz σ 19 4 14 6 15 6 13 6 224 6 217 6 16 6 17 6 16 6 11 6 12 6 13 6 14 11 13 6 14 13 13 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· σ dx 0 d1 d6 d4 d3 d11 d2 d2 d7 1 d12 d10 d9 d5 d18 1 d16 3 d113 d11 d12	σ dx ' d7 d3 d2 d6 d5 d4 d1 d1 d10 d13 d15 d14 d18 d12 d14 d18 d12 d14 d13 d15 d14 d12 d14 d13 d15 d14 d12 d13 d12 d13 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d3 d2 d2 d2 d3 d2 d2 d3 d2 d2 d3 d2 d2 d3 d2 d4 d3 d2 d4 d5 d4 d5 d4 d5 d4 d5 d4 d5 d4 d5 d4 d5 d4 d5 d4 d5 d4 d5 d5 d4 d5 d5 d4 d5 d5 d4 d5 d5 d4 d5 d5 d4 d5 d5 d5 d5 d4 d5 d5 d5 d5 d5 d5 d5 d5 d5 d5 d5 d5 d5	σ dy d d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d18 d20 d17 d16 d15 d13 d24	o dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d3 d2 d1 d10 d6 d5 d21 d14 d19 d22 d24 d13 d22 d24 d23 d15 d20	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 d6 d1 d9 d10 d11 d2 d12 d12 d12 d7	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9 d22 d13 d18 d23 d14 d21 d16 d19 d24	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14 d17 d24 d19 d22 d15 d20 d23 d19	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d21 d22 d24 d19 d20 d23 d15 d15	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d23 d24 d20 d21 d13 d22 d17 d18 d14	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11 d24 d16 d13 d20 d21 d17 d18 d22 d19	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d12 d12 d15 d22 d14 d15 d22 d14 d19 d21 d15 d214 d19 d17 d15 d2 d14 d15 d2 d14 d15 d14 d15 d15 d14 d15 d15 d15 d15 d15 d15 d15 d15 d15 d15	σ hx a d17 a d20 a d21 a d22 a d13 a d24 a d23 a d14 a d15 a d16 a d18 a d10 a d12 a d10 a d12 a d11 a d22 a d3 a	Thy Thy this d this d	hz σ 19 4 14 6 18 6 123 6 13 6 224 6 217 6 6 6 113 6 6 6 6 6 11 6 12 6 6 6 11 6 12 6 13 6 14 1 13 1 14 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 σ da 0 d1 d6 d4 d3 d11 d2 d2 d7 1 d12 d10 d9 d5 d18 1 d16 3 d18 1 d16 3 d17 3 d14 2 d12 3 d14 2 d12 3 d14 2 d12 3 d14 2 d24	$\sigma dx'$ d7 d3 d2 d6 d5 d4 d1 d9 d8 d12 d11 d10 d13 d15 d14 d18 d12 d14 d13 d15 d14 d12 d16 d13 d15 d14 d12 d13 d12 d13 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d16 d15 d13 d24 d23	o dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d3 d2 d1 d10 d6 d5 d21 d14 d19 d22 d23 d15 d20 d15 d20 d13	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 d6 d1 d9 d10 d11 d2 d12 d12 d7 d3	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9 d22 d13 d18 d23 d14 d21 d16 d12 d14 d21 d14 d21 d14 d21 d12 d12 d12 d12 d12 d5 d12 d12 d5 d12 d5 d12 d12 d5 d12 d5 d12 d5 d12 d12 d5 d12 d12 d5 d12 d12 d5 d12 d12 d5 d12 d12 d5 d12 d12 d12 d12 d12 d12 d12 d12 d12 d12	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14 d17 d24 d19 d22 d5 d12 d10 d3 d14 d13 d14 d13 d14 d14 d3 d12 d15 d12 d12 d15 d12 d13 d14 d13 d14 d15 d12 d12 d15 d12 d13 d14 d12 d13 d14 d13 d14 d13 d14 d13 d14 d15 d12 d15 d12 d15 d12 d15 d12 d16 d12 d16 d12 d17 d12 d13 d14 d13 d14 d13 d14 d13 d14 d14 d15 d12 d14 d16 d17 d16 d17 d10 d23 d12 d12 d12 d12 d12 d12 d13 d14 d12 d12 d13 d14 d12 d15 d12 d13 d14 d15 d12 d14 d19 d22 d15 d14 d19 d22 d15 d12 d14 d19 d22 d15 d12 d16 d12 d16 d17 d24 d18 d18 d18 d18 d18 d18 d18 d19 d22 d15 d21 d21 d21 d21 d21 d21 d21 d21	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d21 d22 d24 d19 d20 d23 d15 d16 d18	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d23 d24 d20 d21 d13 d22 d17 d18 d14 d23	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d3 d11 d24 d16 d13 d20 d21 d17 d18 d22 d19 d14	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d12 d12 d15 d22 d14 d15 d22 d14 d19 d21 d15 d22 d14 d19 d15 d22 d14 d19 d12 d12 d12 d12 d12 d12 d12 d12 d12 d12	σ hx a d17 a d20 a d21 a d22 a d13 a d24 a d23 a d14 a d15 a d16 a d18 a d10 a d12 a d11 a d12 a d14 a d5 d d4 a	Thy Thy this d this d	hz σ 19 4 18 6 18 6 123 6 13 6 224 6 217 6 6 6 113 6 6 6 113 6 113 6 113 6 113 6 113 6 113 6 113 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 σ dk 0 d1 d6 d4 d3 d11 d2 d2 d7 1 d12 d10 d9 d5 d19 3 d18 1 d16 3 d17 3 d14 2 d13 7 d24 5 d22 0 d21	σ dx ' d7 d3 d2 d6 d5 d4 d1 d10 d13 d15 d14 d18 d12 d14 d18 d12 d14 d13 d15 d14 d12 d14 d12 d14 d12 d14 d12 d12 d12 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d16 d15 d13 d24 d14 d23 d22	o dy ' d9 d8 d7 d4 d12 d11 d3 d2 d11 d3 d2 d1 d10 d6 d5 d21 d14 d19 d22 d23 d15 d20 d13 d16	
S1 1 1 * d20 d24 d19 d15 d22 d17 d14 d18 d13 d21 d16 d23 d8 d6 d1 d9 d10 d11 d2 d12 d7 d3 d4	S4xy d4 d7 d12 d5 d8 d3 d10 d1 d6 d11 d2 d9 d22 d13 d18 d23 d14 d21 d16 d19 d24 d13	S4xy* d8 d11 d6 d1 d4 d9 d2 d5 d12 d7 d10 d3 d14 d17 d24 d19 d22 d5 d12 d7 d10 d3 d14 d13 d14 d19 d2 d5 d12 d10 d3 d14 d10 d3 d12 d10 d3 d11 d10 d3 d11 d10 d3 d11 d10 d3 d11 d10 d3 d11 d10 d3 d11 d10 d3 d11 d10 d3 d11 d10 d3 d11 d10 d3 d11 d10 d2 d5 d10 d10 d3 d10 d10 d10 d10 d10 d10 d10 d10	S4yz d11 d9 d10 d12 d1 d8 d5 d3 d4 d6 d7 d2 d17 d21 d22 d24 d19 d20 d23 d15 d16 d18 d13	S4yz * d5 d12 d8 d9 d7 d10 d11 d6 d2 d3 d1 d4 d23 d24 d20 d21 d13 d22 d17 d18 d14 d23 d21 d13 d22 d17 d10 d11 d10 d11 d12 d12 d12 d12 d12 d12 d12 d12 d12	S4zx S d12 d10 d1 d2 d9 d5 d6 d4 d7 d8 d31 d10 d24 d17 d8 d3 d11 d24 d16 d13 d20 d21 d17 d18 d22 d19 d14 d25 d15 d14	4zx * d3 d4 d11 d8 d6 d7 d9 d10 d5 d12 d12 d15 d22 d14 d15 d22 d14 d15 d22 d14 d15 d22 d14 d15 d22 d14 d15 d22 d23 d14 d12 d22 d23 d14 d12 d22 d23 d14 d22 d23 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2	σ hx c d17 c d20 c d21 c d22 c d13 c d22 c d13 c d24 c d23 c d14 c d15 c d16 c d19 c d18 c d18 c d19 c d18 c d19 c d18 c d2 d d2 d d1 d d2 d d1 d d2 d d1 d d1 d d2 d d1 d d2 c d1 d d1	Thy Thy this d dd16 d dd16 d dd16 d dd17 d dd17 d dd17 d dd18 d dd19 d dd22 d dd1 0 dd1 0 dd1 0 dd3 0 dd4 0 dd3 0 dd4 0 dd8 d dd11 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 σ dx d1 d6 d4 d3 d11 d2 d2 d7 d12 d10 d9 d5 d19 d16 d19 d12 d11 d12 d11 d12 d12 d13 d14 d24 d22 d13 d24 d22 d22 d24 d22 d22 d24 d22 d24 d22 d24 d25 d21 d24 d24 d24 d25 d21 d24 d24 d24 d24 d25 d24 d24 d25 d24 d24 d25 d24 d24 d25 d24 d24 d24 d24 d24 d25 d24 d24 d25 	$\sigma dx'$ d7 d3 d2 d6 d5 d4 d1 d9 d8 d12 d11 d10 d13 d15 d14 d18 d23 d16 d19 d21 d20 d24 d17	σ dy d6 d2 d5 d10 d3 d1 d12 d8 d11 d4 d9 d7 d18 d20 d17 d16 d15 d13 d24 d14 d23 d22 d21	o dy ' d9 d8 d7 d4 d12 d11 d3 d2 d1 d3 d2 d1 d10 d6 d5 d21 d14 d19 d22 d23 d15 d20 d13 d16 d18	

Anexo II.5. - Especies de simetría usando grupo de rotaciones, en coordenadas internas y cartesianas.

a) Coordenadas internas " Δr "

A_{1g}:

```
 \begin{pmatrix} r[1] + r[2] + r[3] + r[4] + r[5] + r[6] \\ r[1] + r[2] + r[3] + r[4] + r[5] + r[6] \\ r[1] + r[2] + r[3] + r[4] + r[5] + r[6] \\ r[1] + r[2] + r[3] + r[4] + r[5] + r[6] \\ r[1] + r[2] + r[3] + r[4] + r[5] + r[6] \\ r[1] + r[2] + r[3] + r[4] + r[5] + r[6] \\ \end{pmatrix} 
 \begin{pmatrix} 8 (x[1] - x[5] + y[2] - y[4] - z[3] + z[6]) \\ 8 (x[1] - x[5] + y[2] - y[4] - z[3] + z[6]) \\ 8 (x[1] - x[5] + y[2] - y[4] - z[3] + z[6]) \\ 8 (x[1] - x[5] + y[2] - y[4] - z[3] + z[6]) \\ 8 (x[1] - x[5] + y[2] - y[4] - z[3] + z[6]) \\ 8 (x[1] - x[5] + y[2] - y[4] - z[3] + z[6]) \\ 8 (x[1] - x[5] + y[2] - y[4] - z[3] + z[6]) \\ 8 (x[1] - x[5] + y[2] - y[4] - z[3] + z[6]) \\ 8 (x[1] - x[5] + y[2] - y[4] - z[3] + z[6]) \\ \end{pmatrix}
```

A_{1u}, A_{2g}, A_{2u}, E_u, T_{1g}, T_{2g}, T_{2u}:

(0	
	0	
	0	
	0	
	0	
(0	J

E_g:

(2r[1] - r[2] - r[3] - r[4] + 2r[5] - r[6])
-r[1] + 2r[2] - r[3] + 2r[4] - r[5] - r[6]
-r[1] - r[2] + 2r[3] - r[4] - r[5] + 2r[6]
-r[1] + 2r[2] - r[3] + 2r[4] - r[5] - r[6]
2r[1] -r[2] -r[3] -r[4] +2r[5] -r[6]
-r[1] - r[2] + 2r[3] - r[4] - r[5] + 2r[6]

```
 \begin{array}{c} 4 & (2 \times [1] - 2 \times [5] - y[2] + y[4] + z[3] - z[6]) \\ -4 & (x[1] - x[5] - 2 y[2] + 2 y[4] - z[3] + z[6]) \\ -4 & (x[1] - x[5] + y[2] - y[4] + 2 z[3] - 2 z[6]) \\ -4 & (x[1] - x[5] - 2 y[2] + 2 y[4] - z[3] + z[6]) \\ 4 & (2 \times [1] - 2 \times [5] - y[2] + y[4] + z[3] - z[6]) \\ -4 & (x[1] - x[5] + y[2] - y[4] + 2 z[3] - 2 z[6]) \\ \end{array}
```

T_{1u}:

r[2] - r[4] r[3] - r[6] -r[2] + r[4] -r[1] + r[5] (-r[3] + r[6])
$ \begin{pmatrix} 8 & (x[1] + x[5] - 2 x[7]) \\ 8 & (y[2] + y[4] - 2 y[7]) \\ -8 & (z[3] + z[6] - 2 z[7]) \\ -8 & (y[2] + y[4] - 2 y[7]) \\ -8 & (x[1] + x[5] - 2 x[7]) \end{pmatrix} $

b) Coordenadas internas " ΔR "

A_{1g}:

 $\begin{pmatrix} R[1] + R[2] + R[3] + R[4] + R[5] + R[6] \\ R[1] + R[2] + R[3] + R[4] + R[5] + R[6] \\ R[1] + R[2] + R[3] + R[4] + R[5] + R[6] \\ R[1] + R[2] + R[3] + R[4] + R[5] + R[6] \\ R[1] + R[2] + R[3] + R[4] + R[5] + R[6] \\ R[1] + R[2] + R[3] + R[4] + R[5] + R[6] \\ R[1] + R[2] + R[3] + R[4] + R[5] + R[6] \\ \end{pmatrix}$ $\begin{pmatrix} 8 \ (-x[1] + x[5] - y[2] + y[4] + z[3] - z[6]) \\ 8 \ (-x[1] + x[5] - y[2] + y[4] + z[3] - z[6]) \\ 8 \ (-x[1] + x[5] - y[2] + y[4] + z[3] - z[6]) \\ 8 \ (-x[1] + x[5] - y[2] + y[4] + z[3] - z[6]) \\ 8 \ (-x[1] + x[5] - y[2] + y[4] + z[3] - z[6]) \\ 8 \ (-x[1] + x[5] - y[2] + y[4] + z[3] - z[6]) \\ 8 \ (-x[1] + x[5] - y[2] + y[4] + z[3] - z[6]) \\ 8 \ (-x[1] + x[5] - y[2] + y[4] + z[3] - z[6]) \\ \end{pmatrix}$

$A_{1u}, A_{2g}, A_{2u}, E_u, T_{1g}, T_{2g}, T_{2u}$:

0

E_g:

$$\begin{array}{c} 2 R[1] - R[2] - R[3] - R[4] + 2 R[5] - R[6] \\ - R[1] + 2 R[2] - R[3] + 2 R[4] - R[5] - R[6] \\ - R[1] - R[2] + 2 R[3] - R[4] - R[5] + 2 R[6] \\ - R[1] + 2 R[2] - R[3] + 2 R[4] - R[5] - R[6] \\ 2 R[1] - R[2] - R[3] - R[4] + 2 R[5] - R[6] \\ - R[1] - R[2] + 2 R[3] - R[4] - R[5] + 2 R[6] \\ \end{array}$$

$$\begin{array}{l} 4 \left(-2 \times [1] + 2 \times [5] + y[2] - y[4] - z[3] + z[6]\right) \\ 4 \left(\times [1] - \times [5] - 2 y[2] + 2 y[4] - z[3] + z[6]\right) \\ 4 \left(\times [1] - x[5] + y[2] - y[4] + 2 z[3] - 2 z[6]\right) \\ 4 \left(\times [1] - x[5] - 2 y[2] + 2 y[4] - z[3] + z[6]\right) \\ 4 \left(-2 \times [1] + 2 \times [5] + y[2] - y[4] - z[3] + z[6]\right) \\ 4 \left(\times [1] - x[5] + y[2] - y[4] + 2 z[3] - 2 z[6]\right) \end{array}$$

T_{1u}:

(R[1] - R[5])	
R[2] - R[4]	
R[3] - R[6]	
-R[2] + R[4]	
-R[1] + R[5]	
(-R[3] + R[6])	
(-8 (x[1] + x[5] - 2x[8])))
$ \begin{pmatrix} -8 & (x[1] + x[5] - 2 & x[8]) \\ -8 & (y[2] + y[4] - 2 & y[8]) \end{pmatrix} $	
$ \begin{pmatrix} -8 & (x[1] + x[5] - 2x[8]) \\ -8 & (y[2] + y[4] - 2y[8]) \\ 8 & (z[3] + z[6] - 2z[8]) \end{pmatrix} $	
$ \begin{pmatrix} -8 & (x[1] + x[5] - 2x[8]) \\ -8 & (y[2] + y[4] - 2y[8]) \\ 8 & (z[3] + z[6] - 2z[8]) \\ 8 & (y[2] + y[4] - 2y[8]) \end{pmatrix} $	
$ \begin{pmatrix} -8 & (x[1] + x[5] - 2x[8]) \\ -8 & (y[2] + y[4] - 2y[8]) \\ 8 & (z[3] + z[6] - 2z[8]) \\ 8 & (y[2] + y[4] - 2y[8]) \\ 8 & (x[1] + x[5] - 2x[8]) \end{pmatrix} $	
$ \begin{pmatrix} -8 & (x[1] + x[5] - 2x[8]) \\ -8 & (y[2] + y[4] - 2y[8]) \\ 8 & (z[3] + z[6] - 2z[8]) \\ 8 & (y[2] + y[4] - 2y[8]) \\ 8 & (x[1] + x[5] - 2x[8]) \\ -8 & (z[3] + z[6] - 2z[8]) \end{pmatrix} $	

c) Coordenadas internas $\Delta \alpha$:

A_{1g}:

α[1, 2]	+ α [1,	3] + α [1,	4] + α [1,	6] + α [2,	3]	+ α [2,	5]	+ α [2,	6]	+ α [3,	4] + α [3,	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6])
α [1, 2]	+ α [1,	3] + α [1,	4] + α [1,	6] + α [2,	3]	+ α [2,	5]	+ α [2,	6]	$+ \alpha [3,$	4] + α [3,	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6]
α [1, 2]	$+\alpha[1,$	3] $+ \alpha [1,$	4] + α [1,	6] + α [2,	3]	$+\alpha[2,$	5]	$+ \alpha [2,$	6]	$+ \alpha [3,$	4] + $\alpha[3,$	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6]
α [1, 2]	+ α [1,	3] $+\alpha$ [1,	4] + α [1,	6] + α [2,	3]	$+\alpha[2,$	5]	+ α [2,	6]	$+\alpha[3,$	4] + α [3,	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6]
α [1, 2]	+ α [1,	3] $+\alpha$ [1,	4] + α [1,	6] + α [2,	3]	$+\alpha[2,$	5]	+ α [2,	6]	$+\alpha[3,$	4] + $\alpha[3,$	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6]
α [1, 2]	$+\alpha$ [1,	3] $+ \alpha [1,$	4] + α [1,	6] + α [2,	3]	$+\alpha[2,$	5]	$+ \alpha [2,$	6]	$+ \alpha [3,$	4] + $\alpha[3,$	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6]
α [1, 2]	+ α [1,	3] $+ \alpha [1,$	4] + α [1,	6] + α [2,	3]	$+\alpha[2,$	5]	$+ \alpha [2,$	6]	$+ \alpha [3,$	4] + $\alpha[3,$	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6]
α [1, 2]	+ α [1,	3] + α [1,	4] + α [1,	6] + α [2,	3]	$+\alpha[2,$	5]	$+ \alpha [2,$	6]	$+\alpha[3,$	4] + α [3,	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6]
α [1, 2]	+ α [1,	3] + α [1,	4] + α [1,	6] + α [2,	3]	$+\alpha[2,$	5]	$+ \alpha [2,$	6]	$+\alpha[3,$	4] + α [3,	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6]
α [1, 2]	$+\alpha[1,$	3] $+ \alpha [1,$	$4] + \alpha [1,$	6] + α [2,	3]	$+\alpha[2,$	5]	$+ \alpha [2,$	6]	$+ \alpha [3,$	4] + α [3,	5]	$+ \alpha [4,$	5]	$+ \alpha [4,$	6]	+ α [5,	6]
α [1, 2]	$+\alpha[1,$	3] $+ \alpha [1,$	$4] + \alpha [1,$	6] + α [2,	3]	$+\alpha[2,$	5]	$+ \alpha [2,$	6]	$+ \alpha [3,$	4] + α [3,	5]	$+ \alpha [4,$	5]	$+ \alpha [4,$	6]	+ α [5,	6]
α[1, 2]	+ α [1,	3] $+ \alpha [1,$	4] + α [1,	6] + α [2,	3]	$+ \alpha [2,$	5]	$+\alpha[2,$	6]	$+\alpha[3,$	4] + α [3,	5]	$+\alpha[4,$	5]	$+\alpha[4,$	6]	+ α [5,	6] /

$A_{1u}, A_{2g}, A_{2u}, E_u, T_{1g}$:

$\alpha 2 \alpha [1, 2] - \alpha [1, 3] + 2 \alpha [1, 4] - \alpha [1, 6] - \alpha [2, 3] + 2 \alpha [2, 5] - \alpha [2, 6] - \alpha [3, 4] - \alpha [3, 5] + 2 \alpha [4, 5] - \alpha [4, 6] - \alpha [5, 6] -$])
$2\alpha[1, 2] - \alpha[1, 3] + 2\alpha[1, 4] - \alpha[1, 6] - \alpha[2, 3] + 2\alpha[2, 5] - \alpha[2, 6] - \alpha[3, 4] - \alpha[3, 5] + 2\alpha[4, 5] - \alpha[4, 6] - \alpha[5, 6] - $]
$2\alpha[1, 2] - \alpha[1, 3] + 2\alpha[1, 4] - \alpha[1, 6] - \alpha[2, 3] + 2\alpha[2, 5] - \alpha[2, 6] - \alpha[3, 4] - \alpha[3, 5] + 2\alpha[4, 5] - \alpha[4, 6] - \alpha[5, 6] - $]
$2\alpha[1, 2] - \alpha[1, 3] + 2\alpha[1, 4] - \alpha[1, 6] - \alpha[2, 3] + 2\alpha[2, 5] - \alpha[2, 6] - \alpha[3, 4] - \alpha[3, 5] + 2\alpha[4, 5] - \alpha[4, 6] - \alpha[5, 6] - $]
$-\alpha[1, 2] - \alpha[1, 3] - \alpha[1, 4] - \alpha[1, 6] + 2\alpha[2, 3] - \alpha[2, 5] + 2\alpha[2, 6] + 2\alpha[3, 4] - \alpha[3, 5] - \alpha[4, 5] + 2\alpha[4, 6] - \alpha[5, 6] + 2\alpha[4, 6] + \alpha[5, 6] $;]
$-\alpha[1, 2] - \alpha[1, 3] - \alpha[1, 4] - \alpha[1, 6] + 2\alpha[2, 3] - \alpha[2, 5] + 2\alpha[2, 6] + 2\alpha[3, 4] - \alpha[3, 5] - \alpha[4, 5] + 2\alpha[4, 6] - \alpha[5, 6] + \alpha[3, 6] + \alpha[3, 6] - \alpha[5, 6] + \alpha[3, 6] +$;]
$-\alpha[1, 2] - \alpha[1, 3] - \alpha[1, 4] - \alpha[1, 6] + 2\alpha[2, 3] - \alpha[2, 5] + 2\alpha[2, 6] + 2\alpha[3, 4] - \alpha[3, 5] - \alpha[4, 5] + 2\alpha[4, 6] - \alpha[5, 6] + 2\alpha[4, 6] + \alpha[5, 6] $;]
$-\alpha[1, 2] - \alpha[1, 3] - \alpha[1, 4] - \alpha[1, 6] + 2\alpha[2, 3] - \alpha[2, 5] + 2\alpha[2, 6] + 2\alpha[3, 4] - \alpha[3, 5] - \alpha[4, 5] + 2\alpha[4, 6] - \alpha[5, 6] + 2\alpha[4, 6] + \alpha[5, 6] $;]
$-\alpha[1,2] + 2\alpha[1,3] - \alpha[1,4] + 2\alpha[1,6] - \alpha[2,3] - \alpha[2,5] - \alpha[2,6] - \alpha[3,4] + 2\alpha[3,5] - \alpha[4,5] - \alpha[4,6] + 2\alpha[5,6] - \alpha[4,6] - \alpha[4,6$;]
$-\alpha[1,2] + 2\alpha[1,3] - \alpha[1,4] + 2\alpha[1,6] - \alpha[2,3] - \alpha[2,5] - \alpha[2,6] - \alpha[3,4] + 2\alpha[3,5] - \alpha[4,5] - \alpha[4,6] + 2\alpha[5,6] - \alpha[4,6] + 2\alpha[5,6] - \alpha[4,6] + 2\alpha[5,6] - \alpha[4,6] - \alpha[4$;]
$-\alpha[1, 2] + 2\alpha[1, 3] - \alpha[1, 4] + 2\alpha[1, 6] - \alpha[2, 3] - \alpha[2, 5] - \alpha[2, 6] - \alpha[3, 4] + 2\alpha[3, 5] - \alpha[4, 5] - \alpha[4, 6] + 2\alpha[5, 6] - \alpha[4, 6$;]
$(-\alpha[1, 2] + 2\alpha[1, 3] - \alpha[1, 4] + 2\alpha[1, 6] - \alpha[2, 3] - \alpha[2, 5] - \alpha[2, 6] - \alpha[3, 4] + 2\alpha[3, 5] - \alpha[4, 5] - \alpha[4, 6] + 2\alpha[5, 6] + 2\alpha[5$;]

T_{1u}:

 $\begin{array}{c} 2 \,\alpha[1,\,2] + \alpha[1,\,3] + \alpha[1,\,6] + \alpha[2,\,3] + \alpha[2,\,6] - \alpha[3,\,4] - \alpha[3,\,5] - 2 \,\alpha[4,\,5] - \alpha[4,\,6] - \alpha[5,\,6] \\ - \alpha[1,\,3] - 2 \,\alpha[1,\,4] - \alpha[1,\,6] + \alpha[2,\,3] + 2 \,\alpha[2,\,5] + \alpha[2,\,6] - \alpha[3,\,4] + \alpha[3,\,5] - \alpha[4,\,6] + \alpha[5,\,6] \\ - 2 \,\alpha[1,\,2] - \alpha[1,\,3] - \alpha[1,\,6] - \alpha[2,\,3] - \alpha[2,\,6] + \alpha[3,\,4] + \alpha[3,\,5] + 2 \,\alpha[4,\,5] + \alpha[4,\,6] + \alpha[5,\,6] \\ \alpha[1,\,3] + 2 \,\alpha[1,\,4] + \alpha[1,\,6] - \alpha[2,\,3] - 2 \,\alpha[2,\,5] - \alpha[2,\,6] + \alpha[3,\,4] - \alpha[3,\,5] + \alpha[4,\,6] + \alpha[5,\,6] \\ \alpha[1,\,2] - \alpha[1,\,3] - \alpha[1,\,4] + \alpha[1,\,6] + \alpha[2,\,5] + 2 \,\alpha[2,\,6] - 2 \,\alpha[3,\,4] - \alpha[3,\,5] - \alpha[4,\,5] + \alpha[5,\,6] \\ - \alpha[1,\,2] - \alpha[1,\,3] + \alpha[1,\,4] + \alpha[1,\,6] - 2 \,\alpha[2,\,3] - \alpha[2,\,5] - \alpha[3,\,5] + \alpha[4,\,5] + 2 \,\alpha[4,\,6] + \alpha[5,\,6] \\ - \alpha[1,\,2] + \alpha[1,\,3] + \alpha[1,\,4] - \alpha[1,\,6] - \alpha[2,\,5] - 2 \,\alpha[2,\,6] + 2 \,\alpha[3,\,4] + \alpha[3,\,5] + \alpha[4,\,5] - \alpha[5,\,6] \\ \alpha[1,\,2] + \alpha[1,\,3] - \alpha[1,\,4] - \alpha[1,\,6] + 2 \,\alpha[2,\,3] + \alpha[2,\,5] + \alpha[3,\,5] - \alpha[4,\,5] - 2 \,\alpha[4,\,6] - \alpha[5,\,6] \\ \alpha[1,\,2] + \alpha[1,\,3] - \alpha[1,\,4] - \alpha[1,\,6] + 2 \,\alpha[2,\,3] + \alpha[2,\,6] - \alpha[3,\,4] - 2 \,\alpha[3,\,5] - \alpha[4,\,5] + \alpha[4,\,6] \\ - \alpha[1,\,2] - 2 \,\alpha[1,\,3] - \alpha[1,\,4] - \alpha[2,\,3] + \alpha[2,\,5] + \alpha[2,\,6] - \alpha[3,\,4] - 2 \,\alpha[3,\,5] - \alpha[4,\,5] + \alpha[4,\,6] \\ - \alpha[1,\,2] - 2 \,\alpha[1,\,3] - \alpha[1,\,4] - \alpha[2,\,3] + \alpha[2,\,5] + \alpha[2,\,6] - \alpha[3,\,4] + \alpha[4,\,5] + \alpha[4,\,6] + 2 \,\alpha[5,\,6] \\ - \alpha[1,\,2] - 2 \,\alpha[1,\,3] - \alpha[1,\,4] - \alpha[2,\,3] + \alpha[2,\,5] - \alpha[2,\,6] + \alpha[3,\,4] + 2 \,\alpha[3,\,5] + \alpha[4,\,5] + \alpha[4,\,6] \\ - \alpha[1,\,2] - \alpha[1,\,4] - 2 \,\alpha[1,\,6] + \alpha[2,\,3] + \alpha[2,\,5] - \alpha[2,\,6] + \alpha[3,\,4] - 2 \,\alpha[3,\,5] + \alpha[4,\,5] + \alpha[4,\,6] \\ - \alpha[1,\,2] - \alpha[1,\,4] - 2 \,\alpha[1,\,6] + \alpha[2,\,3] + \alpha[2,\,5] - \alpha[2,\,6] + \alpha[3,\,4] + 2 \,\alpha[3,\,5] + \alpha[4,\,6] + 2 \,\alpha[5,\,6] \\ - \alpha[1,\,2] - \alpha[1,\,4] - 2 \,\alpha[1,\,6] + \alpha[2,\,3] + \alpha[2,\,5] - \alpha[2,\,6] + \alpha[3,\,4] + 2 \,\alpha[3,\,5] + \alpha[4,\,6] + 2 \,\alpha[5,\,6] \\ - \alpha[1,\,2] - \alpha[1,\,4] - 2 \,\alpha[1,\,6] + \alpha[2,\,3] + \alpha[2,\,5] - \alpha[2,\,6] + \alpha[3,\,4] + 2 \,\alpha[3,\,5] + \alpha[4,\,6] + 2 \,\alpha[5,\,6] \\ - \alpha[1,\,2] - \alpha[1,\,4] - 2 \,\alpha[1,\,6] + \alpha[2,\,3] + \alpha[2,\,5] - \alpha[2,\,6] + \alpha[3,\,4] - \alpha[4,\,5] - \alpha[4,\,6] - 2 \,\alpha[5,\,6] \\ - \alpha[1,\,2] - \alpha[1,\,4] - 2 \,\alpha[1,\,6] + \alpha[2,\,3] + \alpha[2,\,5] - \alpha[2,\,6] + \alpha[3,\,4] - \alpha[4,\,5] - \alpha[4,\,6] - 2 \,\alpha[5,\,6] \\ - \alpha[1,\,2] - \alpha[1,\,4] - 2 \,\alpha[1,\,6] + \alpha[2,\,3] + \alpha[2,\,5] - \alpha[2,\,6] + \alpha[3,\,4] - \alpha[4,\,5] - \alpha[4,\,6] - 2$

```
 \begin{array}{l} (-4 (x[2] + x[3] + x[4] + x[6] - 4 x[7] + y[1] + y[3] + y[5] + y[6] - 4 y[7]) \\ 4 (x[2] + x[3] + x[4] + x[6] - 4 x[7] - y[1] - y[3] - y[5] - y[6] + 4 y[7]) \\ 4 (x[2] + x[3] + x[4] + x[6] - 4 x[7] + y[1] + y[3] + y[5] + y[6] - 4 y[7]) \\ -4 (x[2] + x[3] + x[4] + x[6] - 4 x[7] - y[1] - y[3] - y[5] - y[6] + 4 y[7]) \\ -4 (y[1] + y[3] + y[5] + y[6] - 4 y[7] + z[1] + z[2] + z[4] + z[5] - 4 z[7]) \\ 4 (y[1] + y[3] + y[5] + y[6] - 4 y[7] - z[1] - z[2] - z[4] - z[5] + 4 z[7]) \\ 4 (y[1] + y[3] + y[5] + y[6] - 4 y[7] - z[1] - z[2] - z[4] - z[5] + 4 z[7]) \\ -4 (y[1] + y[3] + y[5] + y[6] - 4 x[7] + z[1] + z[2] + z[4] + z[5] - 4 z[7]) \\ -4 (x[2] + x[3] + x[4] + x[6] - 4 x[7] - z[1] - z[2] - z[4] - z[5] + 4 z[7]) \\ 4 (x[2] + x[3] + x[4] + x[6] - 4 x[7] - z[1] - z[2] - z[4] - z[5] + 4 z[7]) \\ 4 (x[2] + x[3] + x[4] + x[6] - 4 x[7] - z[1] - z[2] - z[4] - z[5] + 4 z[7]) \\ -4 (x[2] + x[3] + x[4] + x[6] - 4 x[7] - z[1] - z[2] - z[4] - z[5] + 4 z[7]) \\ \end{array}
```

T_{2g}:

 $\begin{array}{l} \alpha[1,2] - \alpha[1,4] - \alpha[2,5] + \alpha[4,5] \\ -\alpha[1,2] + \alpha[1,4] + \alpha[2,5] - \alpha[4,5] \\ \alpha[1,2] - \alpha[1,4] - \alpha[2,5] + \alpha[4,5] \\ -\alpha[2,3] + \alpha[2,6] + \alpha[3,4] - \alpha[4,6] \\ \alpha[2,3] - \alpha[2,6] - \alpha[3,4] + \alpha[4,6] \\ \alpha[2,3] - \alpha[2,6] - \alpha[3,4] + \alpha[4,6] \\ -\alpha[2,3] + \alpha[2,6] + \alpha[3,4] - \alpha[4,6] \\ \alpha[2,3] - \alpha[2,6] - \alpha[3,4] + \alpha[4,6] \\ -\alpha[1,3] + \alpha[1,6] + \alpha[3,5] - \alpha[5,6] \\ \alpha[1,3] - \alpha[1,6] - \alpha[3,5] + \alpha[5,6] \\ -\alpha[1,3] + \alpha[1,6] + \alpha[3,5] - \alpha[5,6] \\ \alpha[1,3] - \alpha[1,6] - \alpha[3,5] + \alpha[5,6] \\ \alpha[1,3] - \alpha[1,6] - \alpha[3,5] + \alpha[5,6] \\ \end{array}$

$$\begin{cases} 8 (-x[2] + x[4] - y[1] + y[5]) \\ 8 (x[2] - x[4] + y[1] - y[5]) \\ 8 (x[2] - x[4] + y[1] - y[5]) \\ 8 (x[2] - x[4] + y[1] - y[5]) \\ 8 (y[3] - y[6] - z[2] + z[4]) \\ -8 (y[3] - y[6] - z[2] + z[4]) \\ 8 (y[3] - y[6] - z[2] + z[4]) \\ 8 (y[3] - y[6] - z[2] + z[4]) \\ -8 (y[3] - y[6] - z[2] + z[4]) \\ -8 (x[3] - x[6] - z[1] + z[5]) \\ -8 (x[3] - x[6] - z[1] + z[5]) \\ 8 (x[3] - x[6] - z[1] + z[5]) \\ -8 (x[3] - x[6] - z[1] + z[5]) \\ -8 (x[3] - x[6] - z[1] + z[5]) \\ \end{cases}$$

 $\begin{array}{c} 2 \alpha[1, 2] - \alpha[1, 3] - \alpha[1, 6] - \alpha[2, 3] - \alpha[2, 6] + \alpha[3, 4] + \alpha[3, 5] - 2 \alpha[4, 5] + \alpha[4, 6] + \alpha[5, 6] \\ \alpha[1, 3] - 2 \alpha[1, 4] + \alpha[1, 6] - \alpha[2, 3] + 2 \alpha[2, 5] - \alpha[2, 6] + \alpha[3, 4] - \alpha[3, 5] + \alpha[4, 6] - \alpha[5, 6] \\ - 2 \alpha[1, 2] + \alpha[1, 3] + \alpha[1, 6] + \alpha[2, 3] + \alpha[2, 6] - \alpha[3, 4] - \alpha[3, 5] + 2 \alpha[4, 5] - \alpha[4, 6] - \alpha[5, 6] \\ - \alpha[1, 3] + 2 \alpha[1, 4] - \alpha[1, 6] + \alpha[2, 3] - 2 \alpha[2, 5] + \alpha[2, 6] - \alpha[3, 4] + \alpha[3, 5] - \alpha[4, 6] + \alpha[5, 6] \\ - \alpha[1, 2] + \alpha[1, 3] + \alpha[1, 4] - \alpha[1, 6] - \alpha[2, 5] + 2 \alpha[2, 6] - 2 \alpha[3, 4] + \alpha[3, 5] + \alpha[4, 5] - \alpha[5, 6] \\ \alpha[1, 2] + \alpha[1, 3] - \alpha[1, 4] - \alpha[1, 6] - 2 \alpha[2, 3] + \alpha[2, 5] + \alpha[3, 5] - \alpha[4, 5] + 2 \alpha[4, 6] - \alpha[5, 6] \\ \alpha[1, 2] - \alpha[1, 3] - \alpha[1, 4] + \alpha[1, 6] + \alpha[2, 3] - \alpha[2, 6] + 2 \alpha[3, 4] - \alpha[3, 5] - \alpha[4, 5] + \alpha[5, 6] \\ - \alpha[1, 2] - \alpha[1, 3] + \alpha[1, 4] + \alpha[1, 6] + 2 \alpha[2, 3] - \alpha[2, 5] - \alpha[3, 5] + \alpha[4, 5] - 2 \alpha[4, 6] + \alpha[5, 6] \\ - \alpha[1, 2] - \alpha[1, 3] + \alpha[1, 4] + \alpha[2, 3] - \alpha[2, 5] - \alpha[2, 6] + \alpha[3, 4] - 2 \alpha[3, 5] + \alpha[4, 5] - \alpha[4, 6] \\ \alpha[1, 2] - 2 \alpha[1, 3] + \alpha[1, 4] + \alpha[2, 3] - \alpha[2, 5] - \alpha[2, 6] + \alpha[3, 4] - 2 \alpha[3, 5] + \alpha[4, 6] + 2 \alpha[5, 6] \\ \alpha[1, 2] - 2 \alpha[1, 3] + \alpha[1, 4] + \alpha[2, 3] - \alpha[2, 5] - \alpha[2, 6] + \alpha[3, 4] - \alpha[4, 5] - \alpha[4, 6] + 2 \alpha[5, 6] \\ \alpha[1, 2] - 2 \alpha[1, 3] + \alpha[1, 4] + \alpha[2, 3] - \alpha[2, 5] - \alpha[2, 6] + \alpha[3, 4] - \alpha[4, 5] - \alpha[4, 6] + 2 \alpha[5, 6] \\ \alpha[1, 2] + \alpha[1, 4] - 2 \alpha[1, 6] - \alpha[2, 3] - \alpha[2, 5] + \alpha[2, 6] - \alpha[3, 4] + 2 \alpha[3, 5] - \alpha[4, 6] + 2 \alpha[5, 6] \\ \alpha[1, 2] + \alpha[1, 4] - 2 \alpha[1, 6] - \alpha[2, 3] - \alpha[2, 5] + \alpha[2, 6] - \alpha[3, 4] + 2 \alpha[3, 5] - \alpha[4, 6] + 2 \alpha[5, 6] \\ \alpha[1, 2] + \alpha[1, 4] - 2 \alpha[1, 6] - \alpha[2, 3] - \alpha[2, 5] + \alpha[2, 6] - \alpha[3, 4] + 2 \alpha[4, 5] - \alpha[4, 6] + 2 \alpha[5, 6] \\ \alpha[1, 2] + \alpha[1, 3] - \alpha[1, 4] - \alpha[2, 3] + \alpha[2, 5] + \alpha[2, 6] - \alpha[3, 4] + \alpha[4, 5] + \alpha[4, 6] - 2 \alpha[5, 6] \\ \alpha[1, 2] + 2 \alpha[1, 3] - \alpha[1, 4] - \alpha[2, 3] + \alpha[2, 5] + \alpha[2, 6] - \alpha[3, 4] + \alpha[4, 5] + \alpha[4, 6] - 2 \alpha[5, 6] \\ \alpha[1, 2] + 2 \alpha[1, 3] - \alpha[1, 4] - \alpha[2, 3] + \alpha[2, 5] + \alpha[2, 6] - \alpha[3, 4] + \alpha[4, 5] + \alpha[4, 6] - 2 \alpha[5, 6] \\ \alpha[1, 2] + 2 \alpha[1, 3] - \alpha[1, 4] - \alpha[2, 3] + \alpha[2, 5] + \alpha[2, 6] - \alpha[3, 4] + \alpha[4, 5] + \alpha[4, 6] - 2 \alpha[5, 6] \\ \alpha[1, 2] + 2 \alpha[1, 3] - \alpha[1, 4] - \alpha[2, 3] + \alpha[2, 5] +$

$$\begin{array}{l} -4 & (x[2] - x[3] + x[4] - x[6] + y[1] - y[3] + y[5] - y[6]) \\ 4 & (x[2] - x[3] + x[4] - x[6] - y[1] + y[3] - y[5] + y[6]) \\ 4 & (x[2] - x[3] + x[4] - x[6] + y[1] - y[3] + y[5] - y[6]) \\ -4 & (x[2] - x[3] + x[4] - x[6] - y[1] + y[3] - y[5] + y[6]) \\ 4 & (y[1] - y[3] + y[5] - y[6] + z[1] - z[2] - z[4] + z[5]) \\ -4 & (y[1] - y[3] + y[5] - y[6] + z[1] - z[2] - z[4] + z[5]) \\ -4 & (y[1] - y[3] + y[5] - y[6] + z[1] - z[2] - z[4] + z[5]) \\ -4 & (y[1] - y[3] + y[5] - y[6] - z[1] + z[2] + z[4] - z[5]) \\ 4 & (y[1] - y[3] + y[5] - y[6] - z[1] + z[2] + z[4] - z[5]) \\ 4 & (x[2] - x[3] + x[4] - x[6] - z[1] + z[2] - z[4] + z[5]) \\ -4 & (x[2] - x[3] + x[4] - x[6] - z[1] + z[2] - z[4] + z[5]) \\ -4 & (x[2] - x[3] + x[4] - x[6] - z[1] + z[2] - z[4] + z[5]) \\ \end{array}$$

d) Coordenadas internas $\Delta\beta$:

ſ	β[1,	2]	$+\beta[1,$	3]	$+\beta$ [1,	4]	$+\beta[1,$	6]	+ β [2,	3]	+β[2,	5]	+β[2,	6]	+β[3,	4]	+ β [3,	5]	+β[4,	5]	+ β [4,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	+ β [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	+ β [3,	4]	+ β [3,	5]	+ β [4 ,	5]	+ β [4 ,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	$+\beta$ [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	+ β [3,	4]	+ β [3,	5]	+ β [4 ,	5]	+ β [4 ,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	$+\beta$ [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	$+\beta[3,$	4]	+ β [3,	5]	+ β [4 ,	5]	+ β [4 ,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	$+\beta$ [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	+ β [3,	4]	+ β [3,	5]	+ β [4 ,	5]	+ β [4 ,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	$+\beta$ [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	+ β [3,	4]	+ β [3,	5]	+ β [4,	5]	+ β [4 ,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	$+\beta$ [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	+ β [3,	4]	+ β [3,	5]	+ β [4 ,	5]	+ β [4 ,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	$+\beta$ [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	+ β [3,	4]	+ β [3,	5]	+ β [4 ,	5]	+ β [4 ,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	+ β [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	+ β [3,	4]	+ β [3,	5]	+ β [4 ,	5]	+ β [4 ,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	$+\beta$ [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	+ β [3,	4]	+ β [3,	5]	+ β [4 ,	5]	+ β [4 ,	6]	+ β [5,	6]
	β[1,	2]	+ β [1,	3]	+ β [1,	4]	+ β [1,	6]	+ β [2 ,	3]	+ β [2,	5]	+ β [2,	6]	+ β [3,	4]	+ β [3,	5]	+ β [4 ,	5]	+ β [4 ,	6]	+ β [5,	6]
l	β[1,	2]	$+\beta[1,$	3]	$+\beta [1,$	4]	$+\beta[1,$	6]	$+\beta$ [2,	3]	+β[2,	5]	$+\beta$ [2,	6]	+β[3,	4]	+β[3,	5]	$+\beta$ [4,	5]	$+\beta$ [4,	6]	+β[5,	6],

T_{2u}:

A_{1u}, A_{2q}, A_{2u}, E_u, T_{1q}:

E_g:

 $2\beta[1,2] - \beta[1,3] + 2\beta[1,4] - \beta[1,6] - \beta[2,3] + 2\beta[2,5] - \beta[2,6] - \beta[3,4] - \beta[3,5] + 2\beta[4,5] - \beta[4,6] - \beta[5,6] - \beta[5,6] - \beta[4,6] - \beta[5,6] - \beta[5,6]$ $2\beta[1,2] - \beta[1,3] + 2\beta[1,4] - \beta[1,6] - \beta[2,3] + 2\beta[2,5] - \beta[2,6] - \beta[3,4] - \beta[3,5] + 2\beta[4,5] - \beta[4,6] - \beta[5,6] - \beta[5,6]$ $2\beta[1,2] - \beta[1,3] + 2\beta[1,4] - \beta[1,6] - \beta[2,3] + 2\beta[2,5] - \beta[2,6] - \beta[3,4] - \beta[3,5] + 2\beta[4,5] - \beta[4,6] - \beta[5,6] - \beta[5,6] - \beta[4,6] - \beta[5,6] - \beta[4,6] - \beta[5,6] - \beta[5,6]$ $2\beta[1,2] - \beta[1,3] + 2\beta[1,4] - \beta[1,6] - \beta[2,3] + 2\beta[2,5] - \beta[2,6] - \beta[3,4] - \beta[3,5] + 2\beta[4,5] - \beta[4,6] - \beta[5,6] - \beta[5,6] - \beta[4,6] - \beta[5,6] - \beta[4,6] - \beta[5,6] - \beta[4,6] - \beta[5,6] - \beta[5,6]$ $-\beta[1,2]-\beta[1,3]-\beta[1,4]-\beta[1,6]+2\beta[2,3]-\beta[2,5]+2\beta[2,6]+2\beta[3,4]-\beta[3,5]-\beta[4,5]+2\beta[4,6]-\beta[5,6]+2\beta[3,6]+2\beta[4,6]-\beta[5,6]+\beta[5,$ $-\beta[1, 2] -\beta[1, 3] -\beta[1, 4] -\beta[1, 6] + 2\beta[2, 3] -\beta[2, 5] + 2\beta[2, 6] + 2\beta[3, 4] -\beta[3, 5] -\beta[4, 5] + 2\beta[4, 6] -\beta[5, 6] + \beta[5, 6$ $-\beta[1,2]-\beta[1,3]-\beta[1,4]-\beta[1,6]+2\beta[2,3]-\beta[2,5]+2\beta[2,6]+2\beta[3,4]-\beta[3,5]-\beta[4,5]+2\beta[4,6]-\beta[5,6]-\beta[5,6]-\beta[4,5]+2\beta[4,6]-\beta[5,6]-\beta[5,6]-\beta[4,5]+2\beta[4,6]-\beta[5,6] -\beta[1, 2] -\beta[1, 3] -\beta[1, 4] -\beta[1, 6] + 2\beta[2, 3] -\beta[2, 5] + 2\beta[2, 6] + 2\beta[3, 4] -\beta[3, 5] -\beta[4, 5] + 2\beta[4, 6] -\beta[5, 6] + 2\beta[4, 6] + 2\beta[4,$ $-\beta[1,2] + 2\beta[1,3] - \beta[1,4] + 2\beta[1,6] - \beta[2,3] - \beta[2,5] - \beta[2,6] - \beta[3,4] + 2\beta[3,5] - \beta[4,5] - \beta[4,6] + 2\beta[5,6] - \beta[4,6] + 2\beta[5,6] - \beta[4,6] - \beta[4,6] + 2\beta[5,6] - \beta[4,6] - \beta[4$ $-\beta[1,2] + 2\beta[1,3] - \beta[1,4] + 2\beta[1,6] - \beta[2,3] - \beta[2,5] - \beta[2,6] - \beta[3,4] + 2\beta[3,5] - \beta[4,5] - \beta[4,6] + 2\beta[5,6] - \beta[4,6] + 2\beta[5,6] - \beta[4,6] + 2\beta[5,6] - \beta[4,6] - \beta[4$ $-\beta[1,2]+2\beta[1,3]-\beta[1,4]+2\beta[1,6]-\beta[2,3]-\beta[2,5]-\beta[2,6]-\beta[3,4]+2\beta[3,5]-\beta[4,5]-\beta[4,6]+2\beta[5,6]-\beta[4,6]+2\beta[5,6]-\beta[4,6]+2\beta[5,6]-\beta[4,6]+2\beta[5,6]-\beta[4,6]+2\beta[5,6]-\beta[2,6$ $-\beta[1, 2] + 2\beta[1, 3] - \beta[1, 4] + 2\beta[1, 6] - \beta[2, 3] - \beta[2, 5] - \beta[2, 6] - \beta[3, 4] + 2\beta[3, 5] - \beta[4, 5] - \beta[4, 6] + 2\beta[5, 6]$

 $\begin{array}{l} 2\,\beta[1,\,2]+\beta[1,\,3]+\beta[1,\,6]+\beta[2,\,3]+\beta[2,\,6]-\beta[3,\,4]-\beta[3,\,5]-2\,\beta[4,\,5]-\beta[4,\,6]-\beta[5,\,6]\\ -\beta[1,\,3]-2\,\beta[1,\,4]-\beta[1,\,6]+\beta[2,\,3]+2\,\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+\beta[3,\,5]-\beta[4,\,6]+\beta[5,\,6]\\ -2\,\beta[1,\,2]-\beta[1,\,3]-\beta[1,\,6]-\beta[2,\,3]-\beta[2,\,6]+\beta[3,\,4]+\beta[3,\,5]+2\,\beta[4,\,5]+\beta[4,\,6]+\beta[5,\,6]\\ \beta[1,\,3]+2\,\beta[1,\,4]+\beta[1,\,6]-\beta[2,\,3]-2\,\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-\beta[3,\,5]+\beta[4,\,6]-\beta[5,\,6]\\ \beta[1,\,2]-\beta[1,\,3]-\beta[1,\,4]+\beta[1,\,6]+\beta[2,\,5]+2\,\beta[2,\,6]-2\,\beta[3,\,4]-\beta[3,\,5]-\beta[4,\,5]+\beta[5,\,6]\\ -\beta[1,\,2]-\beta[1,\,3]+\beta[1,\,4]+\beta[1,\,6]-\beta[2,\,3]-\beta[2,\,5]-\beta[3,\,5]+\beta[4,\,5]+2\,\beta[4,\,6]+\beta[5,\,6]\\ -\beta[1,\,2]+\beta[1,\,3]+\beta[1,\,4]-\beta[1,\,6]-\beta[2,\,3]+\beta[2,\,5]+\beta[3,\,5]-\beta[4,\,5]+\beta[4,\,5]-\beta[5,\,6]\\ \beta[1,\,2]+\beta[1,\,3]-\beta[1,\,4]-\beta[1,\,6]+2\,\beta[2,\,3]+\beta[2,\,5]+\beta[3,\,5]-\beta[4,\,5]-2\,\beta[4,\,6]-\beta[5,\,6]\\ \beta[1,\,2]+\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]-2\,\beta[3,\,5]-\beta[4,\,5]+\beta[4,\,6]+\beta[5,\,6]\\ -\beta[1,\,2]-2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]-2\,\beta[3,\,5]+\beta[4,\,6]+2\,\beta[5,\,6]\\ -\beta[1,\,2]-2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+\beta[4,\,5]+\beta[4,\,6]+2\,\beta[5,\,6]\\ -\beta[1,\,2]-2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]+2\,\beta[3,\,5]+\beta[4,\,5]+\beta[4,\,6]+2\,\beta[5,\,6]\\ -\beta[1,\,2]-2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]-\beta[2,\,6]-\beta[3,\,4]+2\,\beta[3,\,5]+\beta[4,\,5]+\beta[4,\,6]+2\,\beta[5,\,6]\\ -\beta[1,\,2]-2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[3,\,5]+\beta[4,\,5]+\beta[4,\,6]+2\,\beta[5,\,6]\\ -\beta[1,\,2]-2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[3,\,5]+\beta[4,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ -\beta[1,\,2]-2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[3,\,5]+\beta[4,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ -\beta[1,\,2]+2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[3,\,5]+\beta[4,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ -\beta[1,\,2]-2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[3,\,5]+\beta[4,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ -\beta[1,\,2]-2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[3,\,5]+\beta[4,\,5]-\beta[4,\,6]\\ -\beta[4,\,6]-2\,\beta[5,\,6]\\ -\beta[1,\,2]+2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[4,\,5]-\beta[4,\,6]-2\,\beta[5,\,6]\\ -\beta[1,\,2]+2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[4,\,5]-\beta[4,\,6]-2\,\beta[5,\,6]\\ -\beta[1,\,2]+2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[4,\,5]-\beta[4,\,6]-2\,\beta[5,\,6]\\ -\beta[1,\,2]+2\,\beta[3,\,4]-2\,\beta[4,\,6]-2\,\beta[5,\,6]\\ -\beta[3,\,4]-2\,\beta[4$

$$\begin{array}{l} 4 (x[2] + x[3] + x[4] + x[6] - 4 x[8] + y[1] + y[3] + y[5] + y[6] - 4 y[8]) \\ -4 (x[2] + x[3] + x[4] + x[6] - 4 x[8] - y[1] - y[3] - y[5] - y[6] + 4 y[8]) \\ -4 (x[2] + x[3] + x[4] + x[6] - 4 x[8] + y[1] + y[3] + y[5] + y[6] - 4 y[8]) \\ 4 (x[2] + x[3] + x[4] + x[6] - 4 x[8] - y[1] - y[3] - y[5] - y[6] + 4 y[8]) \\ 4 (y[1] + y[3] + y[5] + y[6] - 4 y[8] + z[1] + z[2] + z[4] + z[5] - 4 z[8]) \\ -4 (y[1] + y[3] + y[5] + y[6] - 4 y[8] - z[1] - z[2] - z[4] - z[5] + 4 z[8]) \\ -4 (y[1] + y[3] + y[5] + y[6] - 4 y[8] - z[1] - z[2] - z[4] - z[5] + 4 z[8]) \\ 4 (y[1] + y[3] + y[5] + y[6] - 4 y[8] - z[1] - z[2] - z[4] - z[5] + 4 z[8]) \\ 4 (x[2] + x[3] + x[4] + x[6] - 4 x[8] + z[1] + z[2] + z[4] + z[5] - 4 z[8]) \\ -4 (x[2] + x[3] + x[4] + x[6] - 4 x[8] - z[1] - z[2] - z[4] - z[5] + 4 z[8]) \\ -4 (x[2] + x[3] + x[4] + x[6] - 4 x[8] - z[1] - z[2] - z[4] - z[5] + 4 z[8]) \\ -4 (x[2] + x[3] + x[4] + x[6] - 4 x[8] + z[1] + z[2] + z[4] + z[5] - 4 z[8]) \\ \end{array}$$

T_{2g}:

$\beta[1, 2] - \beta[1, 4] - \beta[2, 5] + \beta[4, 5]$	
$-\beta[1, 2] + \beta[1, 4] + \beta[2, 5] - \beta[4, 5]$	
$\beta[1, 2] - \beta[1, 4] - \beta[2, 5] + \beta[4, 5]$	
$-\beta[1, 2] + \beta[1, 4] + \beta[2, 5] - \beta[4, 5]$	
$-\beta$ [2, 3] + β [2, 6] + β [3, 4] - β [4, 6]	
$\beta[2, 3] - \beta[2, 6] - \beta[3, 4] + \beta[4, 6]$	
$-\beta[2, 3] + \beta[2, 6] + \beta[3, 4] - \beta[4, 6]$	
$\beta[2, 3] - \beta[2, 6] - \beta[3, 4] + \beta[4, 6]$	
$-\beta[1, 3] + \beta[1, 6] + \beta[3, 5] - \beta[5, 6]$	
$\beta[1, 3] - \beta[1, 6] - \beta[3, 5] + \beta[5, 6]$	
$-\beta[1, 3] + \beta[1, 6] + \beta[3, 5] - \beta[5, 6]$	
$\beta[1, 3] - \beta[1, 6] - \beta[3, 5] + \beta[5, 6]$	

T_{1u}:

	(8(x[2] - x[4] + y[1] - y[5]))	
ĺ	-8 (x[2] - x[4] + y[1] - y[5])	
	8(x[2] - x[4] + y[1] - y[5])	
	-8 (x[2] - x[4] + y[1] - y[5])	
	8 (-y[3] + y[6] + z[2] - z[4])	
	8 (y[3] - y[6] - z[2] + z[4])	
	8 (-y[3] + y[6] + z[2] - z[4])	
	8 (y[3] - y[6] - z[2] + z[4])	
	8(-x[3] + x[6] + z[1] - z[5])	
	8 (x[3] - x[6] - z[1] + z[5])	
	8(-x[3] + x[6] + z[1] - z[5])	
	8(x[3] - x[6] - z[1] + z[5])	

T_{2u}:

 $\begin{array}{l} 2\,\beta[1,\,2]-\beta[1,\,3]-\beta[1,\,6]-\beta[2,\,3]-\beta[2,\,6]+\beta[3,\,4]+\beta[3,\,5]-2\,\beta[4,\,5]+\beta[4,\,6]+\beta[5,\,6]\\ \beta[1,\,3]-2\,\beta[1,\,4]+\beta[1,\,6]-\beta[2,\,3]+2\,\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-\beta[3,\,5]+\beta[4,\,6]-\beta[5,\,6]\\ -2\,\beta[1,\,2]+\beta[1,\,3]+\beta[1,\,6]+\beta[2,\,3]-2\,\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+\beta[3,\,5]-\beta[4,\,6]-\beta[5,\,6]\\ -\beta[1,\,3]+2\,\beta[1,\,4]-\beta[1,\,6]+\beta[2,\,3]-2\,\beta[2,\,5]+\beta[2,\,6]-2\,\beta[3,\,4]+\beta[3,\,5]-\beta[4,\,6]+\beta[5,\,6]\\ -\beta[1,\,2]+\beta[1,\,3]-\beta[1,\,4]-\beta[1,\,6]-\beta[2,\,5]+2\,\beta[2,\,6]-2\,\beta[3,\,4]+\beta[3,\,5]+\beta[4,\,5]-\beta[5,\,6]\\ \beta[1,\,2]+\beta[1,\,3]-\beta[1,\,4]-\beta[1,\,6]+\beta[2,\,3]-\beta[2,\,5]+\beta[3,\,5]-\beta[4,\,5]+2\,\beta[4,\,6]-\beta[5,\,6]\\ \beta[1,\,2]-\beta[1,\,3]-\beta[1,\,4]+\beta[1,\,6]+\beta[2,\,5]-2\,\beta[2,\,6]+2\,\beta[3,\,4]-\beta[3,\,5]-\beta[4,\,5]+\beta[5,\,6]\\ -\beta[1,\,2]-\beta[1,\,3]+\beta[1,\,4]+\beta[1,\,6]+2\,\beta[2,\,3]-\beta[2,\,5]-\beta[3,\,5]+\beta[4,\,5]-2\,\beta[4,\,6]+\beta[5,\,6]\\ -\beta[1,\,2]-\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[3,\,5]+\beta[4,\,5]-\beta[4,\,6]\\ \beta[1,\,2]-2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[3,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ \beta[1,\,2]-2\,\beta[1,\,3]+\beta[1,\,4]+\beta[2,\,3]-\beta[2,\,5]-\beta[2,\,6]+\beta[3,\,4]-2\,\beta[3,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ \beta[1,\,2]+\beta[1,\,4]-2\,\beta[1,\,6]-\beta[2,\,3]-\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[3,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ \beta[1,\,2]+\beta[1,\,4]-2\,\beta[1,\,6]-\beta[2,\,3]-\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[3,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ \beta[1,\,2]+\beta[1,\,4]-2\,\beta[1,\,6]-\beta[2,\,3]-\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[3,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ \beta[1,\,2]+\beta[1,\,4]-2\,\beta[1,\,6]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[3,\,5]-\beta[4,\,5]+\beta[4,\,6]-2\,\beta[5,\,6]\\ \beta[1,\,2]+2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[3,\,5]-\beta[4,\,5]+\beta[4,\,6]-2\,\beta[5,\,6]\\ \beta[1,\,2]+2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[3,\,5]-\beta[4,\,5]+\beta[4,\,6]-2\,\beta[5,\,6]\\ \beta[1,\,2]+2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[3,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ \beta[1,\,2]+2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[3,\,5]-\beta[4,\,6]+2\,\beta[5,\,6]\\ \beta[1,\,2]+2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[4,\,5]+\beta[4,\,6]-2\,\beta[5,\,6]\\ \beta[1,\,2]+2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+2\,\beta[4,\,5]+\beta[4,\,6]-2\,\beta[5,\,6]\\ \beta[1,\,2]+2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+\beta[4,\,5]+\beta[4,\,6]-2\,\beta[5,\,6]\\ \beta[1,\,2]+2\,\beta[1,\,3]-\beta[1,\,4]-\beta[2,\,3]+\beta[2,\,5]+\beta[2,\,6]-\beta[3,\,4]+\beta[4,\,5]+\beta[4,\,6]-2\,\beta[5,\,6]\\ \beta[1,\,2]+2\,\beta[3,\,6]-2\,\beta[3,\,6]\\ \beta[3,$

 $\begin{array}{l} 4 (x[2] - x[3] + x[4] - x[6] + y[1] - y[3] + y[5] - y[6]) \\ -4 (x[2] - x[3] + x[4] - x[6] - y[1] + y[3] - y[5] + y[6]) \\ -4 (x[2] - x[3] + x[4] - x[6] + y[1] - y[3] + y[5] - y[6]) \\ 4 (x[2] - x[3] + x[4] - x[6] - y[1] + y[3] - y[5] + y[6]) \\ -4 (y[1] - y[3] + y[5] - y[6] + z[1] - z[2] - z[4] + z[5]) \\ 4 (y[1] - y[3] + y[5] - y[6] + z[1] - z[2] - z[4] + z[5]) \\ 4 (y[1] - y[3] + y[5] - y[6] - z[1] + z[2] + z[4] - z[5]) \\ -4 (y[1] - y[3] + y[5] - y[6] - z[1] + z[2] + z[4] - z[5]) \\ -4 (x[2] - x[3] + x[4] - x[6] - z[1] + z[2] + z[4] - z[5]) \\ -4 (x[2] - x[3] + x[4] - x[6] + z[1] - z[2] - z[4] + z[5]) \\ 4 (x[2] - x[3] + x[4] - x[6] - z[1] + z[2] + z[4] - z[5]) \\ -4 (x[2] - x[3] + x[4] - x[6] + z[1] - z[2] - z[4] + z[5]) \\ \end{array}$

e) Coordenadas internas Δq :

A_{1g}:

```
 \left( \begin{array}{c} q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q12 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 \\ q1 + q10 + q11 + q1
```

0)

$A_{1u}, A_{2u}, E_u, T_{1u}, T_{2u}$:

A_{2g}:

 $\begin{array}{c} q1-q10+q11-q12-q2+q3-q4+q5-q6+q7-q8+q9\\ -q1+q10-q11+q12+q2-q3+q4-q5+q6-q7+q8-q9\\ q1-q10+q11-q12-q2+q3-q4+q5-q6+q7-q8+q9\\ q1-q10+q11-q12-q2+q3-q4+q5-q6+q7-q8+q9\\ q1-q10+q11-q12-q2+q3-q4+q5-q6+q7-q8+q9\\ q1-q10+q11-q12-q2+q3-q4+q5-q6+q7-q8+q9\\ q1-q10+q11-q12-q2+q3-q4+q5-q6+q7-q8+q9\\ q1-q10+q11-q12-q2+q3-q4+q5-q6+q7-q8+q9\\ q1-q10+q11-q12-q2+q3-q4+q5-q6+q7-q8+q9\\ q1-q10+q11+q12+q2-q3+q4-q5+q6-q7+q8-q9\\ q1-q10+q11+q12+q2-q3+q4-q5+q6-q7+q8-q9\\ q1-q10+q11+q12+q2-q3+q4-q5+q6-q7+q8-q9\\ q1-q10+q11-q12-q2+q3-q4+q5-q6+q7-q8+q9\\ q1-q10+q11+q12+q2-q3+q4-q5+q6-q7+q8-q9\\ q1-q10+q11+q12+q2-q3+q4-q5+q6-q7+q8-q9\\ q1+q10-q11+q12+q2-q3+q4-q5+q6-q7+q8-q9\\ q1+q10-q11+q12+q2+q2-q3+q4-q5+q6-q7+q8-q9\\ q1+q10-q11+q12+q2+q2+q2+q3+q$

- 0
- 0 0
- 0

E_g:

 $\begin{array}{c} 2 q1 - q11 - q3 - q5 + 2 q7 - q9 \\ -q10 - q12 + 2 q2 - q4 - q6 + 2 q8 \\ -q1 - q11 + 2 q3 - q5 - q7 + 2 q9 \\ 2 q10 - q12 - q2 + 2 q4 - q6 - q8 \\ -q1 + 2 q11 - q3 + 2 q5 - q7 - q9 \\ -q10 + 2 q12 - q2 - q4 + 2 q6 - q8 \\ 2 q1 - q11 - q3 - q5 + 2 q7 - q9 \\ -q10 - q12 + 2 q2 - q4 - q6 + 2 q8 \\ -q1 - q11 + 2 q3 - q5 - q7 + 2 q9 \\ 2 q10 - q12 - q2 + 2 q4 - q6 - q8 \\ -q1 - q11 + 2 q3 - q5 - q7 + 2 q9 \\ 2 q10 - q12 - q2 + 2 q4 - q6 - q8 \\ -q1 + 2 q11 - q3 + 2 q5 - q7 - q9 \\ -q10 + 2 q12 - q2 - q4 + 2 q6 - q8 \\ -q1 + 2 q11 - q3 + 2 q5 - q7 - q9 \\ -q10 + 2 q12 - q2 - q4 + 2 q6 - q8 \\ \end{array}$

- 0 0 0 0 0 0 0 0
- 0
 0
 0
- 0

T_{1g}:

q1 - q2 - q7 + q8-q1 + q2 + q7 - q8 q10 + q3 - q4 - q9 -q10 - q3 + q4 + q9-q11 + q12 + q5 - q6 q11 - q12 - q5 + q6 -q1 + q2 + q7 - q8 q1 - q2 - q7 + q8 -q10 - q3 + q4 + q9q10 + q3 - q4 - q9q11 - q12 - q5 + q6 -q11 + q12 + q5 - q6 $(8 (\triangle x [2] - \triangle x [4] - \triangle y [1] + \triangle y [5]))$ $-8 (\triangle x[2] - \triangle x[4] - \triangle y[1] + \triangle y[5])$ $-8 (\triangle y [3] - \triangle y [6] + \triangle z [2] - \triangle z [4])$ 8 $(\triangle y[3] - \triangle y[6] + \triangle z[2] - \triangle z[4])$ 8 $(\Delta x[3] - \Delta x[6] + \Delta z[1] - \Delta z[5])$ $-8 (\Delta x[3] - \Delta x[6] + \Delta z[1] - \Delta z[5])$ $-8 (\Delta x [2] - \Delta x [4] - \Delta y [1] + \Delta y [5])$ 8 $(\triangle x[2] - \triangle x[4] - \triangle y[1] + \triangle y[5])$ 8 $(\triangle y[3] - \triangle y[6] + \triangle z[2] - \triangle z[4])$ $-8 (\triangle y[3] - \triangle y[6] + \triangle z[2] - \triangle z[4])$ $-8 (\Delta x[3] - \Delta x[6] + \Delta z[1] - \Delta z[5])$ $8 (\Delta x[3] - \Delta x[6] + \Delta z[1] - \Delta z[5])$

T_{2g}:

$ \begin{pmatrix} q1 + q2 - q7 - q8 \\ q1 + q2 - q7 - q8 \\ q1 + q2 - q7 - q8 \\ -q10 + q3 + q4 - q9 \\ -q10 + q3 + q4 - q9 \\ -q11 - q12 + q5 + q6 \\ -q11 - q12 + q5 + q6 \\ -q1 - q2 + q7 + q8 \\ -q1 - q2 + q7 + q8 \\ q10 - q3 - q4 + q9 \\ q10 - q3 - q4 + q9 \\ q11 + q12 - q5 - q6 \\ q11 + q12 - q5 - q6 \\ q11 + q12 - q5 - q6 \\ \end{pmatrix} $	
	$\Delta y[1] - \Delta y[5])$ $\Delta y[1] - \Delta y[5])$ $\Delta z[2] + \Delta z[4])$ $\Delta z[2] + \Delta z[4])$ $\Delta z[1] + \Delta z[5])$ $\Delta z[1] + \Delta z[5])$ $\Delta y[1] - \Delta y[5])$ $\Delta y[1] - \Delta y[5])$

 $\begin{array}{c} -8 & (\Delta x[2] & \Delta x[4] & \Delta y[1] & \Delta y[3] \\ -8 & (\Delta y[3] & -\Delta y[6] & -\Delta z[2] & +\Delta z[4]) \\ -8 & (\Delta y[3] & -\Delta y[6] & -\Delta z[2] & +\Delta z[4]) \\ -8 & (\Delta x[3] & -\Delta x[6] & -\Delta z[1] & +\Delta z[5]) \\ -8 & (\Delta x[3] & -\Delta x[6] & -\Delta z[1] & +\Delta z[5]) \end{array}$

f) Coordenadas internas " Δd "

A1g:

d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d20 + d21 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d20 + d21 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d20 + d21 + d20 + d21 + d20
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d24 + d10 + d
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d6 + d7 + d8 + d9 + d6 + d7 + d8 + d9 + d8 + d8 + d8 + d8 + d8 + d8
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d14 + d
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d24 + d34 + d44 + d54 + d54 + d64 + d74 + d84 + d94 + d54 + d64 + d74 + d84 + d94 + d194
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d24 + d34 + d14 + d15 + d16 + d17 + d18 + d19 + d24 + d20 + d21 + d22 + d23 + d24 + d34 + d34 + d54 + d64 + d7 + d84 + d94 + d19 + d1
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
d1 + d10 + d11 + d12 + d13 + d14 + d15 + d15 + d17 + d18 + d19 + d2 + d20 + d21 + d22 + d23 + d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9
$a_1 + a_{10} + a_{11} + a_{12} + a_{13} + a_{14} + a_{15} + a_{10} + a_{10} + a_{10} + a_{20} + a_{20} + a_{21} + a_{22} + a_{23} + a_{24} + a_{3} + a_{4} + a_{5} + a_{6} + a_{7} + a_{6} + a_{9}$

A_{1u}, A_{2g}:

A_{2u}:

d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d14 + d	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + d14 + d	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
d1 + d10 + d11 + d12 - d13 - d14 - d15 - d16 - d17 - d18 - d19 + d2 - d20 - d21 - d22 - d23 - d24 + d3 + d4 + d5 + d6 + d7 + d8 + d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	
-d1 - d10 - d11 - d12 + d13 + d14 + d15 + d16 + d17 + d18 + d19 - d2 + d20 + d21 + d22 + d23 + d24 - d3 - d4 - d5 - d6 - d7 - d8 - d9	

0

E_a:

2 d1 - d10 + 2 d11 - d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 - d2 - d20 - d21 - d22 + 2 d23 - d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 + 2 d10 - d11 - d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 + 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 -d1 - d10 - d11 + 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 - d2 - d20 + 2 d21 - d22 - d23 + 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 -d1 + 2 d10 - d11 - d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 + 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 2 d1 - d10 + 2 d11 - d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 - d2 - d20 - d21 - d22 + 2 d23 - d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 - d10 - d11 + 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 - d2 - d20 + 2 d21 - d22 - d23 + 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 2 d1 - d10 + 2 d11 - d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 - d2 - d20 - d21 - d22 + 2 d23 - d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 + 2 d10 - d11 - d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 + 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 -d1 - d10 - d11 + 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 - d2 - d20 + 2 d21 - d22 - d23 + 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 -d1 + 2 d10 - d11 - d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 + 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 2 d1 - d10 + 2 d11 - d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 - d2 - d20 - d21 - d22 + 2 d23 - d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 - d10 - d11 + 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 - d2 - d20 + 2 d21 - d22 - d23 + 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 + 22 d1 - d10 + 2 d11 - d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 - d2 - d20 - d21 - d22 + 2 d23 - d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 + 2 d10 - d11 - d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 + 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 -d1 - d10 - d11 + 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 - d2 - d20 + 2 d21 - d22 - d23 + 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 -d1 + 2 d10 - d11 - d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 + 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 2 d1 - d10 + 2 d11 - d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 - d2 - d20 - d21 - d22 + 2 d23 - d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 - d10 - d11 + 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 - d2 - d20 + 2 d21 - d22 - d23 + 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 2 d1 - d10 + 2 d11 - d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 - d2 - d20 - d21 - d22 + 2 d23 - d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 + 2 d10 - d11 - d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 + 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 -d1 - d10 - d11 + 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 - d2 - d20 + 2 d21 - d22 - d23 + 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 -d1 + 2 d10 - d11 - d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 + 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d92 d1 - d10 + 2 d11 - d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 - d2 - d20 - d21 - d22 + 2 d23 - d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 - d10 - d11 + 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 - d2 - d20 + 2 d21 - d22 - d23 + 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9

E_u:

2 d1 - d10 + 2 d11 - d12 - 2 d13 + d14 + d15 + d16 - 2 d17 + d18 - 2 d19 - d2 + d20 + d21 + d22 - 2 d23 + d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 + 2 d10 - d11 - d12 + d13 - 2 d14 + d15 - 2 d16 + d17 + d18 + d19 + 2 d2 - 2 d20 + d21 - 2 d22 + d23 + d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 -d1 - d10 - d11 + 2 d12 + d13 + d14 - 2 d15 + d16 + d17 - 2 d18 + d19 - d2 + d20 - 2 d21 + d22 + d23 - 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 -d1 + 2 d10 - d11 - d12 + d13 - 2 d14 + d15 - 2 d16 + d17 + d18 + d19 + 2 d2 - 2 d20 + d21 - 2 d22 + d23 + d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 2 d1 - d10 + 2 d11 - d12 - 2 d13 + d14 + d15 + d16 - 2 d17 + d18 - 2 d19 - d2 + d20 + d21 + d22 - 2 d23 + d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 - d10 - d11 + 2 d12 + d13 + d14 - 2 d15 + d16 + d17 - 2 d18 + d19 - d2 + d20 - 2 d21 + d22 + d23 - 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 2 d1 - d10 + 2 d11 - d12 - 2 d13 + d14 + d15 + d16 - 2 d17 + d18 - 2 d19 - d2 + d20 + d21 + d22 - 2 d23 + d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 + 2 d10 - d11 - d12 + d13 - 2 d14 + d15 - 2 d16 + d17 + d18 + d19 + 2 d2 - 2 d20 + d21 - 2 d22 + d23 + d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 -d1 - d10 - d11 + 2 d12 + d13 + d14 - 2 d15 + d16 + d17 - 2 d18 + d19 - d2 + d20 - 2 d21 + d22 + d23 - 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9 -d1 + 2 d10 - d11 - d12 + d13 - 2 d14 + d15 - 2 d16 + d17 + d18 + d19 + 2 d2 - 2 d20 + d21 - 2 d22 + d23 + d24 - d3 + 2 d4 - d5 - d6 - d7 + 2 d8 - d9 2 d1 - d10 + 2 d11 - d12 - 2 d13 + d14 + d15 + d16 - 2 d17 + d18 - 2 d19 - d2 + d20 + d21 + d22 - 2 d23 + d24 - d3 - d4 + 2 d5 - d6 + 2 d7 - d8 - d9 -d1 - d10 - d11 + 2 d12 + d13 + d14 - 2 d15 + d16 + d17 - 2 d18 + d19 - d2 + d20 - 2 d21 + d22 + d23 - 2 d24 + 2 d3 - d4 - d5 + 2 d6 - d7 - d8 + 2 d9-2 d1 + d10 - 2 d11 + d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 + d2 - d20 - d21 - d22 + 2 d23 - d24 + d3 + d4 - 2 d5 + d6 - 2 d7 + d8 + d9 d1 - 2 d10 + d11 + d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 - 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 + d3 - 2 d4 + d5 + d6 + d7 - 2 d8 + d9 d1 + d10 + d11 - 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 + d2 - d20 + 2 d21 - d22 - d23 + 2 d24 - 2 d3 + d4 + d5 - 2 d6 + d7 + d8 - 2 d9d1 - 2 d10 + d11 + d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 - 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 + d3 - 2 d4 + d5 + d6 + d7 - 2 d8 + d9 -2 d1 + d10 - 2 d11 + d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 + d2 - d20 - d21 - d22 + 2 d23 - d24 + d3 + d4 - 2 d5 + d6 - 2 d7 + d8 + d9d1 + d10 + d11 - 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 + d2 - d20 + 2 d21 - d22 - d23 + 2 d24 - 2 d3 + d4 + d5 - 2 d6 + d7 + d8 - 2 d9 -2 d1 + d10 - 2 d11 + d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 + d2 - d20 - d21 - d22 + 2 d23 - d24 + d3 + d4 - 2 d5 + d6 - 2 d7 + d8 + d9 $d1 - 2\ d10 + d11 + d12 - d13 + 2\ d14 - d15 + 2\ d16 - d17 - d18 - d19 - 2\ d2 + 2\ d20 - d21 + 2\ d22 - d23 - d24 + d3 - 2\ d4 + d5 + d6 + d7 - 2\ d8 + d9$ d1 + d10 + d11 - 2 d12 - d13 - d14 + 2 d15 - d16 - d17 + 2 d18 - d19 + d2 - d20 + 2 d21 - d22 - d23 + 2 d24 - 2 d3 + d4 + d5 - 2 d6 + d7 + d8 - 2 d9 d1 - 2 d10 + d11 + d12 - d13 + 2 d14 - d15 + 2 d16 - d17 - d18 - d19 - 2 d2 + 2 d20 - d21 + 2 d22 - d23 - d24 + d3 - 2 d4 + d5 + d6 + d7 - 2 d8 + d9 -2 d1 + d10 - 2 d11 + d12 + 2 d13 - d14 - d15 - d16 + 2 d17 - d18 + 2 d19 + d2 - d20 - d21 - d22 + 2 d23 - d24 + d3 + d4 - 2 d5 + d6 - 2 d7 + d8 + d9 d1+d10+d11-2d12-d13-d14+2d15-d16-d17+2d18-d19+d2-d20+2d21-d22-d23+2d24-2d3+d4+d5-2d6+d7+d8-2d9

T_{1g}:

2 d1 - d10 + d12 - d14 + d15 + d16 - 2 d17 - d18 - d2 + d20 - d21 - d22 + 2 d23 + d24 + d3 + d4 - d6 - 2 d7 + d8 - d9 -d1 + d11 + d12 + d13 + d15 - 2 d16 + d17 + d18 - d19 + 2 d2 - d21 + 2 d22 - d23 - d24 - d3 - d5 - d6 + d7 - 2 d8 + d9 d1 + d10 + d11 + d13 + d14 + d16 - d17 - 2 d18 - d19 - d2 - d20 - d22 + d23 + 2 d24 + 2 d3 - d4 - d5 - d7 + d8 - 2 d9 $d1 - 2\ d10 - d11 + d12 - d13 - 2\ d14 + d15 - d17 + d18 + d19 + 2\ d20 - d21 + d23 - d24 - d3 + 2\ d4 + d5 - d6 - d7 + d9$ -d10 - 2 d11 - d12 - 2 d13 - d14 - d15 + d16 + d18 + 2 d19 - d2 + d20 + d21 - d22 - d24 - d3 + d4 + 2 d5 + d6 + d8 + d9 -d1 + d10 - d11 - 2 d12 - d13 + d14 - 2 d15 + d16 + d17 + d19 - d2 - d20 + 2 d21 - d22 - d23 - d4 + d5 + 2 d6 + d7 + d8 -2 d1 + d10 - d12 + d14 - d15 - d16 + 2 d17 + d18 + d2 - d20 + d21 + d22 - 2 d23 - d24 - d3 - d4 + d6 + 2 d7 - d8 + d9 d1 - d11 - d12 - d13 - d15 + 2 d16 - d17 - d18 + d19 - 2 d2 + d21 - 2 d22 + d23 + d24 + d3 + d5 + d6 - d7 + 2 d8 - d9 -d1 -d10 - d11 - d13 - d14 - d16 + d17 + 2 d18 + d19 + d2 + d20 + d22 - d23 - 2 d24 - 2 d3 + d4 + d5 + d7 - d8 + 2 d9 $-d1 + 2\ d10 + d11 - d12 + d13 + 2\ d14 - d15 + d17 - d18 - d19 - 2\ d20 + d21 - d23 + d24 + d3 - 2\ d4 - d5 + d6 + d7 - d9$ d10 + 2 d11 + d12 + 2 d13 + d14 + d15 - d16 - d18 - 2 d19 + d2 - d20 - d21 + d22 + d24 + d3 - d4 - 2 d5 - d6 - d8 - d9 d1 - d10 + d11 + 2 d12 + d13 - d14 + 2 d15 - d16 - d17 - d19 + d2 + d20 - 2 d21 + d22 + d23 + d4 - d5 - 2 d6 - d7 - d8 $d10 + 2 \ d11 + d12 + 2 \ d13 + d14 + d15 - d16 - d18 - 2 \ d19 + d2 - d20 - d21 + d22 + d24 + d3 - d4 - 2 \ d5 - d6 - d8 - d9$ -d1 + 2 d10 + d11 - d12 + d13 + 2 d14 - d15 + d17 - d18 - d19 - 2 d20 + d21 - d23 + d24 + d3 - 2 d4 - d5 + d6 + d7 - d9 $d1 - d10 + d11 + 2\ d12 + d13 - d14 + 2\ d15 - d16 - d17 - d19 + d2 + d20 - 2\ d21 + d22 + d23 + d4 - d5 - 2\ d6 - d7 - d8$ d1 - d11 - d12 - d13 - d15 + 2 d16 - d17 - d18 + d19 - 2 d2 + d21 - 2 d22 + d23 + d24 + d3 + d5 + d6 - d7 + 2 d8 - d9 -2 d1 + d10 - d12 + d14 - d15 - d16 + 2 d17 + d18 + d2 - d20 + d21 + d22 - 2 d23 - d24 - d3 - d4 + d6 + 2 d7 - d8 + d9 -d1 -d10 - d11 - d13 - d14 - d16 + d17 + 2 d18 + d19 + d2 + d20 + d22 - d23 - 2 d24 - 2 d3 + d4 + d5 + d7 - d8 + 2 d9 -d10 - 2 d11 - d12 - 2 d13 - d14 - d15 + d16 + d18 + 2 d19 - d2 + d20 + d21 - d22 - d24 - d3 + d4 + 2 d5 + d6 + d8 + d9 $d1 - 2\ d10 - d11 + d12 - d13 - 2\ d14 + d15 - d17 + d18 + d19 + 2\ d20 - d21 + d23 - d24 - d3 + 2\ d4 + d5 - d6 - d7 + d9$ -d1 + d10 - d11 - 2 d12 - d13 + d14 - 2 d15 + d16 + d17 + d19 - d2 - d20 + 2 d21 - d22 - d23 - d4 + d5 + 2 d6 + d7 + d8 -d1 +d11 + d12 + d13 + d15 - 2 d16 + d17 + d18 - d19 + 2 d2 - d21 + 2 d22 - d23 - d24 - d3 - d5 - d6 + d7 - 2 d8 + d9 2 d1 - d10 + d12 - d14 + d15 + d16 - 2 d17 - d18 - d2 + d20 - d21 - d22 + 2 d23 + d24 + d3 + d4 - d6 - 2 d7 + d8 - d9 $d1 + d10 + d11 + d13 + d14 + d16 - d17 - 2 \ d18 - d19 - d2 - d20 - d22 + d23 + 2 \ d24 + 2 \ d3 - d4 - d5 - d7 + d8 - 2 \ d9$

$\left(2\sqrt{2}\left(\Delta x \left[2\right] - \Delta x \left[3\right] - \Delta x \left[4\right] + \Delta x \left[6\right] - \Delta y \left[1\right] + \Delta y \left[5\right] - \Delta z \left[1\right] + \Delta z \left[5\right]\right)\right)$
$-2\sqrt{2} (\Delta x[2] - \Delta x[4] - \Delta y[1] + \Delta y[3] + \Delta y[5] - \Delta y[6] + \Delta z[2] - \Delta z[4])$
$-2\sqrt{2} (\Delta x[3] - \Delta x[6] - \Delta y[3] + \Delta y[6] + \Delta z[1] - \Delta z[2] + \Delta z[4] - \Delta z[5])$
$2\sqrt{2} (\Delta x[2] - \Delta x[4] - \Delta y[1] - \Delta y[3] + \Delta y[5] + \Delta y[6] - \Delta z[2] + \Delta z[4])$
$2\sqrt{2} (\Delta x[2] + \Delta x[3] - \Delta x[4] - \Delta x[6] - \Delta y[1] + \Delta y[5] + \Delta z[1] - \Delta z[5])$
$2\sqrt{2} (\Delta x[3] - \Delta x[6] + \Delta y[3] - \Delta y[6] + \Delta z[1] + \Delta z[2] - \Delta z[4] - \Delta z[5])$
$-2\sqrt{2} (\Delta x [2] - \Delta x [3] - \Delta x [4] + \Delta x [6] - \Delta y [1] + \Delta y [5] - \Delta z [1] + \Delta z [5])$
$2\sqrt{2} (\Delta x[2] - \Delta x[4] - \Delta y[1] + \Delta y[3] + \Delta y[5] - \Delta y[6] + \Delta z[2] - \Delta z[4])$
$2\sqrt{2} (\Delta x[3] - \Delta x[6] - \Delta y[3] + \Delta y[6] + \Delta z[1] - \Delta z[2] + \Delta z[4] - \Delta z[5])$
$2\sqrt{2} \left(-\Delta x \left[2\right] + \Delta x \left[4\right] + \Delta y \left[1\right] + \Delta y \left[3\right] - \Delta y \left[5\right] - \Delta y \left[6\right] + \Delta z \left[2\right] - \Delta z \left[4\right]\right)$
$-2\sqrt{2} (\Delta x [2] + \Delta x [3] - \Delta x [4] - \Delta x [6] - \Delta y [1] + \Delta y [5] + \Delta z [1] - \Delta z [5])$
$2\sqrt{2} \left(-\Delta x[3] + \Delta x[6] - \Delta y[3] + \Delta y[6] - \Delta z[1] - \Delta z[2] + \Delta z[4] + \Delta z[5]\right)$
$-2\sqrt{2} (\Delta x [2] + \Delta x [3] - \Delta x [4] - \Delta x [6] - \Delta y [1] + \Delta y [5] + \Delta z [1] - \Delta z [5])$
$2\sqrt{2} \left(-\Delta x \left[2\right] + \Delta x \left[4\right] + \Delta y \left[1\right] + \Delta y \left[3\right] - \Delta y \left[5\right] - \Delta y \left[6\right] + \Delta z \left[2\right] - \Delta z \left[4\right]\right)$
$2\sqrt{2} \left(-\Delta x[3] + \Delta x[6] - \Delta y[3] + \Delta y[6] - \Delta z[1] - \Delta z[2] + \Delta z[4] + \Delta z[5]\right)$
$2\sqrt{2} \left(\Delta x [2] - \Delta x [4] - \Delta y [1] + \Delta y [3] + \Delta y [5] - \Delta y [6] + \Delta z [2] - \Delta z [4] \right)$
$-2\sqrt{2} (\Delta x [2] - \Delta x [3] - \Delta x [4] + \Delta x [6] - \Delta y [1] + \Delta y [5] - \Delta z [1] + \Delta z [5])$
$2\sqrt{2} \left(\Delta x [3] - \Delta x [6] - \Delta y [3] + \Delta y [6] + \Delta z [1] - \Delta z [2] + \Delta z [4] - \Delta z [5] \right)$
$2\sqrt{2} \left(\Delta x [2] + \Delta x [3] - \Delta x [4] - \Delta x [6] - \Delta y [1] + \Delta y [5] + \Delta z [1] - \Delta z [5] \right)$
$2\sqrt{2} \left(\Delta x [2] - \Delta x [4] - \Delta y [1] - \Delta y [3] + \Delta y [5] + \Delta y [6] - \Delta z [2] + \Delta z [4] \right)$
$2\sqrt{2} \left(\Delta x[3] - \Delta x[6] + \Delta y[3] - \Delta y[6] + \Delta z[1] + \Delta z[2] - \Delta z[4] - \Delta z[5] \right)$
$-2\sqrt{2} \left(\Delta x [2] - \Delta x [4] - \Delta y [1] + \Delta y [3] + \Delta y [5] - \Delta y [6] + \Delta z [2] - \Delta z [4] \right)$
$2\sqrt{2} (\Delta x[2] - \Delta x[3] - \Delta x[4] + \Delta x[6] - \Delta y[1] + \Delta y[5] - \Delta z[1] + \Delta z[5])$
$\left(-2\sqrt{2}\left(\Delta x[3] - \Delta x[6] - \Delta y[3] + \Delta y[6] + \Delta z[1] - \Delta z[2] + \Delta z[4] - \Delta z[5]\right)\right)$

 $4 \, d1 + d10 - 2 \, d11 - d12 + 2 \, d13 - d14 + d15 + d16 - d18 + 2 \, d19 + d2 + d20 - d21 - d22 - 4 \, d23 + d24 - d3 - d4 - 2 \, d5 + d6 - d8 + d9$ d1 - 2 d10 - d11 - d12 + d13 + 2 d14 + d15 + d17 + d18 - d19 + 4 d2 + 2 d20 - d21 - 4 d22 - d23 - d24 + d3 - 2 d4 + d5 + d6 - d7 - d9 -d1 - d10 - d11 - 2 d12 + d13 + d14 + 2 d15 + d16 - d17 - d19 + d2 - d20 + 2 d21 - d22 + d23 - 4 d24 + 4 d3 + d4 + d5 - 2 d6 + d7 - d8 -d1 + d11 - d12 - d13 + d15 + 2 d16 - d17 + d18 + d19 - 2 d2 - 4 d20 - d21 + 2 d22 + d23 - d24 + d3 + 4 d4 - d5 + d6 + d7 - 2 d8 - d9 -2 d1 + d10 + d12 - d14 - d15 + d16 + 2 d17 + d18 - 4 d19 + d2 + d20 + d21 - d22 + 2 d23 - d24 + d3 - d4 + 4 d5 - d6 - 2 d7 - d8 - d9d1 - d10 + d11 - d13 + d14 + d16 + d17 + 2 d18 + d19 + d2 - d20 - 4 d21 - d22 - d23 + 2 d24 - 2 d3 + d4 - d5 + 4 d6 - d7 - d8 - 2 d9-d10 - 2 d11 + d12 + 2 d13 + d14 - d15 - d16 - 4 d17 + d18 + 2 d19 - d2 - d20 + d21 + d22 - d24 + d3 + d4 - 2 d5 - d6 + 4 d7 + d8 - d9-d1 - 2 d10 + d11 + d12 - d13 + 2 d14 - d15 - 4 d16 - d17 - d18 + d19 + 2 d20 + d21 + d23 + d24 - d3 - 2 d4 - d5 - d6 + d7 + 4 d8 + d9d1 + d10 + d11 - 2 d12 - d13 - d14 + 2 d15 - d16 + d17 - 4 d18 + d19 - d2 + d20 + 2 d21 + d22 - d23 - d4 - d5 - 2 d6 - d7 + d8 + 4 d9 $d1 + 4 \ d10 - d11 + d12 + d13 - 4 \ d14 - d15 + 2 \ d16 + d17 - d18 - d19 - 2 \ d2 + d21 + 2 \ d22 - d23 + d24 - d3 + d5 - d6 - d7 - 2 \ d8 + d9$ -2 d1 - d10 + 4 d11 - d12 - 4 d13 + d14 + d15 - d16 + 2 d17 - d18 - d2 - d20 - d21 + d22 + 2 d23 + d24 - d3 + d4 + d6 - 2 d7 + d8 + d9-d1 + d10 - d11 + 4 d12 + d13 - d14 - 4 d15 - d16 - d17 + 2 d18 - d19 - d2 + d20 + d22 + d23 + 2 d24 - 2 d3 - d4 + d5 + d7 + d8 - 2 d92 d1 + d10 - 4 d11 + d12 + 4 d13 - d14 - d15 + d16 - 2 d17 + d18 + d2 + d20 + d21 - d22 - 2 d23 - d24 + d3 - d4 - d6 + 2 d7 - d8 - d9 + d21 - d22 + d20 + d21 - d22 + d20 + d21 - d22 + d20 +-d1 - 4 d10 + d11 - d12 - d13 + 4 d14 + d15 - 2 d16 - d17 + d18 + d19 + 2 d2 - d21 - 2 d22 + d23 - d24 + d3 - d5 + d6 + d7 + 2 d8 - d9d1 - d10 + d11 - 4 d12 - d13 + d14 + 4 d15 + d16 + d17 - 2 d18 + d19 + d2 - d20 - d22 - d23 - 2 d24 + 2 d3 + d4 - d5 - d7 - d8 + 2 d9d1 + 2 d10 - d11 - d12 + d13 - 2 d14 + d15 + 4 d16 + d17 + d18 - d19 - 2 d20 - d21 - d23 - d24 + d3 + 2 d4 + d5 + d6 - d7 - 4 d8 - d9d10 + 2 d11 - d12 - 2 d13 - d14 + d15 + d16 + 4 d17 - d18 - 2 d19 + d2 + d20 - d21 - d22 + d24 - d3 - d4 + 2 d5 + d6 - 4 d7 - d8 + d9-d1 - d10 - d11 + 2 d12 + d13 + d14 - 2 d15 + d16 - d17 + 4 d18 - d19 + d2 - d20 - 2 d21 - d22 + d23 + d4 + d5 + 2 d6 + d7 - d8 - 4 d92 d1 - d10 - d12 + d14 + d15 - d16 - 2 d17 - d18 + 4 d19 - d2 - d20 - d21 + d22 - 2 d23 + d24 - d3 + d4 - 4 d5 + d6 + 2 d7 + d8 + d9 d1 - d11 + d12 + d13 - d15 - 2 d16 + d17 - d18 - d19 + 2 d2 + 4 d20 + d21 - 2 d22 - d23 + d24 - d3 - 4 d4 + d5 - d6 - d7 + 2 d8 + d9 -d1 + d10 - d11 + d13 - d14 - d16 - d17 - 2 d18 - d19 - d2 + d20 + 4 d21 + d22 + d23 - 2 d24 + 2 d3 - d4 + d5 - 4 d6 + d7 + d8 + 2 d9 $-d1 + 2 \ d10 + d11 + d12 - d13 - 2 \ d14 - d15 - d17 - d18 + d19 - 4 \ d2 - 2 \ d20 + d21 + 4 \ d22 + d23 + d24 - d3 + 2 \ d4 - d5 - d6 + d7 + d9$ -4 d1 - d10 +2 d11 + d12 -2 d13 + d14 - d15 - d16 + d18 -2 d19 - d2 - d20 + d21 + d22 + 4 d23 - d24 + d3 + d4 + 2 d5 - d6 + d8 - d9 d1 + d10 + d11 + 2 d12 - d13 - d14 - 2 d15 - d16 + d17 + d19 - d2 + d20 - 2 d21 + d22 - d23 + 4 d24 - 4 d3 - d4 - d5 + 2 d6 - d7 + d8

 $-2\sqrt{2} (\Delta y [1] + \Delta y [3] + \Delta y [5] + \Delta y [6] - 2\Delta y [9] - 2\Delta y [10] + \Delta z [1] + \Delta z [2] + \Delta z [4] + \Delta z [5] - 2\Delta z [9] - 2\Delta z [10])$ $-2\sqrt{2} \quad (\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] + \Delta z [1] + \Delta z [2] + \Delta z [4] + \Delta z [5] - 2\Delta z [9] - 2\Delta z [10])$ $-2\sqrt{2} (\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] - \Delta y [1] - \Delta y [3] - \Delta y [5] - \Delta y [6] + 2\Delta y [9] + 2\Delta y [10])$ $-2\sqrt{2} \quad (\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] - \Delta z [1] - \Delta z [2] - \Delta z [4] - \Delta z [5] + 2\Delta z [9] + 2\Delta z [10])$ $2\sqrt{2} (\Delta y[1] + \Delta y[3] + \Delta y[5] + \Delta y[6] - 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] - \Delta z[2] - \Delta z[4] - \Delta z[5] + 2\Delta z[9] + 2\Delta z[10])$ $-2\sqrt{2} \left(\Delta x \begin{bmatrix} 2 \end{bmatrix} + \Delta x \begin{bmatrix} 3 \end{bmatrix} + \Delta x \begin{bmatrix} 4 \end{bmatrix} + \Delta x \begin{bmatrix} 6 \end{bmatrix} - 2\Delta x \begin{bmatrix} 9 \end{bmatrix} - 2\Delta x \begin{bmatrix} 10 \end{bmatrix} + \Delta y \begin{bmatrix} 1 \end{bmatrix} + \Delta y \begin{bmatrix} 3 \end{bmatrix} + \Delta y \begin{bmatrix} 5 \end{bmatrix} + \Delta y \begin{bmatrix} 6 \end{bmatrix} - 2\Delta y \begin{bmatrix} 9 \end{bmatrix} - 2\Delta y \begin{bmatrix} 10 \end{bmatrix} \right)$ $2\sqrt{2} (\Delta y[1] + \Delta y[3] + \Delta y[5] + \Delta y[6] - 2\Delta y[9] - 2\Delta y[10] + \Delta z[1] + \Delta z[2] + \Delta z[4] + \Delta z[5] - 2\Delta z[9] - 2\Delta z[10])$ $2\sqrt{2} (\Delta x[2] + \Delta x[3] + \Delta x[4] + \Delta x[6] - 2\Delta x[9] - 2\Delta x[10] + \Delta z[1] + \Delta z[2] + \Delta z[4] + \Delta z[5] - 2\Delta z[9] - 2\Delta z[10])$ $2\sqrt{2} (\Delta x[2] + \Delta x[3] + \Delta x[4] + \Delta x[6] - 2\Delta x[9] - 2\Delta x[10] - \Delta y[1] - \Delta y[3] - \Delta y[5] - \Delta y[6] + 2\Delta y[9] + 2\Delta y[10])$ $2\sqrt{2} (\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] - \Delta z [1] - \Delta z [2] - \Delta z [4] - \Delta z [5] + 2\Delta z [9] + 2\Delta z [10])$ $-2\sqrt{2} (\Delta y[1] + \Delta y[3] + \Delta y[5] + \Delta y[6] - 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] - \Delta z[2] - \Delta z[4] - \Delta z[5] + 2\Delta z[9] + 2\Delta z[10])$ $2\sqrt{2} (\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] + \Delta y [1] + \Delta y [3] + \Delta y [5] + \Delta y [6] - 2\Delta y [9] - 2\Delta y [10])$ $2\sqrt{2} (\Delta y[1] + \Delta y[3] + \Delta y[5] + \Delta y[6] - 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] - \Delta z[2] - \Delta z[4] - \Delta z[5] + 2\Delta z[9] + 2\Delta z[10])$ $-2\sqrt{2} \quad (\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] - \Delta z [1] - \Delta z [2] - \Delta z [4] - \Delta z [5] + 2\Delta z [9] + 2\Delta z [10])$ $-2\sqrt{2} (\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] + \Delta y [1] + \Delta y [3] + \Delta y [5] + \Delta y [6] - 2\Delta y [9] - 2\Delta y [10])$ $-2\sqrt{2} \quad (\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] + \Delta z [1] + \Delta z [2] + \Delta z [4] + \Delta z [5] - 2\Delta z [9] - 2\Delta z [10])$ $-2\sqrt{2} (\Delta y[1] + \Delta y[3] + \Delta y[5] + \Delta y[6] - 2\Delta y[9] - 2\Delta y[10] + \Delta z[1] + \Delta z[2] + \Delta z[4] + \Delta z[5] - 2\Delta z[9] - 2\Delta z[10])$ $-2\sqrt{2} \quad (\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] - \Delta y [1] - \Delta y [3] - \Delta y [5] - \Delta y [6] + 2\Delta y [9] + 2\Delta y [10])$ $-2\sqrt{2} (\Delta y[1] + \Delta y[3] + \Delta y[5] + \Delta y[6] - 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] - \Delta z[2] - \Delta z[4] - \Delta z[5] + 2\Delta z[9] + 2\Delta z[10])$ $2\sqrt{2} \left(\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] - \Delta z [1] - \Delta z [2] - \Delta z [4] - \Delta z [5] + 2\Delta z [9] + 2\Delta z [10] \right)$ $2\sqrt{2} (\Delta x[2] + \Delta x[3] + \Delta x[4] + \Delta x[6] - 2\Delta x[9] - 2\Delta x[10] + \Delta y[1] + \Delta y[3] + \Delta y[5] + \Delta y[6] - 2\Delta y[9] - 2\Delta y[10])$ $2\sqrt{2} \left(\Delta x [2] + \Delta x [3] + \Delta x [4] + \Delta x [6] - 2\Delta x [9] - 2\Delta x [10] + \Delta z [1] + \Delta z [2] + \Delta z [4] + \Delta z [5] - 2\Delta z [9] - 2\Delta z [10] \right)$ $2\sqrt{2} \left(\Delta y[1] + \Delta y[3] + \Delta y[5] + \Delta y[6] - 2\Delta y[9] - 2\Delta y[10] + \Delta z[1] + \Delta z[2] + \Delta z[4] + \Delta z[5] - 2\Delta z[9] - 2\Delta z[10] \right)$ $2\sqrt{2} (\Delta x[2] + \Delta x[3] + \Delta x[4] + \Delta x[6] - 2\Delta x[9] - 2\Delta x[10] - \Delta y[1] - \Delta y[3] - \Delta y[5] - \Delta y[6] + 2\Delta y[9] + 2\Delta y[10])$

T_{1u}:

T_{2g}:

4 d1 + d10 - 2 d11 - d12 - 2 d13 + d14 - d15 - d16 + d18 - 2 d19 + d2 - d20 + d21 + d22 + 4 d23 - d24 - d3 - d4 - 2 d5 + d6 - d8 + d9 d1 - 2 d10 - d11 - d12 - d13 - 2 d14 - d15 - d17 - d18 + d19 + 4 d2 - 2 d20 + d21 + 4 d22 + d23 + d24 + d3 - 2 d4 + d5 + d6 - d7 - d9 -d1 - d10 - d11 - 2 d12 - d13 - d14 - 2 d15 - d16 + d17 + d19 + d2 + d20 - 2 d21 + d22 - d23 + 4 d24 + 4 d3 + d4 + d5 - 2 d6 + d7 - d8 -d1 + d11 - d12 + d13 - d15 - 2 d16 + d17 - d18 - d19 - 2 d2 + 4 d20 + d21 - 2 d22 - d23 + d24 + d3 + 4 d4 - d5 + d6 + d7 - 2 d8 - d9 -2 d1 + d10 + d12 + d14 + d15 - d16 - 2 d17 - d18 + 4 d19 + d2 - d20 - d21 + d22 - 2 d23 + d24 + d3 - d4 + 4 d5 - d6 - 2 d7 - d8 - d9d1 - d10 + d11 + d13 - d14 - d16 - d17 - 2 d18 - d19 + d2 + d20 + 4 d21 + d22 + d23 - 2 d24 - 2 d3 + d4 - d5 + 4 d6 - d7 - d8 - 2 d9 $-d10 - 2\ d11 + d12 - 2\ d13 - d14 + d15 + d16 + 4\ d17 - d18 - 2\ d19 - d2 + d20 - d21 - d22 + d24 + d3 + d4 - 2\ d5 - d6 + 4\ d7 + d8 - d9$ -d1 - 2 d10 + d11 + d12 + d13 - 2 d14 + d15 + 4 d16 + d17 + d18 - d19 - 2 d20 - d21 - d23 - d24 - d3 - 2 d4 - d5 - d6 + d7 + 4 d8 + d9d1 + d10 + d11 - 2 d12 + d13 + d14 - 2 d15 + d16 - d17 + 4 d18 - d19 - d2 - d20 - 2 d21 - d22 + d23 - d4 - d5 - 2 d6 - d7 + d8 + 4 d9 d1 + 4 d10 - d11 + d12 - d13 + 4 d14 + d15 - 2 d16 - d17 + d18 + d19 - 2 d2 - d21 - 2 d22 + d23 - d24 - d3 + d5 - d6 - d7 - 2 d8 + d9 -2 d1 - d10 + 4 d11 - d12 + 4 d13 - d14 - d15 + d16 - 2 d17 + d18 - d2 + d20 + d21 - d22 - 2 d23 - d24 - d3 + d4 + d6 - 2 d7 + d8 + d9-d1 + d10 - d11 + 4 d12 - d13 + d14 + 4 d15 + d16 + d17 - 2 d18 + d19 - d2 - d20 - d22 - d23 - 2 d24 - 2 d3 - d4 + d5 + d7 + d8 - 2 d9 -2 d1 - d10 + 4 d11 - d12 + 4 d13 - d14 - d15 + d16 - 2 d17 + d18 - d2 + d20 + d21 - d22 - 2 d23 - d24 - d3 + d4 + d6 - 2 d7 + d8 + d9 d1 + 4 d10 - d11 + d12 - d13 + 4 d14 + d15 - 2 d16 - d17 + d18 + d19 - 2 d2 - d21 - 2 d22 + d23 - d24 - d3 + d5 - d6 - d7 - 2 d8 + d9 -d1 + d10 - d11 + 4 d12 - d13 + d14 + 4 d15 + d16 + d17 - 2 d18 + d19 - d2 - d20 - d22 - d23 - 2 d24 - 2 d3 - d4 + d5 + d7 + d8 - 2 d9 $-d1 - 2\ d10 + d11 + d12 + d13 - 2\ d14 + d15 + 4\ d16 + d17 + d18 - d19 - 2\ d20 - d21 - d23 - d24 - d3 - 2\ d4 - d5 - d6 + d7 + 4\ d8 + d9$ -d10 - 2 d11 + d12 - 2 d13 - d14 + d15 + d16 + 4 d17 - d18 - 2 d19 - d2 + d20 - d21 - d22 + d24 + d3 + d4 - 2 d5 - d6 + 4 d7 + d8 - d9 d1 + d10 + d11 - 2 d12 + d13 + d14 - 2 d15 + d16 - d17 + 4 d18 - d19 - d2 - d20 - 2 d21 - d22 + d23 - d4 - d5 - 2 d6 - d7 + d8 + 4 d9-2 d1 + d10 + d12 + d14 + d15 - d16 - 2 d17 - d18 + 4 d19 + d2 - d20 - d21 + d22 - 2 d23 + d24 + d3 - d4 + 4 d5 - d6 - 2 d7 - d8 - d9 -d1 + d11 - d12 + d13 - d15 - 2 d16 + d17 - d18 - d19 - 2 d2 + 4 d20 + d21 - 2 d22 - d23 + d24 + d3 + 4 d4 - d5 + d6 + d7 - 2 d8 - d9d1 - d10 + d11 + d13 - d14 - d16 - d17 - 2 d18 - d19 + d2 + d20 + 4 d21 + d22 + d23 - 2 d24 - 2 d3 + d4 - d5 + 4 d6 - d7 - d8 - 2 d9 $d1 - 2\ d10 - d11 - d12 - d13 - 2\ d14 - d15 - d17 - d18 + d19 + 4\ d2 - 2\ d20 + d21 + 4\ d22 + d23 + d24 + d3 - 2\ d4 + d5 + d6 - d7 - d9$ 4 d1 + d10 - 2 d11 - d12 - 2 d13 + d14 - d15 - d16 + d18 - 2 d19 + d2 - d20 + d21 + d22 + 4 d23 - d24 - d3 - d4 - 2 d5 + d6 - d8 + d9 -d1 - d10 - d11 - 2 d12 - d13 - d14 - 2 d15 - d16 + d17 + d19 + d2 + d20 - 2 d21 + d22 - d23 + 4 d24 + 4 d3 + d4 + d5 - 2 d6 + d7 - d8

 $-2\sqrt{2} \quad (\Delta x [2] - \Delta x [3] - \Delta x [4] + \Delta x [6] + \Delta y [1] - \Delta y [5] - 2\Delta y [9] + 2\Delta y [10] + \Delta z [1] - \Delta z [5] - 2\Delta z [9] + 2\Delta z [10])$ $-2\sqrt{2} \quad (\Delta x [2] - \Delta x [4] - 2\Delta x [9] + 2\Delta x [10] + \Delta y [1] - \Delta y [3] - \Delta y [5] + \Delta y [6] + \Delta z [2] - \Delta z [4] - 2\Delta z [9] + 2\Delta z [10])$ $-2\sqrt{2} (\Delta x[3] - \Delta x[6] - 2\Delta x[9] + 2\Delta x[10] - \Delta y[3] + \Delta y[6] + 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] + \Delta z[2] - \Delta z[4] + \Delta z[5])$ $2\sqrt{2} (\Delta x[2] - \Delta x[4] + 2\Delta x[9] - 2\Delta x[10] + \Delta y[1] + \Delta y[3] - \Delta y[5] - \Delta y[6] - \Delta z[2] + \Delta z[4] - 2\Delta z[9] + 2\Delta z[10])$ $-2\sqrt{2} \quad (\Delta x [2] + \Delta x [3] - \Delta x [4] - \Delta x [6] + \Delta y [1] - \Delta y [5] + 2\Delta y [9] - 2\Delta y [10] - \Delta z [1] + \Delta z [5] - 2\Delta z [9] + 2\Delta z [10])$ $2\sqrt{2} (\Delta x[3] - \Delta x[6] + 2\Delta x[9] - 2\Delta x[10] + \Delta y[3] - \Delta y[6] + 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] - \Delta z[2] + \Delta z[4] + \Delta z[5])$ $2\sqrt{2} (\Delta x[2] - \Delta x[3] - \Delta x[4] + \Delta x[6] + \Delta y[1] - \Delta y[5] - 2\Delta y[9] + 2\Delta y[10] + \Delta z[1] - \Delta z[5] - 2\Delta z[9] + 2\Delta z[10])$ $2\sqrt{2} (\Delta x[2] - \Delta x[4] - 2\Delta x[9] + 2\Delta x[10] + \Delta y[1] - \Delta y[3] - \Delta y[5] + \Delta y[6] + \Delta z[2] - \Delta z[4] - 2\Delta z[9] + 2\Delta z[10])$ $2\sqrt{2} (\Delta x[3] - \Delta x[6] - 2\Delta x[9] + 2\Delta x[10] - \Delta y[3] + \Delta y[6] + 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] + \Delta z[2] - \Delta z[4] + \Delta z[5])$ $2\sqrt{2} \left(-\Delta x \left[2\right] + \Delta x \left[4\right] - 2\Delta x \left[9\right] + 2\Delta x \left[10\right] - \Delta y \left[1\right] - \Delta y \left[3\right] + \Delta y \left[5\right] + \Delta y \left[6\right] + \Delta z \left[2\right] - \Delta z \left[4\right] + 2\Delta z \left[9\right] - 2\Delta z \left[10\right] \right)$ $2\sqrt{2} (\Delta x[2] + \Delta x[3] - \Delta x[4] - \Delta x[6] + \Delta y[1] - \Delta y[5] + 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] + \Delta z[5] - 2\Delta z[9] + 2\Delta z[10])$ $2\sqrt{2} \left(-\Delta x [3] + \Delta x [6] - 2\Delta x [9] + 2\Delta x [10] - \Delta y [3] + \Delta y [6] - 2\Delta y [9] + 2\Delta y [10] + \Delta z [1] + \Delta z [2] - \Delta z [4] - \Delta z [5] \right)$ $2\sqrt{2} (\Delta x[2] + \Delta x[3] - \Delta x[4] - \Delta x[6] + \Delta y[1] - \Delta y[5] + 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] + \Delta z[5] - 2\Delta z[9] + 2\Delta z[10])$ $2\sqrt{2} \left(-\Delta x \left[2\right] + \Delta x \left[4\right] - 2\Delta x \left[9\right] + 2\Delta x \left[10\right] - \Delta y \left[1\right] - \Delta y \left[3\right] + \Delta y \left[5\right] + \Delta y \left[6\right] + \Delta z \left[2\right] - \Delta z \left[4\right] + 2\Delta z \left[9\right] - 2\Delta z \left[10\right] \right)$ $2\sqrt{2} \left(-\Delta x[3] + \Delta x[6] - 2\Delta x[9] + 2\Delta x[10] - \Delta y[3] + \Delta y[6] - 2\Delta y[9] + 2\Delta y[10] + \Delta z[1] + \Delta z[2] - \Delta z[4] - \Delta z[5]\right)$ $2\sqrt{2} \left(\Delta x[2] - \Delta x[4] - 2\Delta x[9] + 2\Delta x[10] + \Delta y[1] - \Delta y[3] - \Delta y[5] + \Delta y[6] + \Delta z[2] - \Delta z[4] - 2\Delta z[9] + 2\Delta z[10] \right)$ $2\sqrt{2} (\Delta x [2] - \Delta x [3] - \Delta x [4] + \Delta x [6] + \Delta y [1] - \Delta y [5] - 2\Delta y [9] + 2\Delta y [10] + \Delta z [1] - \Delta z [5] - 2\Delta z [9] + 2\Delta z [10])$ $2\sqrt{2} (\Delta x[3] - \Delta x[6] - 2\Delta x[9] + 2\Delta x[10] - \Delta y[3] + \Delta y[6] + 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] + \Delta z[2] - \Delta z[4] + \Delta z[5])$ $-2\sqrt{2} \quad (\Delta x [2] + \Delta x [3] - \Delta x [4] - \Delta x [6] + \Delta y [1] - \Delta y [5] + 2\Delta y [9] - 2\Delta y [10] - \Delta z [1] + \Delta z [5] - 2\Delta z [9] + 2\Delta z [10])$ $2\sqrt{2} \left(\bigtriangleup \left[2 \right] - \bigtriangleup \left[4 \right] + 2\bigtriangleup \left[9 \right] - 2\bigtriangleup \left[10 \right] + \bigtriangleup \left[1 \right] + \bigtriangleup \left[3 \right] - \bigtriangleup \left[5 \right] - \bigtriangleup \left[6 \right] - \bigtriangleup \left[2 \right] + \bigtriangleup \left[4 \right] - 2\bigtriangleup \left[9 \right] + 2\bigtriangleup \left[10 \right] \right) \right] + \bigtriangleup \left[1 \right] + \bigtriangleup \left[1 \right] + \bigtriangleup \left[1 \right] - \bigtriangleup \left[1 \right] + \simeq \left[1 \right] + \bigtriangleup \left[1 \right] + \simeq \left[1$ $2\sqrt{2} (\Delta x[3] - \Delta x[6] + 2\Delta x[9] - 2\Delta x[10] + \Delta y[3] - \Delta y[6] + 2\Delta y[9] - 2\Delta y[10] - \Delta z[1] - \Delta z[2] + \Delta z[4] + \Delta z[5])$ $-2\sqrt{2} (\Delta x [2] - \Delta x [4] - 2\Delta x [9] + 2\Delta x [10] + \Delta y [1] - \Delta y [3] - \Delta y [5] + \Delta y [6] + \Delta z [2] - \Delta z [4] - 2\Delta z [9] + 2\Delta z [10])$ $-2\sqrt{2} \quad (\Delta x [2] - \Delta x [3] - \Delta x [4] + \Delta x [6] + \Delta y [1] - \Delta y [5] - 2\Delta y [9] + 2\Delta y [10] + \Delta z [1] - \Delta z [5] - 2\Delta z [9] + 2\Delta z [10])$ $-2\sqrt{2} \quad (\Delta x [3] - \Delta x [6] - 2\Delta x [9] + 2\Delta x [10] - \Delta y [3] + \Delta y [6] + 2\Delta y [9] - 2\Delta y [10] - \Delta z [1] + \Delta z [2] - \Delta z [4] + \Delta z [5])$

 $2 \, d1 - d10 + d12 + d14 - d15 - d16 + 2 \, d17 + d18 - d2 - d20 + d21 + d22 - 2 \, d23 - d24 + d3 + d4 - d6 - 2 \, d7 + d8 - d9$ -d1 + d11 + d12 - d13 - d15 + 2 d16 - d17 - d18 + d19 + 2 d2 + d21 - 2 d22 + d23 + d24 - d3 - d5 - d6 + d7 - 2 d8 + d9 d1 + d10 + d11 - d13 - d14 - d16 + d17 + 2 d18 + d19 - d2 + d20 + d22 - d23 - 2 d24 + 2 d3 - d4 - d5 - d7 + d8 - 2 d9 d1 - 2 d10 - d11 + d12 + d13 + 2 d14 - d15 + d17 - d18 - d19 - 2 d20 + d21 - d23 + d24 - d3 + 2 d4 + d5 - d6 - d7 + d9 -d10 - 2 d11 - d12 + 2 d13 + d14 + d15 - d16 - d18 - 2 d19 - d2 - d20 - d21 + d22 + d24 - d3 + d4 + 2 d5 + d6 + d8 + d9 $-d1 + d10 - d11 - 2\ d12 + d13 - d14 + 2\ d15 - d16 - d17 - d19 - d2 + d20 - 2\ d21 + d22 + d23 - d4 + d5 + 2\ d6 + d7 + d8$ -2 d1 + d10 - d12 - d14 + d15 + d16 - 2 d17 - d18 + d2 + d20 - d21 - d22 + 2 d23 + d24 - d3 - d4 + d6 + 2 d7 - d8 + d9d1 - d11 - d12 + d13 + d15 - 2 d16 + d17 + d18 - d19 - 2 d2 - d21 + 2 d22 - d23 - d24 + d3 + d5 + d6 - d7 + 2 d8 - d9-d1 - d10 - d11 + d13 + d14 + d16 - d17 - 2 d18 - d19 + d2 - d20 - d22 + d23 + 2 d24 - 2 d3 + d4 + d5 + d7 - d8 + 2 d9 -d1 + 2 d10 + d11 - d12 - d13 - 2 d14 + d15 - d17 + d18 + d19 + 2 d20 - d21 + d23 - d24 + d3 - 2 d4 - d5 + d6 + d7 - d9 $d10 + 2\ d11 + d12 - 2\ d13 - d14 - d15 + d16 + d18 + 2\ d19 + d2 + d20 + d21 - d22 - d24 + d3 - d4 - 2\ d5 - d6 - d8 - d9$ d1 - d10 + d11 + 2 d12 - d13 + d14 - 2 d15 + d16 + d17 + d19 + d2 - d20 + 2 d21 - d22 - d23 + d4 - d5 - 2 d6 - d7 - d8-d10 - 2 d11 - d12 + 2 d13 + d14 + d15 - d16 - d18 - 2 d19 - d2 - d20 - d21 + d22 + d24 - d3 + d4 + 2 d5 + d6 + d8 + d9 d1 - 2 d10 - d11 + d12 + d13 + 2 d14 - d15 + d17 - d18 - d19 - 2 d20 + d21 - d23 + d24 - d3 + 2 d4 + d5 - d6 - d7 + d9 -d1 + d10 - d11 - 2 d12 + d13 - d14 + 2 d15 - d16 - d17 - d19 - d2 + d20 - 2 d21 + d22 + d23 - d4 + d5 + 2 d6 + d7 + d8 -d1 + d11 + d12 - d13 - d15 + 2 d16 - d17 - d18 + d19 + 2 d2 + d21 - 2 d22 + d23 + d24 - d3 - d5 - d6 + d7 - 2 d8 + d9 + d9 + d12 + d122 d1 - d10 + d12 + d14 - d15 - d16 + 2 d17 + d18 - d2 - d20 + d21 + d22 - 2 d23 - d24 + d3 + d4 - d6 - 2 d7 + d8 - d9 d1 + d10 + d11 - d13 - d14 - d16 + d17 + 2 d18 + d19 - d2 + d20 + d22 - d23 - 2 d24 + 2 d3 - d4 - d5 - d7 + d8 - 2 d9 d10 + 2 d11 + d12 - 2 d13 - d14 - d15 + d16 + d18 + 2 d19 + d2 + d20 + d21 - d22 - d24 + d3 - d4 - 2 d5 - d6 - d8 - d9 -d1 + 2 d10 + d11 - d12 - d13 - 2 d14 + d15 - d17 + d18 + d19 + 2 d20 - d21 + d23 - d24 + d3 - 2 d4 - d5 + d6 + d7 - d9 d1 - d10 + d11 + 2 d12 - d13 + d14 - 2 d15 + d16 + d17 + d19 + d2 - d20 + 2 d21 - d22 - d23 + d4 - d5 - 2 d6 - d7 - d8 $d1 - d11 - d12 + d13 + d15 - 2 \ d16 + d17 + d18 - d19 - 2 \ d2 - d21 + 2 \ d22 - d23 - d24 + d3 + d5 + d6 - d7 + 2 \ d8 - d9$ -2 d1 + d10 - d12 - d14 + d15 + d16 - 2 d17 - d18 + d2 + d20 - d21 - d22 + 2 d23 + d24 - d3 - d4 + d6 + 2 d7 - d8 + d9 -d1 - d10 - d11 + d13 + d14 + d16 - d17 - 2 d18 - d19 + d2 - d20 - d22 + d23 + 2 d24 - 2 d3 + d4 + d5 + d7 - d8 + 2 d9

 $2\sqrt{2} \left(-\Delta y \begin{bmatrix}1\end{bmatrix} + \Delta y \begin{bmatrix}3\end{bmatrix} - \Delta y \begin{bmatrix}5\end{bmatrix} + \Delta y \begin{bmatrix}6\end{bmatrix} - \Delta z \begin{bmatrix}1\end{bmatrix} + \Delta z \begin{bmatrix}2\end{bmatrix} + \Delta z \begin{bmatrix}4\end{bmatrix} - \Delta z \begin{bmatrix}5\end{bmatrix}\right)$ $2\sqrt{2} \left(-\Delta x \left[2\right] + \Delta x \left[3\right] - \Delta x \left[4\right] + \Delta x \left[6\right] + \Delta z \left[1\right] - \Delta z \left[2\right] - \Delta z \left[4\right] + \Delta z \left[5\right]\right)$ $2\sqrt{2} (\Delta x[2] - \Delta x[3] + \Delta x[4] - \Delta x[6] - \Delta y[1] + \Delta y[3] - \Delta y[5] + \Delta y[6])$ $2\sqrt{2} \left(-\Delta x \left[2\right] + \Delta x \left[3\right] - \Delta x \left[4\right] + \Delta x \left[6\right] - \Delta z \left[1\right] + \Delta z \left[2\right] + \Delta z \left[4\right] - \Delta z \left[5\right]\right)$ $2\sqrt{2} (\Delta y[1] - \Delta y[3] + \Delta y[5] - \Delta y[6] - \Delta z[1] + \Delta z[2] + \Delta z[4] - \Delta z[5])$ $2\sqrt{2} \quad (\Delta x [2] - \Delta x [3] + \Delta x [4] - \Delta x [6] + \Delta y [1] - \Delta y [3] + \Delta y [5] - \Delta y [6])$ $2\sqrt{2} \quad (\triangle y [1] - \triangle y [3] + \triangle y [5] - \triangle y [6] + \triangle z [1] - \triangle z [2] - \triangle z [4] + \triangle z [5])$ $2\sqrt{2} \left(\Delta x \left[2 \right] - \Delta x \left[3 \right] + \Delta x \left[4 \right] - \Delta x \left[6 \right] - \Delta z \left[1 \right] + \Delta z \left[2 \right] + \Delta z \left[4 \right] - \Delta z \left[5 \right] \right)$ $-2\sqrt{2} (\Delta x [2] - \Delta x [3] + \Delta x [4] - \Delta x [6] - \Delta y [1] + \Delta y [3] - \Delta y [5] + \Delta y [6])$ $2\sqrt{2} \left(\Delta x [2] - \Delta x [3] + \Delta x [4] - \Delta x [6] + \Delta z [1] - \Delta z [2] - \Delta z [4] + \Delta z [5] \right)$ $2\sqrt{2} \left(-\Delta y \begin{bmatrix} 1 \end{bmatrix} + \Delta y \begin{bmatrix} 3 \end{bmatrix} - \Delta y \begin{bmatrix} 5 \end{bmatrix} + \Delta y \begin{bmatrix} 6 \end{bmatrix} + \Delta z \begin{bmatrix} 1 \end{bmatrix} - \Delta z \begin{bmatrix} 2 \end{bmatrix} - \Delta z \begin{bmatrix} 4 \end{bmatrix} + \Delta z \begin{bmatrix} 5 \end{bmatrix}\right)$ $-2\sqrt{2} \left(\Delta x [2] - \Delta x [3] + \Delta x [4] - \Delta x [6] + \Delta y [1] - \Delta y [3] + \Delta y [5] - \Delta y [6] \right)$ $2\sqrt{2} (\Delta y[1] - \Delta y[3] + \Delta y[5] - \Delta y[6] - \Delta z[1] + \Delta z[2] + \Delta z[4] - \Delta z[5])$ $2\sqrt{2} \left(-\Delta x \left[2\right] + \Delta x \left[3\right] - \Delta x \left[4\right] + \Delta x \left[6\right] - \Delta z \left[1\right] + \Delta z \left[2\right] + \Delta z \left[4\right] - \Delta z \left[5\right]\right)$ $2\sqrt{2} (\Delta x [2] - \Delta x [3] + \Delta x [4] - \Delta x [6] + \Delta y [1] - \Delta y [3] + \Delta y [5] - \Delta y [6])$ $2\sqrt{2} \left(-\Delta x \left[2\right] + \Delta x \left[3\right] - \Delta x \left[4\right] + \Delta x \left[6\right] + \Delta z \left[1\right] - \Delta z \left[2\right] - \Delta z \left[4\right] + \Delta z \left[5\right]\right)$ $2\sqrt{2} \left(-\Delta y \begin{bmatrix} 1 \end{bmatrix} + \Delta y \begin{bmatrix} 3 \end{bmatrix} - \Delta y \begin{bmatrix} 5 \end{bmatrix} + \Delta y \begin{bmatrix} 6 \end{bmatrix} - \Delta z \begin{bmatrix} 1 \end{bmatrix} + \Delta z \begin{bmatrix} 2 \end{bmatrix} + \Delta z \begin{bmatrix} 4 \end{bmatrix} - \Delta z \begin{bmatrix} 5 \end{bmatrix}\right)$ $2\sqrt{2} (\Delta x[2] - \Delta x[3] + \Delta x[4] - \Delta x[6] - \Delta y[1] + \Delta y[3] - \Delta y[5] + \Delta y[6])$ $2\sqrt{2} \left(-\bigtriangleup y[1] + \bigtriangleup y[3] - \bigtriangleup y[5] + \bigtriangleup y[6] + \bigtriangleup z[1] - \bigtriangleup z[2] - \bigtriangleup z[4] + \bigtriangleup z[5]\right)$ $2\sqrt{2} (\Delta x [2] - \Delta x [3] + \Delta x [4] - \Delta x [6] + \Delta z [1] - \Delta z [2] - \Delta z [4] + \Delta z [5])$ $-2\sqrt{2} (\Delta x [2] - \Delta x [3] + \Delta x [4] - \Delta x [6] + \Delta y [1] - \Delta y [3] + \Delta y [5] - \Delta y [6])$ $2\sqrt{2} (\Delta x [2] - \Delta x [3] + \Delta x [4] - \Delta x [6] - \Delta z [1] + \Delta z [2] + \Delta z [4] - \Delta z [5])$ $2\sqrt{2} (\Delta y[1] - \Delta y[3] + \Delta y[5] - \Delta y[6] + \Delta z[1] - \Delta z[2] - \Delta z[4] + \Delta z[5])$ $-2\sqrt{2} (\Delta x [2] - \Delta x [3] + \Delta x [4] - \Delta x [6] - \Delta y [1] + \Delta y [3] - \Delta y [5] + \Delta y [6])$

T_{2u}:

	θ*	C_{4z}	<i>C</i> _{4<i>x</i>}	C_3^{111}
A ₁	a ₁	a ₁	a ₁	a ₁
A ₂	a ₂	-a ₂	-a ₂	a ₂
E	θ	θ	$\boxed{-\frac{1}{2}\theta - \frac{\sqrt{3}}{2}\epsilon}$	$-\frac{1}{2}\theta + \frac{\sqrt{3}}{2}\varepsilon$
	З	-8	$\frac{1}{2}\varepsilon - \frac{\sqrt{3}}{2}\theta$	$-\frac{1}{2}\varepsilon-\frac{\sqrt{3}}{2}\theta$
T ₁	X	У	X	У
	у	-x	Z	Z
	Z	Z	-у	х
T ₂	3	-η	3-	η
	η	3	-ζ	ζ
	ζ	-ζ	η	З

Anexo II.6. - Tabla de Operaciones de Simetría.

Grupo de Generadores de Griffith para simetría octaédrica.

Anexo II.7. - Ejemplo de cálculo usando coordenadas " Δr " para T_1 .

Sea:

$$|T_{1x}\rangle = c_1 \Delta r_1 + c_2 \Delta r_2 + c_3 \Delta r_3 + c_4 \Delta r_4 + c_5 \Delta r_5 + c_6 \Delta r_6$$

Aplicando C_{4z} se tiene:

$$C_{4z}|T_{1x}\rangle = c_1 \Delta r_2 + c_2 \Delta r_5 + c_3 \Delta r_3 + c_4 \Delta r_1 + c_5 \Delta r_4 + c_6 \Delta r_6 = |T_{1y}\rangle$$

Se aplica también $C_{4x} | T_{1x} \rangle = | T_{1x} \rangle_{\pm}$

$$C_{4x}|T_{1x}\rangle = c_1 \Delta r_1 + c_2 \Delta r_6 + c_3 \Delta r_2 + c_4 \Delta r_3 + c_5 \Delta r_5 + c_6 \Delta r_4 = |T_{1x}\rangle$$

por lo tanto se deduce:

 $c_2 = c_3 = c_4 = c_6$

Luego se tiene:

$$|T_{1x}\rangle = c_1 \Delta r_1 + c_2 \Delta r_2 + c_2 \Delta r_3 + c_2 \Delta r_4 + c_5 \Delta r_5 + c_2 \Delta r_6$$
$$|T_{1y}\rangle = c_1 \Delta r_1 + c_2 \Delta r_2 + c_2 \Delta r_3 + c_2 \Delta r_5 + c_5 \Delta r_4 + c_2 \Delta r_6$$

Aplicando $C_{4z} \left| T_{1y} \right\rangle = - \left| T_{1x} \right\rangle$

$$C_{4z} | T_{1y} \rangle = c_1 \Delta r_5 + c_2 \Delta r_4 + c_2 \Delta r_3 + c_2 \Delta r_2 + c_5 \Delta r_1 + c_2 \Delta r_6 = - | T_{1x} \rangle$$

Se determina de este modo:

$$-c_5 = c_1$$
$$c_2 = -c_2 = 0$$

luego:

$$\begin{aligned} \left| T_{1x} \right\rangle &= c_1 \, \left(r_1 - \Delta r_5 \right) \\ \left| T_{1y} \right\rangle &= c_1 \, \left(r_2 - \Delta r_4 \right) \\ \left| T_{1z} \right\rangle &= C_3^{111} \left| T_{1y} \right\rangle = c_1 \, \left(r_6 - \Delta r_3 \right) \end{aligned}$$

Si se aplica la operación de inversión se tiene:

$$\hat{i} | T_{1x} \rangle = - | T_{1x} \rangle$$
$$\hat{i} | T_{1y} \rangle = - | T_{1y} \rangle$$
$$\hat{i} | T_{1z} \rangle = - | T_{1z} \rangle$$

Por lo tanto se concluye que la representación irreductible
$$T_1$$
 es impar
(ungerade) y se denota T_{1u} .

Finalmente, al normalizar se tiene:

$$|T_{1ux}\rangle = \frac{1}{\sqrt{2}} \langle r_1 - \Delta r_5 \rangle$$
$$|T_{1uy}\rangle = \frac{1}{\sqrt{2}} \langle r_2 - \Delta r_4 \rangle$$
$$|T_{1uz}\rangle = \frac{1}{\sqrt{2}} \langle r_6 - \Delta r_3 \rangle$$

Anexo II.8.- Especies de simetría calculadas usando el Grupo de Generadores de Griffith.

a) Coordenadas internas " Δr " Algr := $\frac{1}{\sqrt{6}}$ (r[1] + r[2] + r[3] + r[4] + r[5] + r[6]) $\frac{\Delta x[1] - \Delta x[5] + \Delta y[2] - \Delta y[4] - \Delta x[3] + \Delta x[6]}{\sqrt{6}}$ Eg0r := $\frac{1}{\sqrt{12}}$ (r[1] + r[2] - 2r[3] + r[4] + r[5] - 2r[6]) $\frac{\Delta x[1] - \Delta x[5] + \Delta y[2] - \Delta y[4] + 2\Delta x[3] - 2\Delta x[6]}{2\sqrt{3}}$ Eger := $\frac{1}{2}$ (r[1] - r[2] - r[4] + r[5]) $\frac{1}{2}$ ($\Delta x[1] - \Delta x[5] - \Delta y[2] + \Delta y[4]$) tluxr := $\frac{1}{\sqrt{2}}$ (r[1] - r[5])

$$\sqrt{2}$$

$$tluyr := \frac{1}{\sqrt{2}} (r[2] - r[4])$$

$$\frac{\Delta y[2] + \Delta y[4] - 2 \Delta y[7]}{\sqrt{2}}$$

$$tluzr := \frac{1}{\sqrt{2}} (r[3] - r[6])$$

 $\Delta x[1] + \Delta x[5] - 2 \Delta x[7]$

$$\frac{-\Delta z [3] - \Delta z [6] + 2 \Delta z [7]}{\sqrt{2}}$$

b) Coordenadas internas " ΔR "

$$Alg := \frac{1}{\sqrt{6}} (R[1] + R[2] + R[3] + R[4] + R[5] + R[6])$$

$$\frac{-x[1] + x[5] - y[2] + y[4] + z[3] - z[6]}{\sqrt{6}}$$

$$Eg\theta := \frac{1}{\sqrt{12}} (R[1] + R[2] - 2R[3] + R[4] + R[5] - 2R[6])$$

$$\frac{-x[1] + x[5] - y[2] + y[4] - 2z[3] + 2z[6]}{2\sqrt{3}}$$

$$Ege := \frac{1}{2} (R[1] - R[2] - R[4] + R[5])$$

$$\frac{1}{2} (-x[1] + x[5] + y[2] - y[4])$$

$$tlu1 := \frac{1}{\sqrt{2}} (R[1] - R[5])$$

$$-\frac{x[1] + x[5] - 2x[8]}{\sqrt{2}}$$

$$tlu2 := \frac{1}{\sqrt{2}} (R[2] - R[4])$$

$$-\frac{y[2] + y[4] - 2y[8]}{\sqrt{2}}$$

$$tlu3 := \frac{1}{\sqrt{2}} (R[3] - R[6])$$

$$\frac{z[3] + z[6] - 2z[8]}{\sqrt{2}}$$

c) Coordenadas internas " $\Delta \alpha$ "

Restricciones:

 $\begin{aligned} &\alpha[1, 3] + \alpha[1, 6] + \alpha[3, 5] + \alpha[5, 6] = 0\\ &\alpha[1, 2] + \alpha[2, 5] + \alpha[4, 5] + \alpha[1, 4] = 0\\ &\alpha[3, 4] + \alpha[4, 6] + \alpha[2, 6] + \alpha[2, 3] = 0 \end{aligned}$

$$\begin{aligned} \text{tlux} &:= \frac{1}{\sqrt{8}} (\alpha[1, 2] + \alpha[1, 3] + \alpha[1, 4] + \alpha[1, 6] - \alpha[2, 5] - \alpha[3, 5] - \alpha[4, 5] - \alpha[5, 6]) \\ &- \frac{x[2] + x[3] + x[4] + x[6] - 4 x[7]}{\sqrt{2} x} \\ \text{tluy} &:= \frac{1}{\sqrt{8}} (\alpha[1, 2] - \alpha[1, 4] + \alpha[2, 3] + \alpha[2, 5] + \alpha[2, 6] - \alpha[3, 4] - \alpha[4, 5] - \alpha[4, 6]) \\ &- \frac{y[1] + y[3] + y[5] + y[6] - 4 y[7]}{\sqrt{2} x} \\ \text{tluz} &:= \frac{1}{\sqrt{6}} (-\alpha[1, 3] + \alpha[1, 6] - \alpha[2, 3] + \alpha[2, 6] - \alpha[3, 4] - \alpha[3, 5] + \alpha[4, 6] + \alpha[5, 6]) \\ &- \frac{z[1] + z[2] + z[4] + z[5] - 4 z[7]}{\sqrt{2} x} \\ \text{t2ge} &:= \frac{1}{2} (-\alpha[2, 3] + \alpha[2, 6] + \alpha[3, 4] - \alpha[4, 6]) \\ &\frac{y[3] - y[6] - z[2] + z[4]}{x} \\ \text{t2g7} &:= \frac{1}{2} (-\alpha[1, 3] + \alpha[1, 6] + \alpha[3, 5] - \alpha[5, 6]) \\ &\frac{x[3] - x[6] - z[1] + z[5]}{x} \\ \\ \text{t2gg} &:= \frac{1}{2} (\alpha[1, 2] - \alpha[1, 4] - \alpha[2, 5] + \alpha[4, 5]) \\ &- \frac{x[2] + x[4] - y[1] + y[5]}{x} \end{aligned}$$

$$t^{2}u\varepsilon := \frac{1}{\sqrt{8}} (\alpha[1, 2] - \alpha[1, 3] + \alpha[1, 4] - \alpha[1, 6] - \alpha[2, 5] - \alpha[4, 5] + \alpha[3, 5] + \alpha[5, 6])$$

$$\frac{-x[2] + x[3] - x[4] + x[6]}{\sqrt{2} r}$$

$$t^{2}u\eta := \frac{1}{\sqrt{8}} (\alpha[2, 3] + \alpha[2, 6] - \alpha[2, 5] - \alpha[1, 2] - \alpha[3, 4] - \alpha[4, 6] + \alpha[4, 5] + \alpha[1, 4])$$

$$\frac{y[1] - y[3] + y[5] - y[6]}{\sqrt{2} r}$$

$$t^{2}ug' := \frac{1}{\sqrt{8}} (\alpha[5, 6] + \alpha[1, 6] + \alpha[2, 3] + \alpha[3, 4] - \alpha[3, 5] - \alpha[1, 3] - \alpha[2, 6] - \alpha[4, 6])$$

$$\frac{-z[1] + z[2] + z[4] - z[5]}{\sqrt{2} r}$$

d) Coordenadas internas " $\Delta\beta$ "

Restricciones:

$$\begin{split} \beta[1, 3] + \beta[1, 6] + \beta[3, 5] + \beta[5, 6] &= 0 \\ \beta[1, 2] + \beta[2, 5] + \beta[4, 5] + \beta[1, 4] &= 0 \\ \beta[3, 4] + \beta[4, 6] + \beta[2, 6] + \beta[2, 3] &= 0 \end{split}$$

 $\texttt{tlux} := (\beta[1, 2] + \beta[1, 3] + \beta[1, 4] + \beta[1, 6] - \beta[2, 5] - \beta[3, 5] - \beta[4, 5] - \beta[5, 6])$

$$\frac{x[2] + x[3] + x[4] + x[6] - 4x[8]}{\sqrt{2} R}$$

 $\texttt{tluy} := (\beta[1, 2] - \beta[1, 4] + \beta[2, 3] + \beta[2, 5] + \beta[2, 6] - \beta[3, 4] - \beta[4, 5] - \beta[4, 6])$

$$\frac{y[1] + y[3] + y[5] + y[6] - 4 y[8]}{\sqrt{2} R}$$

 $\texttt{tluz} := (-\beta[1, 3] + \beta[1, 6] - \beta[2, 3] + \beta[2, 6] - \beta[3, 4] - \beta[3, 5] + \beta[4, 6] + \beta[5, 6])$

$$\frac{z[1] + z[2] + z[4] + z[5] - 4 z[8]}{\sqrt{2} R}$$
$$t^{2}ge := \frac{1}{2} (-\beta[2, 3] + \beta[2, 6] + \beta[3, 4] - \beta[4, 6])$$

$$\frac{-y[3] + y[6] + z[2] - z[4]}{R}$$

$$t^{2}g\eta := \frac{1}{2} (-\beta[1, 3] + \beta[1, 6] + \beta[3, 5] - \beta[5, 6])$$

$$\frac{-x[3] + x[6] + z[1] - z[5]}{R}$$

$$t^{2}gg' := \frac{1}{2} (\beta[1, 2] - \beta[1, 4] - \beta[2, 5] + \beta[4, 5])$$

$$\frac{x[2] - x[4] + y[1] - y[5]}{R}$$

$$t^{2}ue := \frac{1}{\sqrt{8}} (\beta[1, 2] - \beta[1, 3] + \beta[1, 4] - \beta[1, 6] - \beta[2, 5] - \beta[4, 5] + \beta[3, 5] + \beta[5, 6]))$$

$$\frac{x[2] - x[3] + x[4] - x[6]}{\sqrt{2} R}$$

$$t^{2}u\eta := \frac{1}{\sqrt{8}} (\beta[2, 3] + \beta[2, 6] - \beta[2, 5] - \beta[1, 2] - \beta[3, 4] - \beta[4, 6] + \beta[4, 5] + \beta[1, 4])$$

$$\frac{-y[1] + y[3] - y[5] + y[6]}{\sqrt{2} R}$$

$$t^{2}ug' := \frac{1}{\sqrt{8}} (\beta[5, 6] + \beta[1, 6] + \beta[2, 3] + \beta[3, 4] - \beta[3, 5] - \beta[1, 3] - \beta[2, 6] - \beta[4, 6])$$

$$\frac{z[1] - z[2] - z[4] + z[5]}{\sqrt{2} R}$$

e) Coordenadas internas " Δq "

$$tlgxq := \frac{1}{2} (q[10] + q[3] - q[4] - q[9])$$

$$-\Delta y[3] + \Delta y[6] - \Delta z[2] + \Delta z[4]$$

$$tlgyq := \frac{1}{2} (-q[11] + q[12] + q[5] - q[6])$$

$$\Delta x[3] - \Delta x[6] + \Delta z[1] - \Delta z[5]$$

$$tlgzq := \frac{1}{2} (q[1] - q[2] - q[7] + q[8])$$

$$\Delta x[2] - \Delta x[4] - \Delta y[1] + \Delta y[5]$$

$$t2geq := \frac{1}{2} (q[3] + q[4] - q[9] - q[10])$$

$$\Delta y[3] - \Delta y[6] - \Delta z[2] + \Delta z[4]$$

$$t2g\eta q := \frac{1}{2} (q[5] + q[6] - q[11] - q[12])$$

$$\Delta x[3] - \Delta x[6] - \Delta z[1] + \Delta z[5]$$

$$t2ggq := \frac{1}{2} (q[1] + q[2] - q[7] - q[8])$$

f) Coordenadas internas " Δd "

 $t1uxd2 := \frac{1}{4} \left(\left(d[2] + d[4] - d[8] - d[10] + d[15] + d[18] - d[21] - d[24] \right) + \left(d[3] + d[6] - d[9] - d[12] + d[14] + d[16] - d[20] - d[22] \right) \right)$

$$-\frac{\Delta x[2] + \Delta x[3] + \Delta x[4] + \Delta x[6] - 2\Delta x[9] - 2\Delta x[10]}{\sqrt{2}}$$

 $t1uyd2 := \frac{1}{4} \left(\left(-d[3] + d[6] + d[9] - d[12] - d[13] + d[17] + d[19] - d[23] \right) + \left(d[1] - d[5] - d[7] + d[11] + d[15] - d[18] - d[21] + d[24] \right) \right)$

$$-\frac{\Delta y[1] + \Delta y[3] + \Delta y[5] + \Delta y[6] - 2 \Delta y[9] - 2 \Delta y[10]}{\sqrt{2}}$$

 $tluzd2 := \frac{1}{4} ((d[1] + d[5] - d[7] - d[11] - d[14] + d[16] + d[20] - d[22]) + (d[2] - d[4] - d[8] + d[10] + d[13] + d[17] - d[19] - d[23]))$

$$-\frac{\Delta z [1] + \Delta z [2] + \Delta z [4] + \Delta z [5] - 2 \Delta z [9] - 2 \Delta z [10]}{\sqrt{2}}$$

 $t1gxd3 := \frac{1}{4} \left(\left(d[2] + d[4] - d[8] - d[10] + d[15] + d[18] - d[21] - d[24] \right) - \left(d[3] + d[6] - d[9] - d[12] + d[14] + d[16] - d[20] - d[22] \right) \right)$

$$\frac{-\Delta y[3] + \Delta y[6] - \Delta z[2] + \Delta z[4]}{\sqrt{2}}$$

 $t1gyd3 := \frac{1}{4} \left(\left(-d[3] + d[6] + d[9] - d[12] - d[13] + d[17] + d[19] - d[23] \right) - \left(d[1] - d[5] - d[7] + d[11] + d[15] - d[18] - d[21] + d[24] \right) \right)$

$$\frac{\Delta x[3] - \Delta x[6] + \Delta z[1] - \Delta z[5]}{\sqrt{2}}$$

+1ard3 -- 1

$$\Delta x [2] - \Delta x [4] - \Delta y [1] + \Delta y [5]$$

-d[23]))

$$\frac{\Delta \mathbf{x}[2] - \Delta \mathbf{x}[4] - \Delta \mathbf{y}[1] + \Delta \mathbf{y}[5]}{\sqrt{2}}$$

 $t2ged2 := \frac{1}{4} ((d[2] + d[4] - d[8] - d[10] - d[15] - d[18] + d[21] + d[24]) + (d[3] + d[6] - d[9] - d[12] - d[14] - d[16] + d[20] + d[22]))$

$$\Delta \mathbf{x}[2] - \Delta \mathbf{x}[4] - \Delta \mathbf{y}[1] + \Delta \mathbf{y}[5]$$

$$\Delta \mathbf{x}[2] - \Delta \mathbf{x}[4] - \Delta \mathbf{y}[1] + \Delta \mathbf{y}[5]$$

$$t2g\eta d2 := \frac{1}{4} \left(\left(-d[3] + d[6] + d[9] - d[12] + d[13] - d[17] - d[19] + d[2] \right) \right)$$

 $\frac{2 \Delta x[9] - 2 \Delta x[10] + \Delta y[3] - \Delta y[6] - \Delta z[2] + \Delta z[4]}{\sqrt{2}}$

23]) + (d[1] - d[5] - d[7] + d[11] - d[15] + d[18] + d[21] - d[24]))

$$\Delta \mathbf{x}[3] - \Delta \mathbf{x}[6] + 2 \Delta \mathbf{y}[9] - 2 \Delta \mathbf{y}[10] - \Delta \mathbf{z}[1] + \Delta \mathbf{z}[5]$$

$$\Delta x[3] - \Delta x[6] + 2 \Delta y[9] - 2 \Delta y[10] - \Delta z[1] + \Delta z[5]$$

$$\Delta \mathbf{x}[3] - \Delta \mathbf{x}[6] + 2 \Delta \mathbf{y}[9] - 2 \Delta \mathbf{y}[10] - \Delta \mathbf{z}[1] + \Delta \mathbf{z}[5]$$

 $t2ggd2 := \frac{1}{4} \left(\left(d[1] + d[5] - d[7] - d[11] + d[14] - d[16] - d[20] + d[22] \right) + \left(d[2] - d[4] - d[8] + d[10] - d[13] - d[17] + d[19] + d[23] \right) \right)$

$$\frac{\Delta \mathbf{x}[3] - \Delta \mathbf{x}[6] + 2 \Delta \mathbf{y}[9] - 2 \Delta \mathbf{y}[10] - \Delta \mathbf{z}[1] + \Delta \mathbf{z}[5]}{\sqrt{2}}$$

$$\frac{-\Delta x[2] + \Delta x[4] - \Delta y[1] + \Delta y[5] + 2\Delta z[9] - 2\Delta z[10]}{\sqrt{2}}$$

 $t2ued3 := \frac{1}{4} ((d[2] + d[4] - d[8] - d[10] - d[15] - d[18] + d[21] + d[24]) - (d[3] + d[6] - d[9] - d[12] - d[14] - d[16] + d[20] + d[22]))$

$$\frac{-\Delta x[2] + \Delta x[3] - \Delta x[4] + \Delta x[6]}{\sqrt{2}}$$

 $t2u\eta d3 := \frac{1}{4} \left(\left(-d[3] + d[6] + d[9] - d[12] + d[13] - d[17] - d[19] + d[23] \right) - \left(d[1] - d[5] - d[7] + d[11] - d[15] + d[18] + d[21] - d[24] \right) \right)$

$$\frac{\Delta y[1] - \Delta y[3] + \Delta y[5] - \Delta y[6]}{\sqrt{2}}$$

 $t2u\zeta d3 := \frac{1}{4} ((d[1] + d[5] - d[7] - d[11] + d[14] - d[16] - d[20] + d[22]) - (d[2] - d[4] - d[8] + d[10] - d[13] - d[17] + d[19] + d[23]))$

$$\frac{-\Delta z [1] + \Delta z [2] + \Delta z [4] - \Delta z [5]}{\sqrt{2}}$$

Anexo II.9. - Coordenadas generadas a partir de especies de simetría:

a)
$$A_{1g}(S_1)$$
:

$$\frac{r1 - R1 + r2 - R2 + r3 - R3 + r4 - R4 + r5 - R5 + r6 - R6}{2\sqrt{6}}$$

b) E_g(S₂):

$$\frac{r1 - R1 + r2 - R2 - 2 r3 + 2 R3 + r4 - R4 + r5 - R5 - 2 r6 + 2 R6}{4 \sqrt{3}}$$

c) T_{1g} (S₃):

$$\frac{1}{16} \left(-\sqrt{2} \ d10 + \sqrt{2} \ d12 - \sqrt{2} \ d14 + \sqrt{2} \ d15 - \sqrt{2} \ d16 + \sqrt{2} \ d18 + \sqrt{2} \ d2 + \sqrt{2} \ d20 - \sqrt{2} \ d21 + \sqrt{2} \ d20 - \sqrt{2} \ d21 + \sqrt{2} \ d22 - \sqrt{2} \ d24 - \sqrt{2} \ d3 + \sqrt{2} \ d4 - \sqrt{2} \ d6 - \sqrt{2} \ d8 + \sqrt{2} \ d9 + 2 \ q10 + 2 \ q3 - 2 \ q4 - 2 \ q9 \right)$$

d)
$$T_{2g}^{1}$$
 (S₄):

$$\frac{1}{12} (-q10 + q3 + q4 - q9 - \alpha 23 + \alpha 26 + \alpha 34 - \alpha 46 + \beta 23 - \beta 26 - \beta 34 + \beta 46)$$

e)
$$T_{2g}^{2}(S_{5})$$
:
 $\frac{1}{8}(-d10 - d12 - d14 - d15 - d16 - d18 + d2 + d20 + d21 + d22 + d24 + d3 + d4 + d6 - d8 - d9 + $\sqrt{2}$ q10 - $\sqrt{2}$ q3 - $\sqrt{2}$ q4 + $\sqrt{2}$ q9)$

f) T_{1u}¹ (S₆):

$$\frac{1}{4}$$
 (r1 - R1 - r5 + R5)

g) T_{1u}² (S₇):

 $\frac{1}{8\sqrt{15}}\left(\sqrt{2} \ d10 + \sqrt{2} \ d12 - \sqrt{2} \ d14 - \sqrt{2} \ d15 - \sqrt{2} \ d16 - \sqrt{2} \ d18 - \sqrt{2} \ d2 + \sqrt{2} \ d20 + \sqrt{2} \ d21 + \sqrt{2} \ d22 + \sqrt{2} \ d21 + \sqrt{2} \ d22 + \sqrt{2} \ d20 + \sqrt{2} \ d21 + \sqrt{2} \ d22 + \sqrt{2} \ d21 + \sqrt{2} \ d22 + \sqrt{2} \ d21 + \sqrt{2} \ d21 + \sqrt{2} \ d22 + \sqrt{2} \ d21 + \sqrt{2} \ d21 + \sqrt{2} \ d22 + \sqrt{2} \ d21 + \sqrt{2} \ d21 + \sqrt{2} \ d22 + \sqrt{2} \ d21 + \sqrt{2$

h) T_{1u}³ (S₈):

$$\frac{-r1 - R1 + r5 + R5}{2\sqrt{2}}$$

i) T_{1u}⁴ (S₉):

$$\frac{1}{8\sqrt{3}} \left(-\sqrt{2} \ d10 - \sqrt{2} \ d12 + \sqrt{2} \ d14 + \sqrt{2} \ d15 + \sqrt{2} \ d16 + \sqrt{2} \ d18 + \sqrt{2} \ d2 - \sqrt{2} \ d20 - \sqrt{2} \ d21 - \sqrt{2} \ d22 - \sqrt{2} \ d24 + \sqrt{2} \ d3 + \sqrt{2} \ d4 + \sqrt{2} \ d6 - \sqrt{2} \ d8 - \sqrt{2} \ d9 - 2 \ r1 + 2 \ R1 + 2 \ r5 - 2 \ R5 - \alpha 12 - \alpha 13 - \alpha 14 - \alpha 16 + \alpha 25 + \alpha 35 + \alpha 45 + \alpha 56 + \beta 12 + \beta 13 + \beta 14 + \beta 16 - \beta 25 - \beta 35 - \beta 45 - \beta 56 \right)$$

j) T_{2u} (S₁₀):

$$\frac{1}{24} \left(\sqrt{2} \ d10 - \sqrt{2} \ d12 - \sqrt{2} \ d14 + \sqrt{2} \ d15 - \sqrt{2} \ d16 + \sqrt{2} \ d18 - \sqrt{2} \ d2 + \sqrt{2} \ d20 - \sqrt{2} \ d21 + \sqrt{2} \ d20 + \sqrt{2} \ d20 - \sqrt{2} \ d21 + \sqrt{2} \ d20 + \sqrt{2}$$

Anexo II.10.- Coordenadas *r*' que generan matriz "Mp" de pasaje. Lo anterior se define para presentar coordenadas de simetría normalizadas.

$$\begin{aligned} r_{1} &= \frac{r_{1} - R_{1}}{2} \\ r_{2} &= \frac{r_{2} - R_{2}}{2} \\ r_{3} &= \frac{r_{3} - R_{3}}{2} \\ r_{4} &= \frac{r_{4} - R_{4}}{2} \\ r_{5} &= \frac{r_{5} - R_{5}}{2} \\ r_{6} &= \frac{r_{6} - R_{6}}{2} \\ r_{7} &= \frac{1}{8} \left(\sqrt{2}d_{14} - \sqrt{2}d_{16} + \sqrt{2}d_{2} + \sqrt{2}d_{4} + 2q_{10} \right) \\ r_{8} &= \frac{1}{8} \left(\sqrt{2}d_{10} - \sqrt{2}d_{20} - \sqrt{2}d_{22} + \sqrt{2}d_{8} + 2q_{4} \right) \\ r_{9} &= \frac{1}{8} \left(\sqrt{2}d_{12} + \sqrt{2}d_{18} - \sqrt{2}d_{3} - \sqrt{2}d_{6} + 2q_{3} \right) \\ r_{10} &= \frac{1}{8} \left(\sqrt{2}d_{12} + \sqrt{2}d_{21} + \sqrt{2}d_{24} - \sqrt{2}d_{9} + 2q_{9} \right) \\ r_{11} &= \frac{1}{6} \left(q_{9} + \alpha_{23} - \beta_{23} \right) \\ r_{12} &= \frac{1}{6} \left(q_{4} + \alpha_{34} - \beta_{34} \right) \\ r_{14} &= \frac{1}{6} \left(q_{10} + \alpha_{46} - \beta_{46} \right) \\ r_{15} &= \frac{1}{8} \left(\sqrt{2} \left(d_{10} - d_{14} - d_{16} + d_{2} + d_{20} + d_{22} + d_{4} - d_{8} \right) + 2q_{10} - 2q_{4} \right) \\ r_{16} &= \frac{1}{8} \left(\sqrt{2} \left(d_{12} + d_{15} + d_{18} - d_{21} - d_{24} - d_{3} - d_{6} + d_{9} \right) + 2q_{3} - 2q_{9} \right) \end{aligned}$$

$$r_{17} := \frac{r_{1}}{2}$$

$$r_{18} := \frac{r_{5}}{2}$$

$$r_{19} := \frac{R_{1}}{2}$$

$$r_{20} := \frac{R_{5}}{2}$$

$$r_{21} := \frac{1}{4} \quad \mathbf{a}_{12} + \alpha_{13} - \beta_{12} - \beta_{13} \quad \mathbf{b}_{12}$$

$$r_{22} := \frac{1}{4} \quad \mathbf{a}_{14} + \alpha_{16} - \beta_{14} - \beta_{16} \quad \mathbf{b}_{13}$$

$$r_{22} := \frac{1}{4} \quad \mathbf{a}_{14} + \alpha_{16} - \beta_{14} - \beta_{16} \quad \mathbf{b}_{15}$$

$$r_{23} := \frac{1}{4} \quad \mathbf{a}_{25} + \alpha_{35} - \beta_{25} - \beta_{35} \quad \mathbf{b}_{15}$$

$$r_{24} := \frac{1}{4} \quad \mathbf{a}_{45} + \alpha_{56} - \beta_{45} - \beta_{56} \quad \mathbf{b}_{15}$$

$$r_{25} := \frac{d_{10} - d_{2} - d_{4} + d_{8}}{6\sqrt{2}}$$

$$r_{26} := \frac{-d_{15} - d_{18} + d_{21} + d_{24}}{6\sqrt{2}}$$

$$r_{27} := \frac{d_{12} - d_{3} - d_{6} + d_{9}}{6\sqrt{2}}$$

$$r_{29} := \frac{r_{1} + R_{1}}{6\sqrt{2}}$$

$$r_{29} := \frac{r_{1} + R_{1}}{2}$$

$$r_{30} := \frac{r_{5} + R_{5}}{2}$$

$$r_{31} := \frac{1}{8} \quad \mathbf{a}_{12} + \alpha_{13} + \alpha_{14} + \alpha_{16} - \beta_{12} - \beta_{13} - \beta_{14} - \beta_{16} \quad \mathbf{b}_{16} \quad \mathbf{c}_{12} - \beta_{13} - \beta_{45} - \beta_{56} \quad \mathbf{c}_{13} = \frac{d_{10} - d_{15} - d_{18} - d_{2} + d_{21} + d_{24} - d_{4} + d_{8}}{2\sqrt{2}}$$

$$r_{33} := \frac{d_{10} - d_{15} - d_{18} - d_{2} + d_{21} + d_{24} - d_{4} + d_{8}}{2\sqrt{2}}$$

$$r_{34} := \frac{d_{12} - d_{14} - d_{16} + d_{20} + d_{22} - d_{3} - d_{6} + d_{9}}{2\sqrt{2}}$$

$$r_{35}' = \frac{1}{6} \left(\alpha_{12} - \alpha_{13} + \alpha_{14} - \alpha_{16} - \alpha_{25} + \alpha_{35} - \alpha_{45} + \alpha_{56} \right)$$

$$r_{36}' = \frac{1}{6} \left(\beta_{12} - \beta_{13} + \beta_{14} - \beta_{16} - \beta_{25} + \beta_{35} - \beta_{45} + \beta_{56} \right)$$

$$r_{37}' = \frac{d_{10} - d_{12} - d_2 + d_3 - d_4 + d_6 + d_8 - d_9}{6\sqrt{2}}$$

$$r_{38}' = \frac{-d_{14} + d_{15} - d_{16} + d_{18} + d_{20} - d_{21} + d_{22} - d_{24}}{6\sqrt{2}}$$

Anexo II.11.- Coordenadas de simetría usando coordenadas r', normalizadas.

$$S_{1} = \frac{1}{\sqrt{6}} \P_{1}'' + r_{2}' + r_{3}' + r_{4}' + r_{5}' + r_{6}' \Biggr)$$

$$S_{2} = \frac{1}{\sqrt{12}} \P_{1}' + r_{2}' - 2r_{3}' + r_{4}' + r_{5}' - 2r_{6}' \Biggr)$$

$$S_{3} = \frac{1}{2} \P_{7}' - r_{8}' + r_{9}' - r_{10}' \Biggr)$$

$$S_{4} = \frac{1}{2} \P_{71}' + r_{12}' + r_{13}' - r_{14}' \Biggr)$$

$$S_{5} = \frac{1}{\sqrt{2}} \P_{15}' - r_{16}' \Biggr)$$

$$S_{6} = \frac{1}{2} \P_{17}' - r_{18}' - r_{19}' + r_{20}' \Biggr)$$

$$S_{7} = \frac{1}{\sqrt{60}} \P_{2} 2r_{21}' - 2r_{22}' + 2r_{23}' + 2r_{24}' + 2r_{5}' - 2r_{1}' + 3r_{25}' + 3r_{26}' + 3r_{27}' + 3r_{28}' \Biggr)$$

$$S_{8} = \frac{1}{\sqrt{2}} \P_{729}' + r_{30}' \Biggr)$$

$$S_{9} = \frac{1}{\sqrt{12}} \P_{2} 2r_{31}' + 2r_{32}' + r_{5}' - r_{1}' - r_{33}' - r_{34}' \Biggr)$$

$$S_{10} = \frac{1}{2} \P_{735}' + r_{36}' + r_{37}' + r_{38}' \Biggr)$$

Anexo II.12.- Coordenadas de Simetría usando coordenadas cartesianas.

$$S_{1} = \frac{1}{\sqrt{6}} \langle \langle 1 + y_{2} - z_{3} - y_{4} - x_{5} + z_{6} \rangle$$

$$S_{2} = \frac{1}{\sqrt{12}} \langle \langle 1 + y_{2} + 2z_{3} - y_{4} - x_{5} - 2z_{6} \rangle$$

$$S_{3} = \frac{1}{2} \langle z_{2} + z_{4} - y_{3} + y_{6} \rangle$$

$$S_{4} = \frac{1}{2} \langle \langle y_{3} - y_{6} - z_{2} + z_{4} \rangle$$

$$S_{5} = \frac{1}{\sqrt{2}} \langle \langle y_{9} - x_{10} \rangle$$

$$S_{6} = \frac{1}{2} \langle \langle 1 + x_{5} - x_{7} - x_{8} \rangle$$

$$S_{7} = \frac{1}{\sqrt{60}} \langle 2x_{1} + 3x_{2} + 3x_{3} + 3x_{4} - 2x_{5} + 3x_{6} - 2x_{7} - 2x_{8} - 2x_{9} - 2x_{10} \rangle$$

$$S_{8} = \frac{1}{\sqrt{2}} \langle \langle x_{7} - x_{8} \rangle$$

$$S_{9} = \frac{1}{\sqrt{12}} \langle x_{1} - x_{5} - x_{7} - x_{8} + 2x_{9} + 2x_{10} \rangle$$

$$S_{10} = \frac{1}{2} \langle \langle x_{2} - x_{3} + x_{4} - x_{6} \rangle$$

Anexo II.13.- Matrices necesarias para el calculo de F_{sym} y G_{sym} .

$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{6}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\frac{1}{2\sqrt{3}}$	$\frac{1}{2\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{2\sqrt{3}}$	$\frac{1}{2\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1 2	$-\frac{1}{2}$	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>1</u> 2	$-\frac{1}{2}$	$-\frac{1}{2}$	<u>1</u> 2	0
$-\frac{1}{\sqrt{15}}$	0	0	0	$\frac{1}{\sqrt{15}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$-\frac{1}{\sqrt{15}}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$-\frac{1}{2\sqrt{3}}$	0	0	0	$\frac{1}{2\sqrt{3}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

a) Matriz U en coordenadas internas (10x38).

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$-\frac{1}{\sqrt{15}}$	$\frac{1}{\sqrt{15}}$	$\frac{1}{\sqrt{15}}$	$\frac{\sqrt{\frac{3}{5}}}{2}$	$\frac{\sqrt{\frac{3}{5}}}{2}$	$\frac{\sqrt{\frac{3}{5}}}{2}$	$\frac{\sqrt{\frac{3}{5}}}{2}$	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	$-\frac{1}{\sqrt{-1}}$		0	0	0	0	0	0	0	0
							√ 2	√ 2								
0	0	0	0	0	0	0	0	0	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{2\sqrt{3}}$	$-\frac{1}{2\sqrt{3}}$	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	<u>1</u> 2	<u>1</u> 2

1	$\frac{1}{2}$	0	0	0	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	$\frac{1}{2}$	0	0	0	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	$\frac{1}{2}$	0	0	0	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	$\frac{1}{2}$	0	0	0	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	$\frac{1}{2}$	0	0	0	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	$\frac{1}{2}$	0	0	0	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{6}$	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>1</u> 6	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>1</u> 6	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	2 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	2 0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	1	1
	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	1	0	0	0	0	1	0	0	4	4
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	4	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	$\frac{1}{4}$	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$\frac{1}{2}$	0	0	0	0	0	$\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	<u>1</u> 2	0	0	0	0	0	$\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	<u>1</u> 8	0	0	<u>1</u> 8	0	0	0	0	<u>1</u> 8	0	0	<u>1</u> 8	$-\frac{1}{8}$
	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>1</u> 8	<u>1</u> 8	0	0	0	0	0	0	<u>1</u> 8	<u>1</u> 8	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	-	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0
	U	U	U	U	U	U	U	U	U	U	U	U	6	6	6	6	U	U	U	U	6	6	6	6	U
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>1</u> 6
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

b) Matriz de pasaje para coordenadas internas (Mp) (38x72).

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	U	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	~	0	0	0	0	0	0	0	0	~	~	1	4	~	~	~	0	0	0	0	~	~
0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	_ 1	0	0	0	0	0	0	Ο	0	Ο	0	0	0	1	0	0	0	0
0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0
0	0	0	$-\frac{1}{6}$	0	0	0	0	0	0	0	0	0	1 6	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	_1	0	0	Ο	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	6	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0
0	0	0	0	$-\frac{1}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>1</u> 6	0	0	0
0	0	0	Ο	0	0	0	0	Ο	0	0	0	0	0	_ 1	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0		4	0	0	0	0		4	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	<u>1</u> 4	0	0	0	0	0	$-\frac{1}{4}$	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	_ 1	0	0	0	0	0	0	0	0	0	0	0	0	0
Ū	0		0	0	Ū	0		0	0	4	0	0	0	0	0	0	0	0	Ū	0	0	0	0
0	0	$-\frac{1}{4}$	0	0	0	0	$-\frac{1}{4}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- 1	0	0	0	0	0	0	0	0	$-\frac{1}{1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	0	0	0	0	0	0	1	4	0	~	~	0	0	~	0	0	0	0	0	~	~	0
0	4	0	0	0	0	U	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	$-\frac{1}{2}$	0	0	0	0	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
_ 1	_ 1	0	0	0	0	0	0	_ 1	_ 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	0	0	0	0	0	0	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$-\frac{1}{6}$	$-\frac{1}{6}$	<u>1</u> 6	0	0	0	0	$-\frac{1}{6}$	<u>1</u> 6	<u>1</u> 6	$-\frac{1}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	1	0	0	0	0	0	0	0	0	0		0	_ 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4\sqrt{2}$		4√2										$4\sqrt{2}$		$4\sqrt{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$4\sqrt{2}$		$4\sqrt{2}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0		0	0	$-\frac{1}{\sqrt{-1}}$	0	0	0	0	0	0	0	0	1	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4√2			4√2									4√2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	$-\frac{1}{\sqrt{-1}}$	0	0	$-\frac{1}{\sqrt{-1}}$	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								4√2			4√2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0		0	0	0	$-\frac{1}{\sqrt{-1}}$	0	$-\frac{1}{\sqrt{-1}}$	0	0	0	$-\frac{1}{\sqrt{-1}}$	0	- 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4√2		4√2				4√2		4√2				4√2		4√2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$-\frac{1}{\sqrt{-1}}$	0	0	$-\frac{1}{\sqrt{-1}}$	0	0		0	0	<u></u>	0	0	<u></u>	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4√2			4√2			4√2			4√2			4√2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{1}{\sqrt{1}}$	0	$-\frac{1}{\sqrt{1}}$	0	0	0	$\frac{1}{\sqrt{1-1}}$	0	1	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 V 2		6√2				6 V 2		6 V 2					1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1			1			1			1			6 V 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	- 1	0	0	$-\frac{1}{6\sqrt{2}}$	0	0	60/2	0	0	<u> ()</u>	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>^</u>	0 \ 2			0 \ 2	~		0 \ 2	0	~	0 \ 2	~	1		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	- <u>-</u>	0	- <u></u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0 0 2	0	0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	1	0	0	0	1	0	1	0	0	0	0	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2\sqrt{2}}{2\sqrt{2}}$	0	$\frac{2\sqrt{2}}{2\sqrt{2}}$	0	0	0	$2\sqrt{2}$	0	$2\sqrt{2}$	0	0	0	0	$\frac{2\sqrt{2}}{2}$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	Ň	0	1	0	, O	11	í O	0	1	0	1	Ň	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$2\sqrt{2}$	U	U	$2\sqrt{2}$	U	U	$2\sqrt{2}$	U	U	$2\sqrt{2}$	U	$2\sqrt{2}$	U	$2\sqrt{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	, O	0	0	ů,	0	0	0	0	0	0	0	, O	0	, O
$-\frac{1}{1}$ $\frac{1}{1}$ $-\frac{1}{1}$ 0 $\frac{1}{1}$ 0 $\frac{1}{1}$ $-\frac{1}{1}$ $\frac{1}{1}$ 0 $-\frac{1}{1}$ 0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1		0	1	0	1		1	0	_ 1	0	0	0	0
$6\sqrt{2}$ $6\sqrt{2}$ $6\sqrt{2}$ $6\sqrt{2}$ $6\sqrt{2}$ $6\sqrt{2}$ $6\sqrt{2}$	$6\sqrt{2}$	$6\sqrt{2}$	$6\sqrt{2}$	0	$6\sqrt{2}$	5	$6\sqrt{2}$	$6\sqrt{2}$	$6\sqrt{2}$	5	$6\sqrt{2}$	5	5	0	0
0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
$6\sqrt{2}$ $6\sqrt{2}$ $6\sqrt{2}$	-	2	5	2	2	2	2	5	0	2	2	2	$6\sqrt{2}$	6√2	$6\sqrt{2}$

0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	1	0	1	0	0	
0	0	0	4 \sqrt{2}	U	4 \sqrt{2}	0	U	
0	$\frac{1}{4\sqrt{2}}$	0	0	0	0	0	0	
0	0	0	0	$\frac{1}{4\sqrt{2}}$	0	0	$\frac{1}{4\sqrt{2}}$	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	$\frac{1}{4\sqrt{2}}$	0	$\frac{1}{4\sqrt{2}}$	0	0	
0	$\frac{1}{4\sqrt{2}}$	0	0	$-\frac{1}{4\sqrt{2}}$	0	0	$-\frac{1}{4\sqrt{2}}$	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	1	0	0	1	0	0	1	
0	$-\frac{1}{6\sqrt{2}}$	0	0	$6\sqrt{2}$	0	0	$6\sqrt{2}$	
0	0	0	0	0	0	0	0	
0	0	0	$\frac{1}{6\sqrt{2}}$	0	$\frac{1}{6\sqrt{2}}$	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	$-\frac{1}{2\sqrt{2}}$	0	0	$\frac{1}{2\sqrt{2}}$	0	0	$\frac{1}{2\sqrt{2}}$	
0	0	0	$\frac{1}{2\sqrt{2}}$	0	$\frac{1}{2\sqrt{2}}$	0	0	
0	0	0	- v - 0	0	- v - N	0	0	
0	0	0	0	0 0	0 0	0	0 0	
0	0	0	0	0	0	0	0	
0	1	0	1	1	1	0	1	
U	6 √ 2	U	6 √ 2	$-\frac{1}{6\sqrt{2}}$	6√2	U	$-\frac{1}{6\sqrt{2}}$	

c) Matriz F (72x72):

| | x[2] | x[2] | x[2]
 | x[3] | x[2] | x[7]
 | x[8] | x[8] | x[8]
 | x[9] | x[8] | x[51] | x[53]
 | x[53] | x[51] | x[52] | x[52]
 |
--	--	--
--	---	--
---	---	---
---	---	--
--	--	--
x[2]	x[1]	x[2]
 | x[2] | x[2] | x[8]
 | x[7] | x[8] | x[9]
 | x[8] | x[8] | x[51] | x[51]
 | x[53] | x[53] | x[51] | x[53]
 |
| x[2] | x[2] | x[1] | x[2]
 | x[2] | x[3] | x[8]
 | x[8] | x[7] | x[8]
 | x[8] | x[9] | x[52] | x[52]
 | x[52] | x[52] | x[53] | x[53]
 |
| x[2] | x[3] | x[2] | x[1]
 | x[2] | x[2] | x[8]
 | x[9] | x[8] | x[7]
 | x[8] | x[8] | x[53] | x[53]
 | x[51] | x[51] | x[53] | x[51]
 |
| x[3] | x[2] | x[2] | x[2]
 | x[1] | x[2] | x[9]
 | x[8] | x[8] | x[8]
 | x[7] | x[8] | x[53] | x[51]
 | x[51] | x[53] | x[52] | x[52]
 |
| x[2] | x[2] | x [3] | x[2]
 | x[2] | x[1] | x[8]
 | x[8] | x[9] | x[8]
 | x[8] | x[7] | x[52] | x [52]
 | x[52] | x[52] | x[51] | x[51]
 |
| v[7] | v[8] | v[8] | v[8]
 | v[9] | v[8] | v[4]
 | v[5] | v [5] | v[5]
 | v[6] | v[5] | v[45] | v[46]
 | v[46] | v[45] | v[47] | v[47]
 |
| ×[0] | | [0] | [0]
 | [0] | **[0] | ~[5]
 | [4] | ~[J] | x[J]
 | ~[6] | v [5] | x[45] | x[40]
 | x[40] | x[45] | ~[45] | [46]
 |
| X[0] | x[/] | x[0] | x[9]
 | x[o] | x[o] | x[J]
 | A[4] | X[J] | x[0]
 | x[J] | x[J] | X[4J] | X[4J]
 | X[40] | X[40] | X[4J] | X[40]
 |
| x[0] | X[0] | X[/] | x[0]
 | x[0] | x[9] | x[5]
 | x[ɔ] | X[4] | x[ɔ]
 | x[ɔ] | X[0] | X[4/] | X[4/]
 | X[4/] | X[4/] | X[40] | X[40]
 |
| X[8] | x[9] | X[8] | X[/]
 | X[8] | X[8] | x[5]
 | X[6] | X[5] | x[4]
 | x[5] | x[5] | X[46] | X[46]
 | x[45] | x[45] | X[46] | x[45]
 |
| x[9] | x[8] | x[8] | x[8]
 | x[7] | x[8] | x[6]
 | x[5] | x[5] | x[5]
 | x[4] | x[5] | x[46] | x[45]
 | x[45] | x[46] | x[47] | x[47]
 |
| x[8] | x[8] | x[9] | x[8]
 | x[8] | x[7] | x[5]
 | x[5] | x[6] | x[5]
 | x[5] | x[4] | x[47] | x[47]
 | x[47] | x[47] | x[45] | x[45]
 |
| x[51] | x[51] | x[52] | x[53]
 | x[53] | x[52] | x[45]
 | x[45] | x[47] | x[46]
 | x[46] | x[47] | x[10] | x[11]
 | x[12] | x[11] | x[13] | x[14]
 |
| x[53] | x[51] | x[52] | x[53]
 | x[51] | x[52] | x[46]
 | x[45] | x[47] | x[46]
 | x[45] | x[47] | x[11] | x[10]
 | x[11] | x[12] | x[13] | x[14]
 |
| x[53] | x[53] | x[52] | x[51]
 | x[51] | x[52] | x[46]
 | x[46] | x[47] | x[45]
 | x[45] | x[47] | x[12] | x[11]
 | x[10] | x[11] | x[14] | x[13]
 |
| x[51] | x[53] | x[52] | x[51]
 | x[53] | x[52] | x[45]
 | x[46] | x[47] | x[45]
 | x[46] | x[47] | x[11] | x[12]
 | x[11] | x[10] | x[14] | x[13]
 |
| x[52] | x[51] | x[53] | x[53]
 | x[52] | x[51] | x[47]
 | x[45] | x[46] | x[46]
 | x[47] | x[45] | x[13] | x[13]
 | x[14] | x[14] | x[10] | x[11]
 |
| x[52] | x[53] | x[53] | x[51]
 | x[52] | x[51] | x[47]
 | x[46] | x[46] | x[45]
 | x[47] | x[45] | x[14] | x[14]
 | x[13] | x[13] | x[11] | x[10]
 |
| x[52] | x[53] | x[51] | x[51]
 | x[52] | x[53] | x[47]
 | x[46] | x[45] | x[45]
 | x[47] | x[46] | x[14] | x[14]
 | x[13] | x[13] | x[12] | x[11]
 |
| x[52] | x[51] | x[51] | x[53]
 | x[52] | x[53] | x[47]
 | x[45] | x[45] | x[46]
 | x[47] | x[46] | x[13] | x[13]
 | x[14] | x[14] | x[11] | x[12]
 |
| v[51] | v[52] | v[53] | v[52]
 | v[53] | v[51] | v[45]
 | v[47] | v[46] | v[47]
 | v[46] | v[45] | v[13] | v[14]
 | v[14] | v[13] | v[13] | v[13]
 |
| [52] | [50] | [53] |
 | [[1] | [[1] | [4C]
 | [47] | [40] | [47]
 | [45] | [45] | [14] | [12]
 | [12] | [14] | [10] | [10]
 |
| x[JJ] | x[JZ] | x[JJ] | x[JZ]
 | X[J1] | x[JI] | x[40]
 | X[4/] | X[40] | X[4/]
 | x[4J] | x[4J] | X[14] | x[13]
 | x[13] | X[14] | X[13] | X[13]
 |
| X[53] | X[52] | X[51] | X[52]
 | X[51] | X[53] | X[46]
 | X[4/] | X[45] | X[4/]
 | X[45] | X[46] | X[14] | X[13]
 | X[13] | X[14] | X[14] | X[14]
 |
| x[51] | x[52] | x[51] | x[52]
 | x[53] | x[53] | x[45]
 | x[4/] | x[45] | x[4/]
 | X[46] | x[46] | x[13] | X[14]
 | X[14] | x[13] | x[14] | X[14]
 |
| x[48] | x[48] | x[50] | x[49]
 | x[49] | x[50] | x[68]
 | x[68] | x[69] | x[70]
 | x[70] | x[69] | x[24] | x[20]
 | x[23] | x[20] | x[21] | x[22]
 |
| x[49] | x[48] | x[50] | x[49]
 | x[48] | x[50] | x[70]
 | x[68] | x[69] | x[70]
 | x[68] | x[69] | x[20] | x[24]
 | x[20] | x[23] | x[21] | x[22]
 |
| x[49] | x[49] | x[50] | x[48]
 | x[48] | x[50] | x[70]
 | x[70] | x[69] | x[68]
 | x[68] | x[69] | x[23] | x[20]
 | x[24] | x[20] | x[22] | x[21]
 |
| x[48] | x[49] | x[50] | x[48]
 | x[49] | x[50] | x[68]
 | x[70] | x[69] | x[68]
 | x[70] | x[69] | x[20] | x[23]
 | x[20] | x[24] | x[22] | x[22]
 |
| x[50] | x[48] | x[49] | x[49]
 | x[50] | x[48] | x[69]
 | x[68] | x[70] | x[70]
 | x[69] | x[68] | x[21] | x[21]
 | x[22] | x[22] | x[24] | x[20]
 |
| x[50] | x[49] | x[49] | x[48]
 | x[50] | x[48] | x[69]
 | x[70] | x[70] | x[68]
 | x[69] | x[68] | x[22] | x[22]
 | x[21] | x[22] | x[20] | x[24]
 |
| x[50] | x[49] | x[48] | x[48]
 | x[50] | x[49] | x[69]
 | x[70] | x[68] | x[68]
 | x[69] | x[70] | x[22] | x[22]
 | x[21] | x[21] | x[23] | x[20]
 |
| x[50] | x[48] | x[48] | x[49]
 | x[50] | x[49] | x[69]
 | x[68] | x[68] | x[70]
 | x[69] | x[70] | x[21] | x[21]
 | x[22] | x[22] | x[20] | x[23]
 |
| x[48] | x[50] | x[49] | x[50]
 | x[49] | x[48] | x[68]
 | x[69] | x[70] | x[69]
 | x[70] | x[68] | x[21] | x[22]
 | x[22] | x[21] | x[21] | x[21]
 |
| v[/0] | v[50] | ~[/0] | v[50]
 | v[/8] | v[/8] | v[70]
 | v[60] | v[70] | v[60]
 | v[69] | v[68] | v[22] | v[21]
 | v[21] | v[22] | v[21] | v[21]
 |
| [40] | **[E0] | [10] | *[E0]
 | [10] | [40] | [70]
 | [C0] | [60] | [C0]
 | [C0] | [70] | [22] | ··[21]
 | [21] | [22] | [22] | [22]
 |
| x[49] | x[J0] | x[40] | x[J0]
 | x[40] | X[49] | x[/0]
 | x[09] | x[00] | x[09]
 | x[00] | x[70] | x[22] | x[21]
 | x[21] | x[22] | x[22] | x[22]
 |
| X[40] | x[50] | X[48] | x[50]
 | X[49] | X[49] | X[00]
 | X[09] | X[00] | x[09]
 | x[/0] | x[/0] | X[21] | X[22]
 | X[22] | X[21] | X[22] | X[22]
 |
| x[/1] | x[/2] | x[/6] | X[/4]
 | x[/1] | x[/3] | x[83]
 | x[84] | x[85] | x[86]
 | x[83] | x[88] | x[//] | x[/8]
 | x[//] | x[/8] | x[/9] | x[/9]
 |
| x[72] | x[71] | x[76] | x[75]
 | x[72] | x[73] | x[84]
 | x[83] | x[85] | x[87]
 | x[84] | x[88] | x[77] | x[78]
 | x[77] | x[78] | x[78] | x[78]
 |
| x[73] | x[71] | x[72] | x[71]
 | x[76] | x[72] | x[88]
 | x[83] | x[84] | x[83]
 | x[85] | x[84] | x[78] | x[78]
 | x[78] | x[78] | x[77] | x[78]
 |
| x[73] | x[72] | x[71] | x[72]
 | x[76] | x[71] | x[88]
 | x[84] | x[83] | x[84]
 | x[85] | x[83] | x[79] | x[79]
 | x[79] | x[79] | x[77] | x[78]
 |
| x[72] | x[73] | x[75] | x[76]
 | x[74] | x[71] | x[84]
 | x[88] | x[87] | x[85]
 | x[86] | x[83] | x[79] | x[79]
 | x[79] | x[79] | x[78] | x[78]
 |
| x[71] | C = - 3 | |
 | [75] | [72] | ~[83]
 | x[88] | x[86] | x[85]
 | x[87] | x[84] | x[78] | x[78]
 | x[78] | x[78] | x[79] | x[79]
 |
| [| x[73] | x[74] | x[76]
 | x[/J] | X[/2] | V[02]
 | | | |
 | | | |
 | | 11 (/ O J | |
 |
| x[/5] | x[73]
x[74] | x[74]
x[73] | x[76]
x[72]
 | x[75] | x[72] | x[87]
 | x[86] | x[88] | x[84]
 | x[87] | x[85] | x[78] | x[77]
 | x[78] | x[77] | x[79] | x[79]
 |
| x[75]
x[74] | x[73]
x[74]
x[75] | x[74]
x[73]
x[73] | x[76]
x[72]
x[71]
 | x[75]
x[75] | x[76]
x[76] | x[87]
x[86]
 | x[86]
x[87] | x[88]
x[88] | x[84]
x[83]
 | x[87]
x[86] | x[85]
x[85] | x[78]
x[78] | x[77]
x[77]
 | x[78]
x[78] | x[77]
x[77] | x[79]
x[78] | x[79]
x[78]
 |
| x[75]
x[74]
x[76] | x[73]
x[74]
x[75]
x[75] | x[74]
x[73]
x[73]
x[74] | x[76]
x[72]
x[71]
x[75]
 | x[75]
x[75]
x[74]
x[73] | x[72]
x[76]
x[76]
x[74] | x[87]
x[86]
x[85]
 | x[86]
x[87]
x[87] | x[88]
x[88]
x[86] | x[84]
x[83]
x[87]
 | x[87]
x[86]
x[88] | x[85]
x[85]
x[86] | x[78]
x[78]
x[78] | x[77]
x[77]
x[78]
 | x[78]
x[78]
x[78] | x[77]
x[77]
x[77] | x[79]
x[78]
x[78] | x[79]
x[78]
x[77]
 |
| x[75]
x[74]
x[76]
x[76] | x[73]
x[74]
x[75]
x[75]
x[74] | x[74]
x[73]
x[73]
x[74]
x[75] | x[76]
x[72]
x[71]
x[75]
x[74]
 | x[75]
x[75]
x[74]
x[73]
x[73] | x[76]
x[76]
x[76]
x[74]
x[75] | x[87]
x[86]
x[85]
x[85]
 | x[86]
x[87]
x[87]
x[86] | x[88]
x[88]
x[86]
x[87] | x[84]
x[83]
x[87]
x[86]
 | x[87]
x[86]
x[88]
x[88] | x[85]
x[85]
x[86]
x[87] | x[78]
x[78]
x[78]
x[79] | x[77]
x[77]
x[78]
x[79]
 | x[78]
x[78]
x[78]
x[79] | x[77]
x[77]
x[78]
x[79] | x[79]
x[78]
x[78]
x[78] | x[79]
x[78]
x[77]
x[77]
 |
| x[75]
x[74]
x[76]
x[76]
x[74] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
 | x[75]
x[75]
x[74]
x[73]
x[73]
x[72] | x[76]
x[76]
x[76]
x[74]
x[75]
x[75] | x[87]
x[86]
x[85]
x[85]
x[85]
 | x[86]
x[87]
x[87]
x[86]
x[85] | x[88]
x[88]
x[86]
x[87]
x[83] | x[84]
x[83]
x[87]
x[86]
x[88]
 | x[87]
x[86]
x[88]
x[88]
x[84] | x[85]
x[85]
x[86]
x[87]
x[87] | x[78]
x[78]
x[78]
x[79]
x[79] | x[77]
x[77]
x[78]
x[79]
x[79]
 | x[78]
x[78]
x[78]
x[79]
x[79] | x[77]
x[77]
x[77]
x[78]
x[79] | x[79]
x[78]
x[78]
x[78]
x[78] | x[79]
x[78]
x[77]
x[77]
x[78]
 |
| x[75]
x[74]
x[76]
x[76]
x[74] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
 | x[73]
x[75]
x[74]
x[73]
x[73]
x[72]
x[71] | x[72]
x[76]
x[76]
x[74]
x[75]
x[75]
x[74] | x[87]
x[86]
x[85]
x[85]
x[85]
x[86]
x[87]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[85] | x[88]
x[88]
x[86]
x[87]
x[83]
x[84] | x[84]
x[83]
x[87]
x[86]
x[88]
x[88]
 | x[87]
x[86]
x[88]
x[88]
x[84]
x[83] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86] | x[78]
x[78]
x[78]
x[79]
x[79]
x[78] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
 | x[78]
x[78]
x[78]
x[79]
x[79]
x[78] | x[77]
x[77]
x[77]
x[78]
x[79]
x[79] | x[79]
x[78]
x[78]
x[78]
x[78]
x[79] | x[79]
x[78]
x[77]
x[77]
x[78]
x[79]
 |
| x[75]
x[74]
x[76]
x[76]
x[74]
x[75] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76]
x[76]
x[38] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
x[40]
 | x[75]
x[75]
x[74]
x[73]
x[73]
x[72]
x[71] | x[72]
x[76]
x[76]
x[74]
x[75]
x[75]
x[74]
x[74] | x[83]
x[87]
x[86]
x[85]
x[85]
x[86]
x[87]
x[41]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[85]
x[85] | x[88]
x[88]
x[86]
x[87]
x[83]
x[83]
x[84] | x[84]
x[83]
x[87]
x[86]
x[88]
x[88]
x[88]
 | x[87]
x[86]
x[88]
x[88]
x[84]
x[84]
x[83] | x[85]
x[85]
x[86]
x[87]
x[87]
x[87]
x[86] | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[78] | x[77]
x[77]
x[78]
x[79]
x[79]
x[79]
x[78]
 | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[78] | x[77]
x[77]
x[77]
x[78]
x[79]
x[79]
x[79]
x[78] | x[79]
x[78]
x[78]
x[78]
x[78]
x[79] | x[79]
x[78]
x[77]
x[77]
x[77]
x[78]
x[79]
 |
| x[75]
x[74]
x[76]
x[76]
x[74]
x[75]
x[37] | x[73]
x[74]
x[75]
x[75]
x[76]
x[76]
x[76]
x[38] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40] | x[76]
x[72]
x[71]
x[75]
x[73]
x[73]
x[73]
x[40]
 | x[73]
x[75]
x[74]
x[73]
x[73]
x[72]
x[71]
x[39]
x[40] | x[72]
x[76]
x[76]
x[74]
x[75]
x[75]
x[74]
x[74]
x[38] | x[83]
x[87]
x[86]
x[85]
x[85]
x[86]
x[87]
x[41]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[85]
x[44] | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42] | x[84]
x[83]
x[87]
x[86]
x[88]
x[88]
x[88]
x[42]
 | x[87]
x[86]
x[88]
x[88]
x[84]
x[83]
x[43]
x[43] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44] | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[78]
x[54] | x[77]
x[77]
x[78]
x[79]
x[79]
x[79]
x[78]
x[60]
 | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[78]
x[55] | x[77]
x[77]
x[78]
x[79]
x[79]
x[79]
x[78]
x[56] | x[79]
x[78]
x[78]
x[78]
x[78]
x[79]
x[79]
x[59] | x[79]
x[78]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
 |
| x[75]
x[74]
x[76]
x[76]
x[74]
x[75]
x[37]
x[38] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76]
x[76]
x[76]
x[38]
x[37] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40]
x[40]
x[40] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
x[73]
x[40]
x[39]
 | x[73]
x[75]
x[74]
x[73]
x[73]
x[72]
x[71]
x[39]
x[40] | x[72]
x[76]
x[76]
x[75]
x[75]
x[75]
x[74]
x[38]
x[38] | x[85]
x[87]
x[86]
x[85]
x[85]
x[86]
x[87]
x[41]
x[44]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[85]
x[85]
x[44]
x[41] | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42]
x[42] | x[84]
x[83]
x[87]
x[86]
x[88]
x[88]
x[42]
x[43]
 | x[87]
x[86]
x[88]
x[88]
x[84]
x[83]
x[43]
x[42]
x[42] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44]
x[44]
x[44] | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[78]
x[54]
x[54] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[60]
x[56]
 | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[78]
x[55]
x[55] | x[77]
x[77]
x[77]
x[79]
x[79]
x[79]
x[78]
x[56]
x[60] | x[79]
x[78]
x[78]
x[78]
x[78]
x[79]
x[59]
x[54] | x[79]
x[78]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[60]
 |
| x[75]
x[74]
x[76]
x[76]
x[74]
x[75]
x[37]
x[38]
x[38] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76]
x[76]
x[76]
x[38]
x[37]
x[40] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40]
x[40]
x[40]
x[37] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
x[73]
x[40]
x[39]
x[38]
 | x[73]
x[75]
x[74]
x[73]
x[73]
x[72]
x[71]
x[71]
x[39]
x[40]
x[40] | x[72]
x[76]
x[76]
x[75]
x[75]
x[75]
x[74]
x[38]
x[38]
x[39] | x[85]
x[87]
x[86]
x[85]
x[85]
x[86]
x[87]
x[41]
x[44]
x[44]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[85]
x[44]
x[41]
x[42] | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42]
x[42]
x[41] | x[84]
x[83]
x[87]
x[86]
x[88]
x[88]
x[42]
x[43]
x[44]
 | x[87]
x[86]
x[88]
x[88]
x[84]
x[83]
x[43]
x[43]
x[42]
x[42] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44]
x[44]
x[44]
x[44] | x[78]
x[78]
x[79]
x[79]
x[79]
x[79]
x[78]
x[54]
x[54]
x[54]
x[58] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[60]
x[60]
x[56]
x[57]
 | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[78]
x[55]
x[55]
x[55]
x[58] | x[77]
x[77]
x[78]
x[79]
x[79]
x[79]
x[78]
x[56]
x[60]
x[59] | x[79]
x[78]
x[78]
x[78]
x[78]
x[79]
x[79]
x[59]
x[54]
x[55] | x[79]
x[77]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[60]
x[60]
 |
| x[75]
x[74]
x[76]
x[76]
x[74]
x[75]
x[37]
x[38]
x[38]
x[38] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76]
x[76]
x[76]
x[38]
x[37]
x[40]
x[39] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40]
x[40]
x[40]
x[37]
x[38] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
x[73]
x[40]
x[38]
x[38]
x[37]
 | x[73]
x[75]
x[74]
x[73]
x[73]
x[72]
x[71]
x[71]
x[39]
x[40]
x[40]
x[40]
x[40] | x[72]
x[76]
x[76]
x[75]
x[75]
x[75]
x[74]
x[38]
x[38]
x[39]
x[40] | x[85]
x[86]
x[85]
x[85]
x[85]
x[86]
x[87]
x[41]
x[44]
x[44]
x[44]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[85]
x[85]
x[44]
x[41]
x[42]
x[43] | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42]
x[42]
x[41]
x[44] | x[84]
x[83]
x[87]
x[86]
x[88]
x[88]
x[42]
x[42]
x[44]
x[44]
 | x[87]
x[86]
x[88]
x[88]
x[84]
x[83]
x[43]
x[42]
x[42]
x[42]
x[42] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44]
x[44]
x[44]
x[44]
x[42] | x[78]
x[78]
x[79]
x[79]
x[79]
x[79]
x[78]
x[54]
x[54]
x[58]
x[58] | x[77]
x[77]
x[78]
x[79]
x[79]
x[79]
x[78]
x[60]
x[56]
x[57]
x[55]
 | x[78]
x[78]
x[79]
x[79]
x[79]
x[79]
x[55]
x[55]
x[55]
x[58]
x[56] | x[77]
x[77]
x[78]
x[79]
x[79]
x[79]
x[79]
x[56]
x[56]
x[59]
x[54] | x[79]
x[78]
x[78]
x[78]
x[78]
x[79]
x[79]
x[59]
x[54]
x[55]
x[55] | x[79]
x[78]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[60]
x[60]
x[56]
 |
| x[75]
x[74]
x[76]
x[76]
x[74]
x[75]
x[37]
x[38]
x[38]
x[38]
x[38] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76]
x[76]
x[76]
x[37]
x[40]
x[39]
x[40] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40]
x[40]
x[40]
x[37]
x[38]
x[40] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
x[40]
x[39]
x[38]
x[37]
x[38]
 | x [75]
x [75]
x [74]
x [73]
x [73]
x [72]
x [71]
x [39]
x [40]
x [40]
x [40]
x [40] | x [72]
x [76]
x [77]
x [77]
x [77]
x [75]
x [74]
x [38]
x [38]
x [39]
x [40]
x [38] | x[87]
x[86]
x[85]
x[85]
x[85]
x[86]
x[87]
x[41]
x[44]
x[44]
x[44]
x[44]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[85]
x[44]
x[41]
x[42]
x[42]
x[42] | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42]
x[42]
x[41]
x[44]
x[44]
x[42] | x[84]
x[83]
x[87]
x[86]
x[88]
x[88]
x[42]
x[43]
x[44]
x[44]
x[44]
 | x[87]
x[86]
x[88]
x[88]
x[83]
x[43]
x[42]
x[42]
x[42]
x[42] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44]
x[44]
x[44]
x[42]
x[42] | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[79]
x[54]
x[54]
x[54]
x[58]
x[60]
x[55] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[60]
x[56]
x[55]
x[55]
x[56]
 | x[78]
x[78]
x[79]
x[79]
x[79]
x[78]
x[55]
x[55]
x[55]
x[56]
x[56] | x [77]
x [77]
x [77]
x [78]
x [79]
x [79]
x [79]
x [79]
x [56]
x [56]
x [59]
x [54]
x [54] | x[79]
x[78]
x[78]
x[78]
x[79]
x[79]
x[59]
x[54]
x[55]
x[55]
x[55] | x[79]
x[78]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[60]
x[60]
x[56]
x[56]
 |
| x[75]
x[74]
x[76]
x[76]
x[74]
x[75]
x[37]
x[38]
x[38]
x[38]
x[39]
x[38] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76]
x[76]
x[38]
x[37]
x[40]
x[39]
x[40]
x[38] | x [74]
x [73]
x [73]
x [74]
x [75]
x [71]
x [72]
x [40]
x [40]
x [37]
x [38]
x [40]
x [39] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
x[40]
x[39]
x[38]
x[37]
x[38]
x[40]
 | x [75]
x [75]
x [74]
x [73]
x [73]
x [72]
x [71]
x [39]
x [40]
x [40]
x [40]
x [37]
x [40] | x [72]
x [76]
x [76]
x [74]
x [75]
x [75]
x [74]
x [38]
x [38]
x [39]
x [40]
x [38]
x [37] | x[87]
x[86]
x[85]
x[85]
x[85]
x[86]
x[41]
x[44]
x[44]
x[44]
x[44]
x[44]
 | $\begin{array}{c} x[86] \\ x[87] \\ x[87] \\ x[86] \\ x[85] \\ x[44] \\ x[41] \\ x[42] \\ x[43] \\ x[42] \\ x[42] \\ x[44] \end{array}$ | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42]
x[42]
x[41]
x[44]
x[42]
x[43] | x [84]
x [83]
x [87]
x [86]
x [88]
x [42]
x [42]
x [44]
x [41]
x [44]
x [42]
 | x[87]
x[86]
x[88]
x[88]
x[83]
x[43]
x[42]
x[42]
x[42]
x[42]
x[41]
x[42] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44]
x[44]
x[44]
x[42]
x[42]
x[44]
x[41] | x [78]
x [78]
x [78]
x [79]
x [79]
x [79]
x [54]
x [54]
x [58]
x [60]
x [55]
x [59] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[60]
x[56]
x[57]
x[55]
x[56]
x[58]
 | x[78]
x[78]
x[79]
x[79]
x[79]
x[78]
x[55]
x[55]
x[55]
x[56]
x[56]
x[54]
x[57] | x [77]
x [77]
x [77]
x [78]
x [79]
x [79]
x [79]
x [56]
x [56]
x [59]
x [54]
x [60]
x [58] | x[79]
x[78]
x[78]
x[78]
x[79]
x[59]
x[54]
x[55]
x[55]
x[55]
x[58]
x[54] | x[79]
x[78]
x[77]
x[77]
x[78]
x[78]
x[58]
x[60]
x[60]
x[56]
x[59]
x[56]
 |
| x[75]
x[74]
x[76]
x[76]
x[74]
x[75]
x[37]
x[38]
x[38]
x[38]
x[38]
x[39]
x[38]
x[37] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76]
x[76]
x[38]
x[37]
x[40]
x[39]
x[40]
x[38]
x[40] | x [74]
x [73]
x [73]
x [74]
x [75]
x [71]
x [72]
x [40]
x [40]
x [37]
x [38]
x [40]
x [39]
x [38] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
x[40]
x[38]
x[37]
x[38]
x[40]
x[38]
 | x [73]
x [75]
x [74]
x [73]
x [73]
x [72]
x [71]
x [39]
x [40]
x [40]
x [40]
x [37]
x [40]
x [39] | x [72]
x [76]
x [76]
x [74]
x [75]
x [75]
x [74]
x [38]
x [38]
x [39]
x [40]
x [37]
x [40] | x[83]
x[87]
x[86]
x[85]
x[85]
x[86]
x[87]
x[41]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
 | $\begin{array}{c} x[86] \\ x[87] \\ x[87] \\ x[86] \\ x[85] \\ x[44] \\ x[41] \\ x[42] \\ x[43] \\ x[42] \\ x[42] \\ x[44] \\ x[42] \end{array}$ | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42]
x[42]
x[41]
x[44]
x[42]
x[43]
x[44] | x [84]
x [83]
x [87]
x [86]
x [88]
x [42]
x [43]
x [44]
x [44]
x [44]
x [44]
x [44]
 | x[87]
x[86]
x[88]
x[88]
x[83]
x[43]
x[42]
x[42]
x[42]
x[42]
x[41]
x[42]
x[43] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44]
x[44]
x[44]
x[42]
x[44]
x[41]
x[42] | x [78]
x [78]
x [77]
x [79]
x [79]
x [79]
x [54]
x [54]
x [55]
x [55]
x [55]
x [55] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[60]
x[56]
x[55]
x[55]
x[55]
x[55]
 | x [78]
x [78]
x [78]
x [79]
x [79]
x [79]
x [55]
x [55]
x [55]
x [55]
x [56]
x [54]
x [57]
x [60] | x [77]
x [77]
x [77]
x [78]
x [79]
x [79]
x [79]
x [56]
x [56]
x [50]
x [54]
x [54] | x[79]
x[78]
x[78]
x[78]
x[78]
x[79]
x[59]
x[54]
x[55]
x[55]
x[55]
x[58]
x[54]
x[57] | x[79]
x[78]
x[77]
x[77]
x[78]
x[78]
x[58]
x[60]
x[60]
x[56]
x[59]
x[56]
x[58]
 |
| x[75]
x[74]
x[76]
x[76]
x[77]
x[75]
x[77]
x[37]
x[38]
x[38]
x[38]
x[38]
x[38]
x[39]
x[38]
x[37]
x[40] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76]
x[76]
x[37]
x[40]
x[39]
x[40]
x[39]
x[40]
x[38]
x[40]
x[37] | x [74]
x [73]
x [73]
x [74]
x [75]
x [71]
x [72]
x [40]
x [40]
x [37]
x [38]
x [40]
x [39]
x [38]
x [38] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
x[40]
x[38]
x[37]
x[38]
x[40]
x[38]
x[39]
 | x [75]
x [75]
x [74]
x [73]
x [73]
x [72]
x [71]
x [39]
x [40]
x [40]
x [40]
x [37]
x [40]
x [39]
x [38] | x [72]
x [76]
x [76]
x [77]
x [75]
x [75]
x [74]
x [38]
x [38]
x [39]
x [40]
x [38]
x [37]
x [40]
x [40] | x [87]
x [87]
x [85]
x [85]
x [85]
x [86]
x [41]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[44]
x[41]
x[42]
x[42]
x[42]
x[44]
x[42]
x[44]
x[42]
x[41] | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44] | x [84]
x [83]
x [87]
x [86]
x [88]
x [42]
x [43]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
 | x[87]
x[86]
x[88]
x[88]
x[83]
x[43]
x[42]
x[42]
x[42]
x[42]
x[41]
x[42]
x[43]
x[44] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44]
x[44]
x[44]
x[42]
x[44]
x[41]
x[42]
x[42] | x [78]
x [78]
x [77]
x [79]
x [79]
x [79]
x [54]
x [54]
x [54]
x [55]
x [55]
x [55]
x [56]
x [56] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55]
x[55]
 | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[55]
x[55]
x[55]
x[55]
x[56]
x[56]
x[54]
x[57]
x[60]
x[60] | x [77]
x [77]
x [77]
x [78]
x [79]
x [79]
x [79]
x [56]
x [56]
x [56]
x [50]
x [54]
x [54]
x [55] | x[79]
x[78]
x[78]
x[78]
x[79]
x[59]
x[54]
x[55]
x[55]
x[55]
x[55]
x[54]
x[54]
x[57]
x[56] | x[79]
x[78]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[60]
x[56]
x[56]
x[56]
x[56]
x[55]
 |
| x[75]
x[74]
x[76]
x[76]
x[74]
x[75]
x[37]
x[38]
x[38]
x[38]
x[39]
x[38]
x[39]
x[38]
x[37]
x[40] | x[73]
x[74]
x[75]
x[75]
x[76]
x[76]
x[76]
x[38]
x[37]
x[40]
x[39]
x[40]
x[39]
x[40]
x[39]
x[40]
x[37]
x[38] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40]
x[40]
x[37]
x[38]
x[40]
x[39]
x[38]
x[38]
x[38]
x[37] | x[76]
x[72]
x[71]
x[75]
x[74]
x[73]
x[73]
x[40]
x[38]
x[38]
x[37]
x[38]
x[40]
x[38]
x[39]
x[40]
 | x [75]
x [75]
x [74]
x [73]
x [73]
x [72]
x [71]
x [40]
x [40]
x [40]
x [40]
x [40]
x [37]
x [40]
x [39]
x [38]
x [38] | x [72]
x [76]
x [774]
x [75]
x [75]
x [75]
x [74]
x [38]
x [38]
x [39]
x [40]
x [38]
x [40]
x [40]
x [40]
x [40]
x [40]
x [39] | x [87]
x [86]
x [85]
x [85]
x [85]
x [86]
x [41]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [42]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[44]
x[41]
x[42]
x[42]
x[42]
x[44]
x[42]
x[44]
x[44] | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42]
x[42]
x[41]
x[44]
x[44]
x[44]
x[44]
x[41] | x [84]
x [83]
x [87]
x [86]
x [88]
x [88]
x [42]
x [43]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
 | x[87]
x[86]
x[88]
x[88]
x[84]
x[43]
x[42]
x[42]
x[42]
x[41]
x[42]
x[43]
x[44]
x[44] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44]
x[44]
x[44]
x[42]
x[42]
x[42]
x[43] | x [78]
x [78]
x [78]
x [79]
x [79]
x [79]
x [54]
x [54]
x [54]
x [55]
x [55]
x [55]
x [56]
x [56]
x [58] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[60]
x[56]
x[55]
x[56]
x[56]
x[55]
x[55]
x[54]
x[59]
 | x[78]
x[78]
x[79]
x[79]
x[79]
x[55]
x[55]
x[55]
x[56]
x[56]
x[57]
x[60]
x[60]
x[58] | x [77]
x [77]
x [78]
x [79]
x [79]
x [79]
x [78]
x [56]
x [56]
x [59]
x [54]
x [54]
x [55]
x [55] | x[79]
x[78]
x[78]
x[78]
x[79]
x[59]
x[54]
x[55]
x[55]
x[55]
x[54]
x[57]
x[56]
x[60] | x[79]
x[78]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[60]
x[56]
x[56]
x[56]
x[56]
x[55]
x[55]
 |
| x[75]
x[74]
x[76]
x[74]
x[75]
x[37]
x[38]
x[38]
x[38]
x[38]
x[39]
x[38]
x[37]
x[40]
x[40] | x[73]
x[74]
x[75]
x[75]
x[74]
x[76]
x[76]
x[38]
x[37]
x[40]
x[39]
x[40]
x[38]
x[40]
x[38]
x[39] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40]
x[40]
x[37]
x[38]
x[40]
x[38]
x[38]
x[38]
x[37]
x[37] | x[76]
x[72]
x[71]
x[75]
x[73]
x[73]
x[73]
x[39]
x[39]
x[38]
x[37]
x[38]
x[40]
x[38]
x[38]
x[40]
x[39]
x[39] | x [73]
x [75]
x [77]
x [73]
x [73]
x [72]
x [71]
x [39]
x [40]
x [40]
x [40]
x [40]
x [37]
x [40]
x [39]
x [38]
x [38] | x [72]
x [76]
x [77]
x [77]
x [75]
x [75]
x [74]
x [38]
x [38]
x [39]
x [40]
x [37]
x [40]
x [40]
x [39]
x [40]
x [39]
x [38] | x [83]
x [87]
x [86]
x [85]
x [85]
x [86]
x [41]
x [44]
x | x[86]
x[87]
x[87]
x[86]
x[85]
x[44]
x[41]
x[42]
x[42]
x[42]
x[42]
x[42]
x[41]
x[44]
x[43] | x[88]
x[88]
x[86]
x[87]
x[83]
x[84]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44] | x [84]
x [83]
x [87]
x [86]
x [88]
x [42]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44] | x[87]
x[86]
x[88]
x[88]
x[83]
x[43]
x[42]
x[42]
x[42]
x[42]
x[42]
x[41]
x[43]
x[44]
x[44]
x[44] | x[85]
x[85]
x[86]
x[87]
x[87]
x[86]
x[44]
x[44]
x[44]
x[42]
x[44]
x[42]
x[42]
x[42]
x[42]
x[43] | x [78]
x [78]
x [78]
x [79]
x [79]
x [79]
x [54]
x [54]
x [56]
x [55]
x [55]
x [56]
x [56]
x [56]
x [55] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55]
x[55]
x[54]
x[59]
x[60] | x[78]
x[78]
x[79]
x[79]
x[79]
x[55]
x[55]
x[55]
x[56]
x[56]
x[54]
x[60]
x[60]
x[58]
x[54] | x [77]
x [77]
x [78]
x [79]
x [79]
x [79]
x [56]
x [56]
x [56]
x [54]
x [56]
x [55]
x [55]
x [57]
x [56] | x[79]
x[78]
x[78]
x[78]
x[79]
x[59]
x[59]
x[55]
x[55]
x[55]
x[55]
x[54]
x[57]
x[57]
x[56]
x[60] | x[79]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[60]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55] |
| x[75]
x[74]
x[76]
x[77]
x[77]
x[37]
x[38]
x[38]
x[38]
x[38]
x[38]
x[39]
x[38]
x[37]
x[40]
x[40]
x[40]
x[39] | x[73]
x[74]
x[75]
x[75]
x[76]
x[76]
x[38]
x[37]
x[39]
x[39]
x[39]
x[39]
x[39]
x[39]
x[38]
x[38]
x[38] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40]
x[40]
x[37]
x[40]
x[38]
x[38]
x[38]
x[37]
x[38]
x[37] | x[76]
x[72]
x[71]
x[75]
x[73]
x[73]
x[73]
x[39]
x[38]
x[37]
x[38]
x[40]
x[38]
x[40]
x[38]
x[40]
x[38]
x[40]
x[39]
x[40]
 | x [75]
x [77]
x [77]
x [73]
x [72]
x [71]
x [39]
x [40]
x [40]
x [40]
x [37]
x [38]
x [38]
x [38]
x [37] | x [72]
x [76]
x [77]
x [74]
x [75]
x [74]
x [38]
x [39]
x [40]
x [40]
x [40]
x [40]
x [40]
x [39]
x [40] | x [87]
x [86]
x [86]
x [85]
x [85]
x [86]
x [41]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [42]
x [42]
x [42]
x [43]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[45]
x[41]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44] | x[88]
x[88]
x[86]
x[87]
x[83]
x[42]
x[42]
x[42]
x[41]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44] | x [84]
x [83]
x [87]
x [86]
x [88]
x [42]
x [42]
x [44]
x [44]
 | x[87]
x[86]
x[88]
x[88]
x[84]
x[43]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[41]
x[44]
x[44]
x[41] | x[85]
x[85]
x[86]
x[87]
x[87]
x[44]
x[44]
x[44]
x[44]
x[42]
x[44]
x[42]
x[42]
x[42]
x[43]
x[42]
x[43] | x [78]
x [78]
x [78]
x [79]
x [79]
x [54]
x [54]
x [54]
x [55]
x [55]
x [56]
x [56]
x [55]
x [55]
x [56] | x[77]
x[77]
x[78]
x[79]
x[79]
x[60]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55]
x[55]
x[54]
x[54]
 | x[78]
x[78]
x[78]
x[79]
x[79]
x[55]
x[55]
x[55]
x[56]
x[56]
x[57]
x[60]
x[60]
x[58]
x[56] | x[77]
x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[56]
x[56]
x[56]
x[57]
x[55]
x[55] | x[79]
x[78]
x[78]
x[78]
x[78]
x[59]
x[54]
x[55]
x[55]
x[55]
x[55]
x[55]
x[56]
x[56]
x[60]
x[58] | x[79]
x[78]
x[77]
x[77]
x[78]
x[78]
x[58]
x[50]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55]
x[55]
x[57]
 |
| x[75]
x[74]
x[77]
x[76]
x[77]
x[37]
x[38]
x[38]
x[38]
x[38]
x[39]
x[39]
x[39]
x[39]
x[39]
x[40]
x[40]
x[40]
x[40] | x[73]
x[74]
x[75]
x[74]
x[76]
x[76]
x[38]
x[40]
x[40]
x[40]
x[40]
x[40]
x[38]
x[40]
x[37]
x[38]
x[39]
x[39] | x[74]
x[73]
x[73]
x[74]
x[75]
x[71]
x[72]
x[40]
x[40]
x[37]
x[40]
x[38]
x[40]
x[38]
x[38]
x[37]
x[40]
x[38]
x[37]
x[40] | x[76]
x[72]
x[71]
x[74]
x[74]
x[73]
x[40]
x[39]
x[38]
x[37]
x[38]
x[38]
x[39]
x[39]
x[40]
x[37]
x[40]
x[37]
 | x [75]
x [77]
x [77]
x [73]
x [72]
x [71]
x [39]
x [40]
x [40]
x [40]
x [40]
x [40]
x [37]
x [38]
x [38]
x [38]
x [37] | x [72]
x [76]
x [76]
x [74]
x [75]
x [75]
x [74]
x [38]
x [38]
x [38]
x [40]
x [40]
x [40]
x [40]
x [40]
x [39]
x [38]
x [40]
x [38]
x [40]
x [37] | x [87]
x [86]
x [85]
x [85]
x [85]
x [87]
x [41]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [42]
x [42]
x [42]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[85]
x[41]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[42]
x[44]
x[43]
x[43]
x[42] | x[88]
x[88]
x[86]
x[87]
x[83]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44] | x [84]
x [83]
x [87]
x [86]
x [88]
x [42]
x [43]
x [44]
x [44]
x [44]
x [42]
x [44]
x [42]
x [44]
 | x[87]
x[86]
x[88]
x[88]
x[84]
x[43]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44] | x[85]
x[85]
x[86]
x[87]
x[87]
x[87]
x[44]
x[44]
x[44]
x[42]
x[44]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42] | x [78]
x [78]
x [77]
x [79]
x [79]
x [54]
x [54]
x [54]
x [55]
x [55]
x [55]
x [56]
x [56]
x [55]
x [55]
x [55]
x [55]
x [55] | x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[60]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55]
x[54]
x[59]
x[60]
x[58]
 | x[78]
x[78]
x[79]
x[79]
x[79]
x[55]
x[55]
x[55]
x[56]
x[56]
x[56]
x[57]
x[60]
x[60]
x[60]
x[58]
x[54]
x[54]
x[55] | x(77)
x(77)
x(78)
x(79)
x(79)
x(78)
x(56)
x(56)
x(54)
x(54)
x(54)
x(54)
x(55)
x(55)
x(55)
x(55)
x(55)
x(55) | x[79]
x[78]
x[78]
x[78]
x[79]
x[59]
x[54]
x[55]
x[55]
x[55]
x[55]
x[54]
x[54]
x[56]
x[60]
x[60]
x[56] | x[79]
x[78]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[50]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55]
x[554]
 |
| x[75]
x[74]
x[76]
x[76]
x[77]
x[37]
x[38]
x[38]
x[38]
x[38]
x[38]
x[38]
x[38]
x[39]
x[40]
x[40]
x[40]
x[40]
x[40]
x[40] | x[73]
x[74]
x[75]
x[75]
x[76]
x[37]
x[37]
x[40]
x[37]
x[40]
x[38]
x[37]
x[38]
x[39]
x[39]
x[39]
x[39]
x[38] | x[74]
x[73]
x[73]
x[74]
x[74]
x[75]
x[71]
x[72]
x[40]
x[37]
x[38]
x[39]
x[39]
x[39]
x[38]
x[37]
x[38]
x[37]
x[40]
x[38]
x[39]
x[40] | x[76]
x[71]
x[71]
x[74]
x[73]
x[73]
x[40]
x[39]
x[37]
x[38]
x[37]
x[38]
x[37]
x[40]
x[38]
x[40]
x[37]
x[40]
x[40]
x[40]
 | x [73]
x [74]
x [74]
x [73]
x [73]
x [72]
x [71]
x [40]
x [40]
x [40]
x [40]
x [40]
x [37]
x [38]
x [38]
x [38]
x [37]
x [39] | x [76]
x [76]
x [77]
x [77]
x [75]
x [74]
x [38]
x [38]
x [39]
x [40]
x [38]
x [40]
x [40]
x [39]
x [40]
x [39]
x [40]
x [38]
x [38] | x [87]
x [87]
x [86]
x [85]
x [85]
x [87]
x [41]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [42]
x [42]
x [42]
x [42]
x [42]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[41]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44] | x[88]
x[88]
x[86]
x[87]
x[84]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[42]
x[42] | x [84]
x [83]
x [87]
x [86]
x [88]
x [42]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [42]
x [44]
x [42]
x [41]
x [42]
x [42]
 | x[87]
x[86]
x[88]
x[88]
x[83]
x[43]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44] | x[85]
x[85]
x[86]
x[87]
x[87]
x[44]
x[44]
x[44]
x[44]
x[42]
x[44]
x[42]
x[42]
x[42]
x[44]
x[44] | x [78]
x [78]
x [77]
x [79]
x [79]
x [54]
x [54]
x [54]
x [55]
x [55]
x [55]
x [55]
x [55]
x [55]
x [56] | x[77]
x[77]
x[77]
x[78]
x[79]
x[79]
x[78]
x[56]
x[55]
x[55]
x[55]
x[55]
x[55]
x[54]
x[59]
x[54]
x[54]
x[55]
 | x[78]
x[78]
x[78]
x[79]
x[79]
x[79]
x[55]
x[55]
x[55]
x[55]
x[56]
x[56]
x[57]
x[60]
x[58]
x[54]
x[56]
x[56]
x[56] | x[77]
x[77]
x[77]
x[78]
x[79]
x[79]
x[56]
x[56]
x[56]
x[54]
x[54]
x[55]
x[55]
x[55]
x[55]
x[55]
x[55] | x[79]
x[78]
x[78]
x[78]
x[79]
x[59]
x[54]
x[55]
x[55]
x[55]
x[55]
x[56]
x[56]
x[60]
x[60]
x[60]
x[58]
x[58] | x[79]
x[77]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[56]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55]
x[55]
x[57]
x[57]
 |
| x[75]
x[74]
x[76]
x[76]
x[77]
x[37]
x[38]
x[38]
x[38]
x[38]
x[39]
x[38]
x[39]
x[40]
x[40]
x[40]
x[40]
x[40]
x[40]
x[37] | x[73]
x[74]
x[75]
x[75]
x[75]
x[76]
x[38]
x[37]
x[40]
x[39]
x[40]
x[38]
x[40]
x[37]
x[39]
x[39]
x[39]
x[38] | x[74]
x[73]
x[73]
x[74]
x[74]
x[75]
x[71]
x[40]
x[40]
x[40]
x[37]
x[40]
x[38]
x[39]
x[38]
x[37]
x[38]
x[37]
x[40]
x[39]
x[40] | x[76]
x[77]
x[77]
x[77]
x[73]
x[73]
x[73]
x[73]
x[38]
x[38]
x[38]
x[37]
x[38]
x[40]
x[38]
x[40]
x[39]
x[40]
x[40]
x[40]
x[38]
x[40]
 | x [73]
x [74]
x [74]
x [73]
x [72]
x [71]
x [40]
x [40]
x [40]
x [40]
x [37]
x [40]
x [38]
x [38]
x [38]
x [37]
x [38]
x [39] | x [72]
x [76]
x [77]
x [77]
x [75]
x [75]
x [74]
x [38]
x [38]
x [39]
x [38]
x [39]
x [38]
x [37]
x [40]
x [38]
x [38]
x [37]
x [38]
x [38] | x [85]
x [86]
x [85]
x [85]
x [85]
x [87]
x [41]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [44]
x [42]
x [42]
x [42]
x [42]
x [42]
x [42]
 | x[86]
x[87]
x[87]
x[86]
x[85]
x[44]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44] | x[88]
x[88]
x[88]
x[83]
x[83]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[42]
x[42] | x [84]
x [83]
x [87]
x [86]
x [86]
x [42]
x [42]
x [44]
x [44]
x [44]
x [44]
x [44]
x [42]
x [44]
x [42]
x [42]
x [44]
x [42]
 | x[87]
x[86]
x[88]
x[88]
x[83]
x[43]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44] | x[85]
x[85]
x[86]
x[87]
x[87]
x[40]
x[44]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44] | x [78]
x [78]
x [779]
x [79]
x [79]
x [54]
x [54]
x [55]
x [55] | x [77]
x [77]
x [77]
x [78]
x [79]
x [79]
x [56]
x [56]
x [55]
x [55]
x [55]
x [55]
x [55]
x [54]
x [55]
x [55]
x [55]
x [55]
 | x[78]
x[78]
x[77]
x[79]
x[79]
x[55]
x[55]
x[56]
x[56]
x[56]
x[56]
x[60]
x[56]
x[54]
x[56]
x[56]
x[59]
x[60] | x[77]
x[77]
x[77]
x[78]
x[79]
x[78]
x[56]
x[56]
x[54]
x[56]
x[55]
x[55]
x[55]
x[55]
x[55]
x[55]
x[55]
x[56]
x[56] | x[79]
x[78]
x[78]
x[78]
x[78]
x[59]
x[59]
x[55]
x[55]
x[55]
x[55]
x[55]
x[56]
x[60]
x[60]
x[56]
x[56] | x[79]
x[77]
x[77]
x[77]
x[77]
x[78]
x[79]
x[58]
x[50]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55]
x[55]
x[55]
x[55]
x[57]
x[57]
x[59]
x[59]
 |
| x[75]
x[74]
x[76]
x[76]
x[77]
x[37]
x[38]
x[38]
x[38]
x[38]
x[38]
x[38]
x[39]
x[40]
x[40]
x[40]
x[40]
x[40]
x[39]
x[39] | x[73]
x[74]
x[75]
x[75]
x[76]
x[76]
x[38]
x[37]
x[40]
x[39]
x[39]
x[39]
x[39]
x[39]
x[38]
x[30]
x[38]
x[38]
x[38]
x[38]
x[38]
x[38]
x[38]
x[37] | x[74]
x[73]
x[73]
x[74]
x[74]
x[75]
x[71]
x[40]
x[40]
x[40]
x[37]
x[38]
x[38]
x[38]
x[38]
x[37]
x[38]
x[37]
x[38]
x[39]
x[40]
x[39] | x[76]
x[77]
x[71]
x[77]
x[73]
x[73]
x[73]
x[40]
x[38]
x[38]
x[40]
x[38]
x[40]
x[39]
x[40]
x[37]
x[40]
x[37]
x[40]
x[37]
 | x [75]
x [77]
x [77]
x [73]
x [73]
x [72]
x [71]
x [40]
x [40]
x [40]
x [40]
x [37]
x [38]
x [38]
x [38]
x [37]
x [38]
x [39]
x [39]
x [40] | x [72]
x [76]
x [77]
x [77]
x [75]
x [75]
x [74]
x [38]
x [37]
x [38]
x [39]
x [40]
x [37]
x [40]
x [39]
x [40]
x [39]
x [40]
x [39]
x [39]
x [39]
x [39]
x [38]
x [38]
x [38]
x [38] | x[87]
x[87]
x[86]
x[85]
x[86]
x[87]
x[87]
x[41]
x[44]
x[44]
x[44]
x[44]
x[44]
x[42]
x[42]
x[42]
x[42]
x[42]
x[41]
x[44]
 | x[86]
x[87]
x[87]
x[85]
x[85]
x[44]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44] | x[88]
x[88]
x[88]
x[86]
x[87]
x[83]
x[42]
x[42]
x[42]
x[42]
x[44]
x[42]
x[44]
x[44]
x[44]
x[44]
x[42]
x[44]
x[42]
x[42]
x[42] | x [84]
x [83]
x [87]
x [86]
x [88]
x [42]
x [44]
x [44] |
x[87]
x[86]
x[88]
x[88]
x[83]
x[43]
x[42]
x[42]
x[42]
x[42]
x[42]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[42]
x[42] | x[85]
x[86]
x[87]
x[87]
x[87]
x[44]
x[44]
x[42]
x[44]
x[42]
x[44]
x[42]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44]
x[44] | x [78]
x [78]
x [77]
x [79]
x [79]
x [54]
x [54]
x [54]
x [55]
x [56]
x [55]
x [56]
x [55]
x [55]
x [55]
x [55]
x [56]
x [57]
x [56]
x [54] | x [77]
x [77]
x [77]
x [78]
x [79]
x [79]
x [56]
x [56]
x [55]
x [55]
x [55]
x [54]
x [54]
x [54]
x [55]
x [55]
x [55]
x [55]
x [55]
 | x[78]
x[78]
x[78]
x[79]
x[79]
x[55]
x[55]
x[55]
x[56]
x[54]
x[54]
x[54]
x[54]
x[54]
x[54]
x[54]
x[56]
x[59]
x[60]
x[55] | x[77]
x[77]
x[77]
x[78]
x[79]
x[79]
x[79]
x[56]
x[56]
x[56]
x[56]
x[56]
x[56]
x[55]
x[55]
x[55]
x[55]
x[55]
x[55]
x[55]
x[54]
x[55]
x[55]
x[56] | x[79]
x[78]
x[78]
x[78]
x[79]
x[59]
x[55]
x[55]
x[55]
x[55]
x[55]
x[56]
x[56]
x[60]
x[56]
x[56]
x[56]
x[56] | x[79]
x[77]
x[77]
x[77]
x[77]
x[58]
x[58]
x[50]
x[56]
x[56]
x[55]
x[55]
x[54]
x[55]
x[55]
x[55]
 |
x[75] x[74] x[76] x[76] x[77] x[38] x[38] x[38] x[38] x[38] x[38] x[39] x[38] x[39] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[37] x[38] x[38]	x [73] x [74] x [75] x [75] x [76] x [76] x [38] x [37] x [40] x [38] x [40] x [38] x [39] x [39] x [38] x [39] x [38] x [39] x [38] x [37] x [38]	x[74] x[73] x[73] x[74] x[74] x[75] x[71] x[40] x[40] x[37] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[39] x[40] x[39] x[40] x[40] x[39]	x[76] x[77] x[77] x[77] x[77] x[73] x[73] x[40] x[38] x[37] x[40] x[38] x[40] x[37] x[40] x[37] x[40] x[38] x[40] x[38] x[40] x[38]	x [75] x [74] x [73] x [73] x [71] x [71] x [40] x [40] x [40] x [40] x [40] x [39] x [40] x [38] x [38] x [38] x [38] x [38] x [37] x [40] x	x [76] x [76] x [77] x [77] x [77] x [74] x [75] x [77] x [77] x [38] x [38] x [30] x [40] x [39] x [38] x [37] x [38] x [38] x [38] x [38] x [38] x [38] x [38] x [38]	x[87] x[87] x[86] x[85] x[85] x[87] x[41] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44]	x[86] x[87] x[87] x[85] x[85] x[41] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44]	x[88] x[88] x[88] x[87] x[83] x[42] x[42] x[41] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42]	x [84] x [83] x [87] x [86] x [88] x [42] x [44] x [44] x [44] x [44] x [44] x [44] x [44] x [44] x [42] x [44] x [44] x [44] x [44]	x[87] x[86] x[88] x[88] x[83] x[43] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[42]	x[85] x[85] x[87] x[87] x[87] x[40] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44]	x [78] x [78] x [77] x [79] x [79] x [54] x [54] x [55] x	x [77] x [77] x [77] x [79] x [79] x [79] x [60] x [55] x [55] x [55] x [55] x [54] x [54] x [54] x [55] x [55] x [55] x [55] x [55]	x[78] x[78] x[79] x[79] x[79] x[55] x[55] x[55] x[56] x[56] x[56] x[60] x[56] x[56] x[56] x[56] x[55] x[57]	x[77] x[77] x[77] x[78] x[79] x[79] x[56] x[56] x[54] x[54] x[54] x[55] x[55] x[55] x[55] x[55] x[55] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[54] x[55]x	x[79] x[78] x[78] x[78] x[79] x[59] x[55] x[55] x[55] x[55] x[56] x[56] x[60] x[60] x[56] x[56] x[56] x[56] x[56] x[56]	x[79] x[77] x[77] x[77] x[77] x[78] x[79] x[58] x[50] x[56] x[56] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55]
x[75] x[74] x[76] x[76] x[77] x[37] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[38]x	x[73] x[74] x[75] x[75] x[75] x[76] x[76] x[38] x[40] x[40] x[40] x[40] x[40] x[38] x[40] x[37] x[39] x[38] x[39] x[38] x[37] x[39] x[37]	x[74] x[73] x[73] x[74] x[74] x[75] x[70] x[40] x[40] x[40] x[37] x[40] x[38] x[39] x[38] x[39] x[40] x[40] x[40] x[40] x[40] x[37] x[40]	x[76] x[77] x[71] x[71] x[73] x[40] x[38] x[38] x[38] x[38] x[38] x[38] x[39] x[38] x[39] x[38] x[40] x[39] x[30] x[37] x[40]	x [75] x [74] x [77] x [77] x [77] x [72] x [71] x [39] x [40] x [40] x [40] x [37] x [40] x [38] x [38] x [38] x [38] x [38] x [37] x [40] x	x [72] x [76] x [77] x [77] x [77] x [74] x [77] x [74] x [77] x [77] x [77] x [38] x [39] x [38] x [39] x [39] x [39] x [38] x [37] x [38] x [37] x [38] x [37] x [38] x [38] x [39] x [38] x [38] x [39] x [38] x [38] x [38] x [39] x [40] x [38] x [39] x [38] x	x[87] x[87] x[86] x[85] x[85] x[87] x[41] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44]	x[86] x[87] x[87] x[86] x[85] x[44] x[41] x[42] x[44] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44]	x[88] x[88] x[88] x[87] x[87] x[84] x[42] x[42] x[41] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[44] x[42] x[42] x[42] x[42] x[42] x[42]	x [84] x [83] x [83] x [87] x [86] x [88] x [42] x [44] x [44]	x[87] x[86] x[88] x[88] x[83] x[43] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42]	x[85] x[85] x[86] x[87] x[87] x[40] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44]	x [78] x [78] x [78] x [79] x [79] x [79] x [54] x [54] x [55] x [56] x [55] x [56] x [55] x [56] x [55] x [56] x [56] x [55] x [56] x [56] x [56] x [55] x [56] x	x [77] x [77] x [78] x [79] x [79] x [60] x [56] x [55] x [55] x [55] x [55] x [55] x [55] x [54] x [55] x [55] x [55] x [55]	x[78] x[78] x[77] x[79] x[79] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[57] x[55] x[57] x[55]	x(77) x(77) x(77) x(78) x(79) x(79) x(79) x(54) x(56) x(56) x(54) x(54) x(54) x(55) x(55) x(55) x(55) x(56) x(58) x(56) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(57) x(56) x(57) x(57) x(56) x(57) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(57) x(56) x(57) x(57) x(56) x(57) x(57) x(56) x(57) x(56) x(57) x(57) x(56) x(57) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56) x(57) x(56)x	x[79] x[78] x[78] x[78] x[78] x[59] x[55] x[55] x[55] x[55] x[56] x[56] x[60] x[56] x[56] x[56] x[56] x[56]	x[79] x[77] x[77] x[77] x[77] x[78] x[79] x[58] x[50] x[56] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55]
x[75] x[74] x[76] x[76] x[77] x[37] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[37] x[40] x[40] x[40] x[39] x[40] x[37] x[38] x[38] x[38] x[38] x[38] x[37]	x[73] x[74] x[75] x[75] x[75] x[76] x[38] x[37] x[40] x[39] x[40] x[38] x[39] x[38] x[39] x[40] x[39] x[40]x	x[74] x[73] x[73] x[74] x[74] x[75] x[71] x[40] x[40] x[40] x[37] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[39] x[40] x[39] x[40] x[39] x[40] x[39] x[40] x[39] x[40] x[39] x[40] x[37] x[40] x[37] x[40] x[37] x[40] x[37] x[40] x[38] x[40] x[37] x[38] x[40] x[37] x[40] x[37] x[38] x[40] x[37] x[38] x[40] x[37] x[38] x[40] x[38]x	x[76] x[77] x[71] x[71] x[73] x[40] x[30] x[30] x[30] x[30] x[30] x[30] x[40] x[37] x[40] x[37] x[40] x[37] x[40] x[37] x[40] x[37] x[40] x[37] x[40]	x [75] x [74] x [74] x [73] x [73] x [72] x [71] x [39] x [40] x [40] x [40] x [37] x [38] x [38] x [38] x [38] x [38] x [38] x [37] x [40] x [40] x [40] x [40] x [37] x [40]	x [72] x [76] x [77] x [77] x [77] x [77] x [38] x [38] x [39] x [39] x [38] x [39] x [40] x [38] x [37] x [40] x [38] x [39] x [38] x [39] x [39] x [39] x [39] x [39] x [39]	x[83] x[83] x[86] x[85] x[86] x[84] x[41] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44]	x[86] x[87] x[87] x[86] x[85] x[41] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44]	x[88] x[88] x[87] x[87] x[83] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42]	x [84] x [83] x [83] x [87] x [86] x [88] x [42] x [44] x [44] x [44] x [44] x [44] x [44] x [42] x [44] x [44] x [44] x [44] x [44]	x[87] x[86] x[88] x[88] x[83] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42]	x[85] x[85] x[87] x[87] x[87] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44]	x [78] x [78] x [78] x [79] x [79] x [54] x [54] x [54] x [55] x [56] x [56] x [56] x [56] x [56] x [56] x [57] x [56] x [56] x [56] x [57] x [56] x	x [77] x [77] x [78] x [79] x [79] x [50] x [56] x [55] x [55] x [55] x [55] x [54] x [55] x [55]	x[78] x[78] x[79] x[79] x[79] x[55] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[55] x[55] x[57] x[56]	x[77] x[77] x[77] x[78] x[79] x[79] x[79] x[56] x[56] x[56] x[56] x[55] x[55] x[55] x[55] x[55] x[56] x[55] x[56] x[56] x[55] x[56] x[56] x[55] x[56] x[55] x[56] x[55] x[56] x[55] x[56] x[55] x[56] x[55]x	x[79] x[78] x[78] x[78] x[79] x[59] x[55] x[55] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56]	x[79] x[77] x[77] x[77] x[77] x[78] x[60] x[50] x[50] x[50] x[55]x
x[75] x[74] x[76] x[76] x[77] x[38] x[38] x[38] x[38] x[39] x[39] x[39] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[39] x[38] x[39] x[38] x[38] x[39] x[38]	x[73] x[74] x[75] x[75] x[75] x[76] x[76] x[38] x[37] x[40] x[39] x[38] x[40] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[37] x[38] x[39] x[39] x[39] x[39] x[40]	x[74] x[73] x[73] x[74] x[74] x[75] x[71] x[40] x[40] x[30] x[30] x[30] x[30] x[30] x[30] x[30] x[30] x[30] x[30] x[40] x[30] x[40] x[30] x[40] x[30] x[40] x[30] x[40] x[30] x[30] x[40] x[30]x	x[76] x[77] x[77] x[77] x[77] x[73] x[73] x[40] x[38] x[38] x[40] x[38] x[40] x[38] x[40] x[40] x[40] x[40] x[38] x[40] x[37] x[38] x[37] x[38]	x [75] x [75] x [74] x [73] x [73] x [72] x [71] x [39] x [40] x [40] x [40] x [40] x [38] x [39] x [40] x [40] x [37] x [40] x [40] x [37]	x [72] x [76] x [77] x [74] x [75] x [74] x [38] x [37] x [38] x [30] x [40] x [30] x [40] x [39] x [40] x [38] x [38] x [38] x [38] x [38] x [38] x [38] x [38] x [38] x [37] x [38] x [37]	x[87] x[87] x[86] x[85] x[85] x[85] x[41] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44]	x [86] x [87] x [87] x [87] x [85] x [85] x [44] x [42] x [44] x [42] x [44] x [42] x [44] x [44] x [44] x [44] x [44] x [42] x [44] x [42] x [44] x [42] x [44]	x[88] x[88] x[88] x[87] x[83] x[42] x[42] x[41] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[43] x[42] x[4] x[42] x[42] x[4] x[4] x[4] x[4] x[4] x[4] x[4] x[4	x [84] x [83] x [87] x [87] x [86] x [88] x [42] x [44] x [44]	x[87] x[86] x[88] x[88] x[83] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42]	x[85] x[85] x[87] x[87] x[87] x[44] x[44] x[44] x[42] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44]	x [78] x [78] x [78] x [79] x [79] x [54] x [54] x [54] x [55] x [56] x [55] x [56] x [56] x [55] x [56] x [55] x [56] x [57] x [56] x [57] x [56] x [57] x [56] x [57] x [56] x [57]	x [77] x [77] x [78] x [79] x [79] x [60] x [55] x	x[78] x[78] x[79] x[79] x[79] x[55] x[55] x[56] x[56] x[56] x[57] x[60] x[56] x[59] x[50] x[50] x[55] x[57] x[56] x[56] x[56]	x(77) x(77) x(77) x(78) x(79) x(79) x(79) x(50) x(50) x(54) x(54) x(55) x(55) x(55) x(55) x(55) x(55) x(56) x(54) x(54) x(54) x(56) x(54) x(56) x(55)x	x[79] x[78] x[78] x[78] x[79] x[59] x[55] x[55] x[55] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[50] x[50] x[50]	x[79] x[77] x[77] x[77] x[77] x[78] x[79] x[58] x[56] x[56] x[55]x
x[75] x[74] x[76] x[76] x[77] x[38] x[38] x[38] x[38] x[38] x[39] x[40] x[40] x[40] x[40] x[40] x[40] x[39] x[38] x[38] x[38] x[38] x[38] x[38]	x [73] x [74] x [75] x [75] x [75] x [76] x [38] x [40] x [30] x [40] x [38] x [40] x [38] x [39] x [38] x [39] x [38] x [39] x [38] x [37] x [39] x [38] x [37] x [39] x [38] x [39] x [38] x [39] x [38] x [39] x [38] x [40] x [38] x [37] x [38] x [38] x [37] x [38] x	x [74] x [73] x [73] x [74] x [74] x [75] x [70] x [40] x [40] x [40] x [37] x [40] x [38] x [38] x [38] x [39] x [40] x [39] x [40] x [37] x [40] x [37] x [40] x [37] x [40] x [37] x [40] x [37] x [40] x [37] x [40] x [38] x [37] x [40] x [38] x [38] x [39] x [38] x	x [76] x [77] x [77] x [71] x [75] x [74] x [73] x [39] x [37] x [38] x [37] x [38] x [38] x [38] x [38] x [38] x [40] x [38] x [40] x [37] x [38] x [39] x [38] x [37] x [38] x	x [75] x [74] x [77] x [77] x [77] x [71] x [71] x [39] x [40] x [40] x [40] x [37] x [40] x [38] x [38] x [38] x [38] x [38] x [37] x [40] x [38] x [37] x [40] x [40] x [38] x [38] x [37] x [40] x [38] x [38] x [37] x [40] x [38] x [38] x [37] x [40] x [38] x [38] x [38] x [38] x [39] x [40] x [38] x [38] x [38] x [38] x [38] x [39] x [40] x [38] x [38] x [38] x [39] x [40] x [38] x [39] x [40] x [38] x [38] x [39] x [40] x [38] x [39] x [40] x [38] x [38] x [38] x [39] x [40] x [38] x [39] x [40] x [38] x [39] x [40] x [38] x [39] x [38] x [39] x [40] x [38] x [39] x [40] x [38] x [39] x [40] x [39] x [38] x [39] x [40] x [39] x [30] x	x [72] x [76] x [77] x [74] x [75] x [74] x [74] x [38] x [38] x [39] x [40] x [39] x [40] x [39] x [40] x [39] x [38] x [37] x [38] x [39] x [37] x [39] x [37] x [37] x [37] x [37]	x[87] x[87] x[86] x[85] x[85] x[87] x[41] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44]	x[86] x[87] x[87] x[87] x[85] x[41] x[42] x[42] x[42] x[42] x[44] x[[44]	x[88] x[88] x[88] x[87] x[83] x[42] x[42] x[41] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[4] x[4] x[4] x[4] x[4] x[4] x[4] x[4	x [84] x [83] x [87] x [87] x [86] x [88] x [42] x [44] x [44] x [44] x [44] x [44] x [44] x [42] x [44] x [44] x [44] x [44] x [44] x [44]	x[87] x[86] x[88] x[88] x[83] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[4] x[4] x[4] x[4] x[4] x[4] x[4] x[4	x[85] x[85] x[87] x[87] x[87] x[40] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44]	x [78] x [78] x [77] x [79] x [79] x [54] x [54] x [55] x [55] x [55] x [56] x [55] x [56] x [55] x [56] x [57] x [56] x [57] x [56] x [57] x [56] x [57] x [56] x [57] x [57] x [56] x [57] x [57] x [56] x [57] x	x [77] x [77] x [77] x [79] x [79] x [79] x [57] x [55] x [55] x [55] x [54] x [55] x [54] x [55] x [56] x [55] x [55] x [56] x [55] x [55] x [56] x [55] x	x[78] x[78] x[79] x[79] x[79] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[57] x[56] x[56] x[56] x[56] x[56] x[56]	x(77) x(77) x(77) x(78) x(79) x(79) x(79) x(54) x(54) x(54) x(54) x(54) x(54) x(55) x(55) x(55) x(55) x(55) x(55) x(54) x(54) x(54) x(54) x(54) x(54) x(54) x(54) x(54) x(54) x(54) x(54) x(54) x(54) x(54) x(55) x(55) x(54) x(55)x	x[79] x[78] x[78] x[78] x[79] x[59] x[55] x[55] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56]	x[79] x[77] x[77] x[77] x[77] x[78] x[79] x[58] x[50] x[56] x[55]x
x[75] x[74] x[76] x[76] x[77] x[37] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[40] x[40] x[40] x[40] x[39] x[38] x[39] x[39] x[39] x[37] x[40]	x[73] x[74] x[75] x[75] x[75] x[76] x[38] x[37] x[40] x[30] x[40] x[30] x[40] x[38] x[40] x[38] x[40] x[38] x[40] x[38] x[40] x[37] x[40] x[37]	x[74] x[73] x[73] x[74] x[74] x[72] x[40] x[40] x[37] x[40] x[38] x[39] x[38] x[39] x[40] x[38] x[39] x[40] x[38] x[39] x[40] x[39] x[40] x[39] x[40] x[39] x[38] x[39] x[38] x[37]	x [76] x [77] x [77] x [71] x [73] x [40] x [38] x [37] x [38] x [37] x [40] x [37] x [40] x [37] x [40] x [37] x [40] x [38] x [37] x [38] x [37] x [38] x [37] x [38] x [37]	x [75] x [74] x [77] x [77] x [77] x [72] x [71] x [39] x [40] x [40] x [40] x [37] x [38] x [38] x [38] x [38] x [37] x [40] x [40] x [40] x [37] x [40] x [40] x [37] x [40] x [37] x	x [72] x [76] x [77] x [77] x [77] x [73] x [74] x [74] x [77] x [74] x [77] x [77] x [74] x [38] x [39] x [40] x [38] x [39] x [39] x [39] x [39] x [39] x [39] x [39] x [39] x [40] x [38] x [39] x [40] x [37] x [40] x [40] x [40]	x[87] x[87] x[86] x[85] x[85] x[87] x[41] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[44] x[42] x[44]x	x[86] x[87] x[87] x[86] x[85] x[44] x[41] x[42] x[42] x[42] x[42] x[44] x[42] x[44]	x[88] x[88] x[87] x[87] x[84] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44]	x [84] x [83] x [83] x [87] x [86] x [88] x [42] x [44] x [44]	x[87] x[86] x[88] x[88] x[83] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42]	x[85] x[85] x[87] x[87] x[87] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[43] x[42] x[44] x[43] x[44] x[44] x[44] x[44] x[44] x[42] x[44] x[42] x[44] x[42] x[44]	x [78] x [78] x [78] x [79] x [79] x [54] x [54] x [54] x [55] x [56] x [56] x [56] x [55] x [56] x [56] x [56] x [56] x [54] x [54]	x [77] x [77] x [78] x [79] x [79] x [56] x [56] x [55] x [55] x [55] x [54] x [55] x [55]	x[78] x[78] x[79] x[79] x[55] x[55] x[55] x[56] x[57] x[60] x[56] x[56] x[56] x[57] x[57] x[56] x[55] x[55] x[55]	x(77) x(77) x(77) x(78) x(79) x(79) x(79) x(50) x(50) x(50) x(54) x(50) x(55) x(56) x(55) x(56) x(55) x(55) x(56) x(55)	x[79] x[78] x[78] x[78] x[79] x[59] x[55] x[55] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[59] x[59] x[59]	x[79] x[77] x[77] x[77] x[77] x[78] x[60] x[56] x[56] x[56] x[55]x
x[75] x[74] x[76] x[76] x[77] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[40] x[40] x[40] x[39] x[40] x[38] x[40] x[38] x[38] x[38] x[38] x[40] x[38] x[38] x[38] x[38] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[40] x[38] x[38] x[38] x[38] x[40] x[40] x[38] x[38] x[38] x[38] x[40] x[38]x	x [73] x [74] x [75] x [75] x [75] x [76] x [38] x [37] x [40] x [39] x [40] x [38] x [40] x [38] x [40] x [38] x [39] x [39] x [39] x [40] x [38] x [40] x [38] x [40] x [38] x [40] x [37] x [40] x [37] x [38]	x[74] x[73] x[73] x[74] x[74] x[75] x[71] x[40] x[40] x[30] x[30] x[30] x[30] x[30] x[30] x[30] x[30] x[30] x[30] x[40] x[30] x[40] x[30] x[40] x[30] x[40] x[30]x	x [76] x [772] x [771] x [771] x [773] x [740] x [400] x [380] x [380] x [380] x [380] x [400] x [381] x [400] x [382] x [400] x [382] x [400] x [383] x [382] x [382]	x [75] x [74] x [77] x [77] x [77] x [71] x [39] x [40] x [40] x [40] x [37] x [40] x [38] x [38] x [38] x [38] x [39] x [40] x [40] x [40] x [37] x [40] x [40] x [37] x [40] x [37] x [40] x [37] x [40] x [38] x [38] x [38] x [38] x [38] x [38]	x [72] x [76] x [76] x [77] x [75] x [75] x [74] x [38] x [37] x [38] x [39] x [39] x [30] x [38] x [37] x [38] x [37] x [38] x [39] x [39] x [39] x [39] x [39] x [39] x [39] x [30] x [37] x [38] x [37] x [38] x [37] x [38] x [39] x [39] x [30] x [39] x [40] x [39] x [40] x [39] x [39] x [40] x [39] x [30] x	x[87] x[87] x[86] x[85] x[85] x[85] x[41] x[41] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44]	x [86] x [87] x [87] x [87] x [86] x [85] x [44] x [42] x [44] x [42] x [44] x [42] x [44] x [44] x [44] x [44] x [44] x [44]	x[88] x[88] x[88] x[87] x[87] x[84] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44]	x [84] x [83] x [83] x [87] x [86] x [88] x [42] x [41] x [41] x [42] x [42] x [42] x [44] x [42] x [44] x [42] x [44] x	x[87] x[86] x[88] x[88] x[83] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42]	x[85] x[85] x[87] x[87] x[87] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[43] x[42] x[44] x[44] x[44] x[42] x[42] x[44] x[42] x[4] x[42] x[4] x[4] x[4] x[4] x[4] x[4] x[4] x[4	x [78] x [78] x [78] x [79] x [79] x [54] x [54] x [54] x [55] x [56] x [55] x [56] x [56] x [57] x [56] x [56] x [58] x [56] x [56] x [56] x [56] x [56] x [56] x [57]	x [77] x [77] x [77] x [79] x [79] x [78] x [56] x [55] x [55] x [55] x [55] x [55] x [55] x [56] x [55] x	x[78] x[78] x[79] x[79] x[79] x[55] x[55] x[56] x[56] x[54] x[56] x[54] x[56] x[56] x[56] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56]	x(77) x(77) x(77) x(79) x(79) x(78) x(56) x(56) x(54) x(54) x(54) x(55) x(55) x(56) x(55) x(56) x(54) x(54) x(54) x(55) x(55) x(55) x(55) x(55) x(55) x(55)	x[79] x[78] x[78] x[78] x[79] x[59] x[55] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[55]	x[79] x[77] x[77] x[77] x[77] x[78] x[60] x[56] x[56] x[56] x[55]x
x[75] x[74] x[76] x[76] x[77] x[38] x[38] x[38] x[38] x[39] x[39] x[39] x[40] x[40] x[40] x[40] x[40] x[40] x[37] x[38] x[38] x[37] x[38] x[37] x[38] x[37] x[40]x	x[73] x[74] x[75] x[75] x[76] x[76] x[38] x[37] x[40] x[39] x[40] x[38] x[39] x[39] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[37] x[40] x[37] x[40] x[37] x[40] x[37] x[40] x[37] x[40] x[37] x[40] x[37] x[40] x[37] x[38] x[37] x[37] x[37] x[37] x[37] x[37] x[38] x[37]	x[74] x[73] x[73] x[74] x[74] x[75] x[71] x[40] x[40] x[37] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[39] x[40] x[39] x[40] x[40] x[39] x[40] x[39] x[40] x[39] x[40] x[39] x[30] x[37] x[40]	x [76] x [77] x [77] x [71] x [73] x [73] x [73] x [39] x [39] x [39] x [37] x [38] x [40] x [37] x [38] x [40] x [37] x [40] x [37] x [38] x [40] x [37] x [38] x [40] x [37]	x [75] x [74] x [73] x [73] x [71] x [71] x [40] x [40] x [40] x [40] x [39] x [40] x [38] x [38] x [38] x [38] x [39] x [40] x [40] x [37] x [38] x [38] x [38] x [38] x [38]	x [72] x [76] x [77] x [74] x [75] x [74] x [38] x [38] x [38] x [30] x [40] x [38] x [40] x [38] x [39] x [38] x [38] x [38] x [39] x [38] x [38] x [39] x [38] x	x[87] x[87] x[86] x[85] x[85] x[87] x[41] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[42] x[42] x[42] x[42] x[42]	x[86] x[87] x[87] x[87] x[85] x[41] x[42] x[4] x[4] x[4] x[4] x[4] x[4] x[4] x[4	x[88] x[88] x[88] x[87] x[83] x[42] x[41] x[42] x[41] x[42] x[44] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[41] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[44]x	x [84] x [83] x [87] x [87] x [86] x [88] x [42] x [44] x	x[87] x[88] x[88] x[88] x[83] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44]	x[85] x[85] x[87] x[87] x[87] x[44] x[44] x[44] x[42] x[44] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[44] x[42] x[44] x[44]	x [78] x [78] x [77] x [79] x [79] x [54] x [54] x [55] x [56] x [55] x [56] x [56] x [56] x [56] x [57] x [56] x [57] x [56] x [57] x [57] x [57] x [55]	x [77] x [77] x [78] x [79] x [79] x [57] x [55] x [55] x [55] x [55] x [55] x [55] x [54] x [58] x [55] x	x[78] x[78] x[79] x[79] x[79] x[55] x[55] x[56] x[56] x[57] x[60] x[50] x[50] x[50] x[50] x[50] x[50] x[55] x[56] x[56] x[55] x[56] x[55] x[56] x[55] x[56] x[55] x[56]x	x(77) x(77) x(77) x(78) x(79) x(79) x(54) x(54) x(54) x(54) x(54) x(55)x	x[79] x[78] x[78] x[78] x[79] x[59] x[55] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[59] x[55] x[55]	x[79] x[77] x[77] x[77] x[77] x[78] x[58] x[50] x[56] x[55]x
x[75] x[74] x[76] x[76] x[77] x[37] x[38] x[38] x[38] x[38] x[38] x[38] x[38] x[40] x[40] x[40] x[40] x[40] x[39] x[38] x[40] x[39] x[40] x[39]	x [73] x [74] x [75] x [75] x [75] x [76] x [38] x [40] x [40] x [40] x [40] x [40] x [38] x [40] x [38] x [39] x [38] x [37] x [40] x [39] x [38] x [37] x [40] x [37] x [38] x [38] x [37] x [38] x	x [74] x [73] x [73] x [74] x [74] x [75] x [70] x [40] x [40] x [40] x [37] x [40] x [38] x [38] x [38] x [37] x [40] x [40] x [40] x [37] x [40] x [38] x [37] x [38] x [38]	x [76] x [772] x [771] x [771] x [773] x [73] x [40] x [38] x [38] x [38] x [38] x [38] x [38] x [38] x [39] x [30] x [30] x [30] x [37] x [40] x [38] x [37] x [40] x [38] x [37] x [40] x [38] x [37] x [38] x [39] x [37] x [38] x [38] x [38] x [37] x [38] x [38] x [37] x [38] x [38] x [38] x [37] x [38] x [38	x [75] x [74] x [77] x [77] x [77] x [77] x [71] x [39] x [40] x [40] x [40] x [37] x [40] x [38] x [38] x [38] x [38] x [37] x [40] x [40] x [40] x [40] x [40] x [40] x [38] x [37] x [40] x [40] x [37] x [40] x [38] x [37] x [40]	x [72] x [76] x [77] x [74] x [75] x [74] x [74] x [38] x [38] x [39] x [40] x [39] x [40] x [39] x [37] x [40] x [37] x [37] x [40] x [37] x [39] x [37] x [40] x [39] x [40] x [39] x [40] x [39] x [40] x [39] x [40] x [40] x [39] x [40]	x[87] x[87] x[86] x[85] x[85] x[87] x[41] x[44] x[44] x[44] x[44] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[42]	x[86] x[87] x[87] x[85] x[85] x[44] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[44]	x[88] x[88] x[88] x[87] x[87] x[42] x[42] x[41] x[44] x[44] x[44] x[44] x[44] x[44] x[44] x[42] x[44] x[42] x[44] x[42] x[42] x[44]x	x [84] x [83] x [83] x [87] x [86] x [88] x [42] x [44] x	x[87] x[86] x[88] x[88] x[83] x[42] x[42] x[42] x[42] x[42] x[42] x[42] x[44] x[44] x[44] x[44] x[42]	x [85] x [85] x [85] x [87] x [87] x [87] x [44] x [44] x [44] x [44] x [44] x [42] x [44] x	x [78] x [78] x [78] x [79] x [79] x [79] x [54] x [54] x [55] x [55] x [56] x [55] x [55] x [55] x [56] x [55] x [56] x [54] x [54] x [54] x [54] x [54] x [54] x [55] x [55] x [55]	x [77] x [77] x [77] x [79] x [79] x [79] x [57] x [55] x [55] x [55] x [54] x [55] x [54] x [55] x	x[78] x[78] x[79] x[79] x[79] x[55] x[55] x[56] x[56] x[57] x[60] x[56] x[56] x[56] x[56] x[57] x[56] x[57] x[56] x[56] x[55] x[56] x[55] x[56] x[55] x[55] x[55] x[55] x[55] x[55]	x(77) x(77) x(77) x(78) x(79) x(79) x(79) x(56) x(50) x(54) x(54) x(55) x(55) x(55) x(56) x(54) x(54) x(54) x(54) x(54) x(54) x(55) x(55) x(55) x(55) x(55) x(55) x(55) x(55) x(56) x(55) x(56) x(55) x(56)x	x[79] x[78] x[78] x[78] x[79] x[59] x[55] x[55] x[55] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[56] x[55] x[55]	x[79] x[77] x[77] x[77] x[77] x[77] x[78] x[50] x[56] x[56] x[56] x[55] x[55] x[55] x[54] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[55] x[56] x[55]x

x[52]	x[52]	x[51]	x[53]	x[53]	x[51]	x[48]	x[49]	x[49]	x[48]	x[50]	x[50]	x[50]	x[50]	x[48]	x[49]	x[49]	x[48]
x[53]	x[51]	x[52]	x[52]	x[52]	x[52]	x[48]	x[48]	x[49]	x[49]	x[48]	x[49]	x[49]	x[48]	x[50]	x[50]	x[50]	x[50]
x[51]	x[51]	x[53]	x[53]	x[51]	x[51]	x[50]	x[50]	x[50]	x[50]	x[49]	x[49]	x[48]	x[48]	x[49]	x[49]	x[48]	x[48]
x[51]	x[53]	x[52]	x[52]	x[52]	x[52]	x[49]	x[49]	x[48]	x[48]	x[49]	x[48]	x[48]	x[49]	x[50]	x[50]	x[50]	x[50]
x[52]	x[52]	x[53]	x[51]	x[51]	x[53]	x[49]	x[48]	x[48]	x[49]	x[50]	x[50]	x[50]	x[50]	x[49]	x[48]	x[48]	x[49]
x[53]	x[53]	x[51]	x[51]	x[53]	x[53]	x[50]	x[50]	x[50]	x[50]	x[48]	x[48]	x[49]	x[49]	x[48]	x[48]	x[49]	x[49]
x[47]	x[47]	x[45]	x[46]	x[46]	x[45]	x[68]	x[70]	x[70]	x[68]	x[69]	x[69]	x[69]	x[69]	x[68]	x[70]	x[70]	x[68]
v[46]	v[45]	v[47]	v[47]	v[47]	v[47]	v[68]	v[68]	v[70]	v[70]	v[68]	v[70]	v[70]	v[68]	v[69]	v[69]	v[69]	v[69]
v[45]	v[45]	v[46]	v[46]	v[45]	v[/5]	v[60]	~[60]	v[60]	v[60]	v[70]	v[70]	v[69]	~[69]	v[70]	v[70]	~[69]	v[69]
~[45]	~[4C]	~[47]	[47]	~[47]	~[47]	.[70]	x[00]	x[00]	~[C0]	[70]	~[/0]	x[00]	x[00]	~[(0]	x[/0]	~[C0]	~[C0]
X[4J]	X[40]	X[4/]	X[4/]	X[4/]	X[4/]	X[70]	X[/0]	x[00]	[20]	X[/0]	X[00]	X[00]	X[/0]	X[09]	X[09]	X[09]	[20]
X[4/]	X[4/]	X[46]	X[45]	X[45]	X[46]	X[/U]	X[68]	X[68]	X[/0]	X[69]	X[69]	X[69]	X[69]	X[/U]	X[68]	X[68]	X[/0]
X[46]	X[46]	x[45]	x[45]	x[46]	X[46]	x[69]	x[69]	x[69]	x[69]	X[68]	X[68]	x[/0]	x[/0]	X[68]	X[68]	x[/0]	x[/0]
x[14]	x[13]	x[13]	x[14]	x[14]	x[13]	x[24]	x[20]	x[23]	x[20]	x[21]	x[22]	x[22]	x[21]	x[21]	x[22]	x[22]	x[21]
x[14]	x[13]	x[14]	x[13]	x[13]	x[14]	x[20]	x[24]	x[20]	x[23]	x[21]	x[22]	x[22]	x[21]	x[22]	x[21]	x[21]	x[22]
x[13]	x[14]	x[14]	x[13]	x[13]	x[14]	x[23]	x[20]	x[24]	x[20]	x[22]	x[21]	x[21]	x[22]	x[22]	x[21]	x[21]	x[22]
x[13]	x[14]	x[13]	x[14]	x[14]	x[13]	x[20]	x[23]	x[20]	x[24]	x[22]	x[22]	x[21]	x[22]	x[21]	x[22]	x[22]	x[21]
x[12]	x[11]	x[13]	x[13]	x[14]	x[14]	x[21]	x[21]	x[22]	x[22]	x[24]	x[20]	x[23]	x[20]	x[21]	x[21]	x[22]	x[22]
x[11]	x[12]	x[13]	x[13]	x[14]	x[14]	x[22]	x[22]	x[21]	x[22]	x[20]	x[24]	x[20]	x[23]	x[21]	x[21]	x[22]	x[22]
x[10]	x[11]	x[14]	x[14]	x[13]	x[13]	x[22]	x[22]	x[21]	x[21]	x[23]	x[20]	x[24]	x[20]	x[22]	x[22]	x[21]	x[21]
x[11]	x[10]	x[14]	x[14]	x[13]	x[13]	x[21]	x[21]	x[22]	x[22]	x[20]	x[23]	x[20]	x[24]	x[22]	x[22]	x[21]	x[21]
x[14]	x[14]	x[10]	x[11]	x[12]	x[11]	x[21]	x[22]	x[22]	x[21]	x[21]	x[21]	x[22]	x[22]	x[24]	x[20]	x[23]	x[20]
v[14]	v[14]	v[11]	v[10]	v[11]	v[12]	v[22]	v[21]	v[21]	v[22]	v[21]	v[21]	v[22]	v[22]	v[20]	v[24]	v[20]	v[23]
v[13]	v[13]	v[12]	v[11]	v[10]	v[11]	v[22]	v[21]	v[21]	v[22]	v[22]	v[22]	v[21]	v[21]	v[23]	v[20]	v[24]	v[20]
x[13]	x[13]	X[12]	x[11]	X[10]	x[11]	x[22]	x[21]	x[21]	x[22]	x[22]	x[22]	x[21]	x[21]	x[23]	x[20]	x[24]	x[20]
x[13]	[01]	[01]	X[12]	X[11]	X[10]	X[ZI]	X[22]	x[22]	X[Z1]	X[22]	X[22]	X[Z1]	X[21]	X[20]	x[23]	x[20]	A[24]
x[22]	x[21]	x[21]	x[22]	x[22]	x[21]	x[15]	X[16]	X[1/]	X[16]	X[18]	x[19]	x[19]	X[18]	X[18]	x[19]	x[19]	X[18]
x[22]	x[21]	x[22]	x[21]	x[21]	x[22]	x[16]	x[15]	x[16]	x[17]	x[18]	x[19]	x[19]	x[18]	x[19]	x[18]	x[18]	x[19]
x[21]	x[22]	x[22]	x[21]	x[21]	x[22]	x[17]	x[16]	x[15]	x[16]	x[19]	x[18]	x[18]	x[19]	x[19]	x[18]	x[18]	x[19]
x[21]	x[22]	x[21]	x[22]	x[22]	x[21]	x[16]	x[17]	x[16]	x[15]	x[19]	x[18]	x[18]	x[19]	x[18]	x[19]	x[19]	x[18]
x[23]	x[20]	x[21]	x[21]	x[22]	x[22]	x[18]	x[18]	x[19]	x[19]	x[15]	x[16]	x[17]	x[16]	x[18]	x[18]	x[19]	x[19]
x[20]	x[23]	x[21]	x[21]	x[22]	x[22]	x[19]	x[19]	x[18]	x[18]	x[16]	x[15]	x[16]	x[17]	x[18]	x[18]	x[19]	x[19]
x[24]	x[20]	x[22]	x[22]	x[21]	x[21]	x[19]	x[19]	x[18]	x[18]	x[17]	x[16]	x[15]	x[16]	x[19]	x[19]	x[18]	x[18]
x[20]	x[24]	x[22]	x[22]	x[21]	x[21]	x[18]	x[18]	x[19]	x[19]	x[16]	x[17]	x[16]	x[15]	x[19]	x[19]	x[18]	x[18]
x[22]	x[22]	x[24]	x[20]	x[23]	x[20]	x[18]	x[19]	x[19]	x[18]	x[18]	x[18]	x[19]	x[19]	x[15]	x[16]	x[17]	x[16]
x[22]	x[22]	x[20]	x[24]	x[20]	x[23]	x[19]	x[18]	x[18]	x[19]	x[18]	x[18]	x[19]	x[19]	x[16]	x[15]	x[16]	x[17]
x[21]	x[21]	x[23]	x[20]	x[24]	x[20]	x[19]	x[18]	x[18]	x[19]	x[19]	x[19]	x[18]	x[18]	x[17]	x[16]	x[15]	x[16]
x[21]	x[21]	x[20]	x[23]	x[20]	x[24]	x[18]	x[19]	x[19]	x[18]	x[19]	x[19]	x[18]	x[18]	x[16]	x[17]	x[16]	x[15]
v[79]	v[79]	v[78]	v[78]	v[78]	v[78]	v[80]	v[81]	v[80]	v[81]	v[82]	v[82]	v[82]	v[82]	v[81]	v[81]	v[81]	v[81]
v[78]	v[79]	v[70]	v[70]	v[70]	v[70]	v[80]	v[91]	v[80]	v[91]	v[91]	v[91]	v[91]	v[91]	v[82]	~[92]	~[92]	~[82]
[77]	x[70]	~[70]	~[70]		x[70]	[01]	.[01]	[01]	.[01]	~[00]	. [01]	~[00]	[01]	~[02]	~[02]	~[02]	~[02]
X[//]	X[/0]	x[/9]	x[/9]	x[/9]	x[/9]	x[01]	x[01]	x[01]	x[01]	x[00]	X[01]	x[00]	X[01]	X[02]	X[02]	X[02]	X[02]
X[//]	X[/8]	X[/8]	X[/8]	X[/8]	X[/8]	X[82]	X[82]	X[82]	X[82]	x[80]	X[81]	X[80]	X[81]	X[81]	X[81]	X[81]	X[81]
X[/8]	X[/8]	x[//]	x[/8]	X[//]	X[/8]	x[82]	x[82]	x[82]	x[82]	X[81]	X[81]	X[81]	X[81]	x[80]	X[81]	x[80]	X[81]
x[79]	x[79]	x[77]	x[78]	x[77]	x[78]	x[81]	x[81]	x[81]	x[81]	x[82]	x[82]	x[82]	x[82]	x[80]	x[81]	x[80]	x[81]
x[79]	x[79]	x[78]	x[78]	x[78]	x[78]	x[81]	x[80]	x[81]	x[80]	x[82]	x[82]	x[82]	x[82]	x[81]	x[81]	x[81]	x[81]
x[78]	x[78]	x[79]	x[79]	x[79]	x[79]	x[81]	x[80]	x[81]	x[80]	x[81]	x[81]	x[81]	x[81]	x[82]	x[82]	x[82]	x[82]
x[78]	x[77]	x[79]	x[79]	x[79]	x[79]	x[81]	x[81]	x[81]	x[81]	x[81]	x[80]	x[81]	x[80]	x[82]	x[82]	x[82]	x[82]
x[78]	x[77]	x[78]	x[78]	x[78]	x[78]	x[82]	x[82]	x[82]	x[82]	x[81]	x[80]	x[81]	x[80]	x[81]	x[81]	x[81]	x[81]
x[78]	x[78]	x[78]	x[77]	x[78]	x[77]	x[82]	x[82]	x[82]	x[82]	x[81]	x[81]	x[81]	x[81]	x[81]	x[80]	x[81]	x[80]
x[79]	x[79]	x[78]	x[77]	x[78]	x[77]	x[81]	x[81]	x[81]	x[81]	x[82]	x[82]	x[82]	x[82]	x[81]	x[80]	x[81]	x[80]
x[57]	x[58]	x[54]	x[60]	x[55]	x[56]	x[63]	x[62]	x[67]	x[61]	x[64]	x[65]	x[66]	x[65]	x[63]	x[62]	x[67]	x[61]
x[55]	x[56]	x[59]	x[58]	x[57]	x[58]	x[63]	x[61]	x[67]	x[62]	x[63]	x[62]	x[67]	x[61]	x[64]	x[65]	x[66]	x[65]
x[54]	x[56]	x[60]	x[55]	x[56]	x[54]	x[65]	x[66]	x[65]	x[64]	x[67]	x[62]	x[63]	x[61]	x[62]	x[67]	x[61]	x[63]
x[54]	x[60]	x[58]	x[57]	x[58]	x[59]	x[62]	x[67]	x[61]	x[63]	x[67]	x[61]	x[63]	x[62]	x[65]	x[66]	x[65]	x[64]
x[58]	x[57]	x[60]	x[54]	x[56]	x[55]	x[67]	x[61]	x[63]	x[62]	x[65]	x[64]	x[65]	x[66]	x[62]	x[63]	x[61]	x[67]
x[55]	x[60]	x [54]	x [56]	x [55]	x[60]	x[64]	x[65]	x[66]	x[65]	x[63]	x[61]	x[67]	x[62]	x[63]	x[61]	x[67]	x[62]
v[50]	v[59]	x[54]	v[55]	v[60]	v[5/]	v[61]	x[67]	v[62]	x[63]	x[66]	x[65]	v[6/]	v[65]	x[61]	v[67]	v[62]	v[63]
x[50]	x[50]	x[50]	×[50]	*[E0]	V[24]	x[01]	x[62]	x[62]	x[03]	x[00]		x[62]	x[63]	x[66]	x[65]	x[64]	x[65]
x[00]	X[J4]	x[J/]	x[J0]	x[J9]	x[Jo]	X[OI]	x[03]	x[02]	x[0/]	X[OT]	x[0/]	X[02]	x[03]	x[00]	x[0J]	x[04]	x[0J]
X[20]	X[54]	X[22]	X[60]	X[54]	X[26]	X[65]	X[64]	X[65]	X[00]	X[62]	X[6/]	X[01]	X[63]	X[6/]	X[62]	X[63]	X[01]
x[56]	x[55]	x[58]	x[59]	x[58]	x[57]	x[67]	x[62]	x[63]	x[61]	x[62]	x[63]	x[61]	x[67]	x[65]	x[64]	x[65]	x[66]
x[58]	x[59]	x[55]	x[56]	x[54]	x[60]	x[62]	x[63]	x[61]	x[67]	x[65]	x[66]	x[65]	x[64]	x[67]	x[61]	x[63]	x[62]
x[60]	x[55]	x[56]	x[54]	x[60]	x[55]	x[66]	x[65]	x[64]	x[65]	x[61]	x[63]	x[62]	x[67]	x[61]	x[63]	x[62]	x[67]
x[58]	x[57]	x[54]	x[60]	x[55]	x[56]	x[61]	x[67]	x[62]	x[63]	x[65]	x[64]	x[65]	x[66]	x[63]	x[62]	x[67]	x[61]
x[60]	x[54]	x[58]	x[57]	x[58]	x[59]	x[63]	x[61]	x[67]	x[62]	x[61]	x[67]	x[62]	x[63]	x[65]	x[66]	x[65]	x[64]
x[56]	x[54]	x[60]	x[55]	x[56]	x[54]	x[64]	x[65]	x[66]	x[65]	x[62]	x[67]	x[61]	x[63]	x[62]	x[67]	x[61]	x[63]
x[56]	x[55]	x[59]	x[58]	x[57]	x[58]	x[62]	x[67]	x[61]	x[63]	x[62]	x[63]	x[61]	x[67]	x[64]	x[65]	x[66]	x[65]
x[57]	x[58]	x[60]	x[54]	x[56]	x[55]	x[62]	x[63]	x[61]	x[67]	x[64]	x[65]	x[66]	x[65]	x[62]	x[63]	x[61]	x[67]
x[60]	x[55]	x[54]	x[56]	x[55]	x[60]	x[65]	x[66]	x[65]	x[64]	x[61]	x[63]	x[62]	x[67]	x[63]	x[61]	x[67]	x[62]
x[58]	x[59]	x[56]	x[55]	x[60]	x[54]	x[63]	x[62]	x[67]	x[61]	x[65]	x[66]	x[65]	x[64]	x[61]	x[67]	x[62]	x[63]
x[55]	x[56]	x[58]	x[59]	x[58]	x[57]	x[61]	x[63]	x[62]	x[67]	x[63]	x[62]	x[67]	x[61]	x[65]	x[64]	x[65]	x[66]
x[54]	x[56]	x[55]	x[60]	x[54]	x[56]	x[66]	x[65]	x[64]	x[65]	x[67]	x[62]	x[63]	x[61]	x[67]	x[62]	x[63]	x[61]
v[5/1	x[60]	x[57]	v[50]	v[50]	v[50]	v[67]	v[62]	x[63]	v[61]	v[67]	v[61]	x[63]	v[62]	v[66]	v[65]	v[6/]	v[65]
v[50]	v[50]	v[55]	v[56]	v[5/]	v[60]	v[67]	v[61]	x[63]	v[62]	v[66]	v[65]	v[6/]	v[65]	v[67]	v[61]	v[63]	v[60]
A[J7]	A[J0]	ALJJ]	~[JU]	A[J4]	~[UU]	A[U/]	~[C4]	A[05]	A[04]	.[CO]	.[C1]	A[04]	.[CO]	A[U/]	~[C]	x[CO]	ALU2]
X[33]	X[0U]	X[30]	X[J4]	x[bU]	x[22]	X[00]	X[64]	X[03]	X[00]	x[b3]	x[ρτ]	X[0/]	x[b∠]	хГрт]	x[bJ]	X[b∠]	X[b/]

x[71]	x[72]	x[73]	x[73]	x[72]	x[71]	x[75]	x[74]	x[76]	x[76]	x[74]	x[75]	x[37]	x[38]	x[38]	x[38]	x[39]	x[38]
x[72]	x[71]	x[71]	x[72]	x[73]	x[73]	x[74]	x[75]	x[75]	x[74]	x[76]	x[76]	x[38]	x[37]	x[40]	x[39]	x[40]	x[38]
x[76]	x[76]	x[72]	x[71]	x[75]	x[74]	x[73]	x[73]	x[74]	x[75]	x[71]	x[72]	x[40]	x[40]	x[37]	x[38]	x[40]	x[39]
x[74]	x[75]	x[71]	x[72]	x[76]	x[76]	x[72]	x[71]	x[75]	x[74]	x[73]	x[73]	x[40]	x[39]	x[38]	x[37]	x[38]	x[40]
x[71]	x[72]	x[76]	x[76]	x[74]	x[75]	x[75]	x[74]	x[73]	x[73]	x[72]	x[71]	x[39]	x[40]	x[40]	x[40]	x[37]	x[40]
x[73]	x[73]	x[72]	x[71]	x[71]	x[72]	x[76]	x[76]	x[74]	x[75]	x[75]	x[74]	x[38]	x[38]	x[39]	x[40]	x[38]	x[37]
x[83]	x[84]	x[88]	x[88]	x[84]	x[83]	x[87]	x[86]	x[85]	x[85]	x[86]	x[87]	x[41]	x[44]	x[44]	x[44]	x[43]	x[44]
v[84]	v[83]	v[83]	v[84]	v[88]	v[88]	v[86]	v[87]	v[87]	v[86]	v[85]	v[85]	v[44]	v[41]	v[42]	v[43]	v[42]	v[44]
**[0E]	**[0E]	[0/]	**[03]	[07]	[0C]	**[00]	[00]	[0,6]	[07]	**[02]	**[0/]	[/2]	[/2]	x[12]	* [4 4]	[12]	* [/ 2]
x[00]	x[03]	~[03]	x[03]	x[07]	x[00]	x[00]	~[00]	x[00]	x[0/]	~[00]	~[00]	~[40]	~[42]	~[44]	.[41]	A[42]	~[40]
x[00]	X[0/]	x[oj]	X[04]	x[oJ]	x[0J]	X[04]	x[oJ]	x[0/]	x[o0]	x[00]	x[00]	X[42]	X[43]	X[44]	X[41]	X[44]	X[42]
X[83]	X[84]	X[85]	X[85]	X[86]	X[8/]	X[8/]	X[86]	X[88]	X[88]	X[84]	X[83]	X[43]	X[42]	X[42]	X[42]	X[41]	X[42]
x[88]	x[88]	x[84]	x[83]	x[83]	x[84]	x[85]	x[85]	x[86]	x[87]	x[87]	x[86]	x[44]	x[44]	x[43]	x[42]	x[44]	x[41]
x[77]	x[77]	x[78]	x[79]	x[79]	x[78]	x[78]	x[78]	x[78]	x[79]	x[79]	x[78]	x[54]	x[54]	x[58]	x[60]	x[55]	x[59]
x[78]	x[78]	x[78]	x[79]	x[79]	x[78]	x[77]	x[77]	x[78]	x[79]	x[79]	x[78]	x[60]	x[56]	x[57]	x[55]	x[56]	x[58]
x[77]	x[77]	x[78]	x[79]	x[79]	x[78]	x[78]	x[78]	x[78]	x[79]	x[79]	x[78]	x[55]	x[55]	x[58]	x[56]	x[54]	x[57]
x[78]	x[78]	x[78]	x[79]	x[79]	x[78]	x[77]	x[77]	x[78]	x[79]	x[79]	x[78]	x[56]	x[60]	x[59]	x[54]	x[60]	x[58]
x[79]	x[78]	x[77]	x[77]	x[78]	x[79]	x[79]	x[78]	x[78]	x[78]	x[78]	x[79]	x[59]	x[54]	x[55]	x[55]	x[58]	x[54]
x[79]	x[78]	x[78]	x[78]	x[78]	x[79]	x[79]	x[78]	x[77]	x[77]	x[78]	x[79]	x[58]	x[60]	x[60]	x[56]	x[59]	x[56]
x[79]	x[78]	x[77]	x[77]	x[78]	x[79]	x[79]	x[78]	x[78]	x[78]	x[78]	x[79]	x[57]	x[55]	x[54]	x[54]	x[58]	x[55]
v[79]	v[78]	v[78]	v[78]	v[78]	v[79]	v[79]	v[78]	v[77]	v[77]	v[78]	v[79]	v[58]	v[56]	v[56]	v[60]	v[57]	v[60]
v[79]	v[70]	v[70]	v[78]	v[77]	v[77]	v[79]	v[70]	v[70]	v[78]	v[78]	v[78]	v[5/]	v[50]	v[60]	v[59]	v[60]	v[5/]
[70]				[70]		[70]						x[60]	v[22]	*[EE]	[50]	x[64]	v[24]
X[/0]	X[/9]	X[/9]	X[/0]	X[/0]	x[/o]	X[/0]	X[/9]	X[/9]	X[/0]	X[//]	X[//]	X[00]	x[Jo]	x[JJ]	x[J/]	X[J4]	X[J0]
X[/0]	x[/9]	X[/9]	X[/0]	X[//]	X[//]	X[/0]	x[/9]	x[/9]	X[/0]	X[/0]	X[/0]	x[55]	x[5/]	X[30]	X[30]	x[30]	x[55]
x[/8]	x[/9]	x[/9]	x[/8]	x[/8]	x[/8]	x[/8]	x[/9]	x[/9]	x[/8]	x[//]	x[//]	X[56]	x[58]	x[54]	x[59]	x[55]	x[60]
x[80]	x[80]	x[81]	x[82]	x[82]	x[81]	x[81]	x[81]	x[81]	x[82]	x[82]	x[81]	x[63]	x[63]	x[65]	x[62]	x[67]	x[64]
x[81]	x[81]	x[81]	x[82]	x[82]	x[81]	x[80]	x[80]	x[81]	x[82]	x[82]	x[81]	x[62]	x[61]	x[66]	x[67]	x[61]	x[65]
x[80]	x[80]	x[81]	x[82]	x[82]	x[81]	x[81]	x[81]	x[81]	x[82]	x[82]	x[81]	x[67]	x[67]	x[65]	x[61]	x[63]	x[66]
x[81]	x[81]	x[81]	x[82]	x[82]	x[81]	x[80]	x[80]	x[81]	x[82]	x[82]	x[81]	x[61]	x[62]	x[64]	x[63]	x[62]	x[65]
x[82]	x[81]	x[80]	x[80]	x[81]	x[82]	x[82]	x[81]	x[81]	x[81]	x[81]	x[82]	x[64]	x[63]	x[67]	x[67]	x[65]	x[63]
x[82]	x[81]	x[81]	x[81]	x[81]	x[82]	x[82]	x[81]	x[80]	x[80]	x[81]	x[82]	x[65]	x[62]	x[62]	x[61]	x[64]	x[61]
x[82]	x[81]	x[80]	x[80]	x[81]	x[82]	x[82]	x[81]	x[81]	x[81]	x[81]	x[82]	x[66]	x[67]	x[63]	x[63]	x[65]	x[67]
x[82]	x[81]	x[81]	x[81]	x[81]	x[82]	x[82]	x[81]	x[80]	x[80]	x[81]	x[82]	x[65]	x[61]	x[61]	x[62]	x[66]	x[62]
x[81]	x[82]	x[82]	x[81]	x[80]	x[80]	x[81]	x[82]	x[82]	x[81]	x[81]	x[81]	x[63]	x[64]	x[62]	x[65]	x[62]	x[63]
x[81]	x[82]	x[82]	x[81]	x[81]	x[81]	x[81]	x[82]	x[82]	x[81]	x[80]	x[80]	x[62]	x[65]	x[67]	x[66]	x[63]	x[61]
[01]	[02]	[02]	[01]	[00]	[01]	[01]	[02]	[02]	[01]	[01]	[01]	[67]	[66]	x[07]	[CE]	x[00]	[67]
X[01]	x[02]	x[02]	X[O1]	x[00]	x[00]	X[01]	x[02]	x[02]	X[01]	x[01]	x[01]	X[0/]	X[00]	x[01]	x[0J]	X[01]	x[0/]
X[01]	X[82]	X[02]	X[01]	X[01]	X[01]	X[01]	X[02]	X[82]	X[01]	X[80]	X[80]	X[01]	X[00]	X[03]	X[04]	X[0/]	X[02]
x[30]	x[35]	x[32]	x[34]	x[32]	x[31]	x[33]	X[36]	x[32]	x[34]	x[32]	x[31]	x[25]	x[26]	x[2/]	x[29]	x[25]	x[2/]
x[35]	x[30]	x[31]	x[32]	x[34]	x[32]	x[36]	x[33]	x[31]	x[32]	x[34]	x[32]	x[26]	x[25]	x[27]	x[28]	x[26]	x[27]
x[32]	x[31]	x[30]	x[35]	x[32]	x[34]	x[32]	x[31]	x[33]	x[36]	x[32]	x[34]	x[27]	x[25]	x[26]	x[25]	x[27]	x[26]
x[34]	x[32]	x[35]	x[30]	x[31]	x[32]	x[34]	x[32]	x[36]	x[33]	x[31]	x[32]	x[27]	x[26]	x[25]	x[26]	x[27]	x[25]
x[32]	x[34]	x[32]	x[31]	x[30]	x[35]	x[32]	x[34]	x[32]	x[31]	x[33]	x[32]	x[26]	x[27]	x[28]	x[27]	x[29]	x[25]
x[31]	x[32]	x[34]	x[32]	x[35]	x[30]	x[31]	x[32]	x[34]	x[32]	x[36]	x[33]	x[25]	x[27]	x[29]	x[27]	x[28]	x[26]
x[33]	x[36]	x[32]	x[34]	x[32]	x[31]	x[30]	x[35]	x[32]	x[34]	x[32]	x[31]	x[28]	x[29]	x[27]	x[26]	x[28]	x[27]
x[36]	x[33]	x[31]	x[32]	x[34]	x[32]	x[35]	x[30]	x[31]	x[32]	x[34]	x[32]	x[29]	x[28]	x[27]	x[25]	x[29]	x[27]
x[32]	x[31]	x[33]	x[36]	x[32]	x[34]	x[32]	x[31]	x[30]	x[35]	x[32]	x[34]	x[27]	x[28]	x[29]	x[28]	x[27]	x[29]
x[34]	x[32]	x[36]	x[33]	x[31]	x[32]	x[34]	x[32]	x[35]	x[30]	x[31]	x[32]	x[27]	x[29]	x[28]	x[29]	x[27]	x[28]
x[32]	x[34]	x[32]	x[31]	x[33]	x[36]	x[32]	x[34]	x[32]	x[31]	x[30]	x[35]	x[29]	x[27]	x[25]	x[27]	x[26]	x[28]
x[31]	x[32]	x[34]	x[32]	x[32]	x[33]	x[31]	x[32]	x[34]	x[32]	x[35]	x[30]	x[28]	x[27]	x[26]	x[27]	x[25]	x[29]
x[25]	x[26]	x[27]	x[27]	x[26]	x[25]	x[28]	x[29]	x[27]	x[27]	x[29]	x[28]	x[89]	x[91]	x[93]	x[93]	x[90]	x[91]
v[26]	v[25]	v[25]	v[26]	v[27]	v[27]	v[29]	v[28]	v[28]	v[29]	v[27]	v[27]	v[91]	v[89]	v[91]	v[90]	v[91]	v[91]
[27]	[27]	[26]	* [26]	[20]	[20]	[27]	[27]	[20]	**[20]	[26]	··[26]	**[03]	[01]	**[00]	[01]	··[01]	* [00]
x[2/]	x[27]	x[20]	x[2J]	x[20]	x[29]	x[27]	x[27]	x[29]	x[20]	x[2J]	x[20]	x[93]	x[91]	x[09]	x[21]	x[21]	x[90]
A[29]	x[20]	x[20]	x[20]	x[2/]	x[2/]	×[20]	x[20]	x[20]	x[29]	x[2/]	x[27]	x[93]	x[90]	x[91]	x[09]	x[93]	x[91]
X[25]	X[26]	X[2/]	X[2/]	X[29]	X[28]	X[28]	X[29]	X[2/]	X[2/]	X[26]	X[25]	X[90]	X[91]	X[31]	X[93]	X[89]	x[93]
x[27]	x[27]	x[26]	x[25]	x[25]	x[26]	x[27]	x[27]	x[29]	x[28]	x[28]	x[29]	x[91]	x[91]	x[90]	x[91]	x[93]	x[89]
x[28]	x[29]	x[27]	x[27]	x[29]	x[28]	x[25]	x[26]	x[27]	x[27]	x[26]	x[25]	x[92]	x[93]	x[91]	x[91]	x[90]	x[93]
x[29]	x[28]	x[28]	x[29]	x[27]	x[27]	x[26]	x[25]	x[25]	x[26]	x[27]	x[27]	x[93]	x[92]	x[93]	x[90]	x[93]	x[93]
x[27]	x[27]	x[29]	x[28]	x[25]	x[26]	x[27]	x[27]	x[26]	x[25]	x[28]	x[29]	x[91]	x[93]	x[92]	x[93]	x[93]	x[90]
x[26]	x[25]	x[28]	x[29]	x[27]	x[27]	x[29]	x[28]	x[25]	x[26]	x[27]	x[27]	x[91]	x[90]	x[94]	x[92]	x[91]	x[93]
x[28]	x[29]	x[27]	x[27]	x[26]	x[25]	x[25]	x[26]	x[27]	x[27]	x[29]	x[28]	x[90]	x[93]	x[94]	x[91]	x[92]	x[91]
x[27]	x[27]	x[29]	x[28]	x[28]	x[29]	x[27]	x[27]	x[26]	x[25]	x[25]	x[26]	x[93]	x[93]	x[90]	x[93]	x[91]	x[92]
x[28]	x[29]	x[27]	x[27]	x[26]	x[25]	x[25]	x[26]	x[27]	x[27]	x[29]	x[28]	x[94]	x[98]	x[98]	x[97]	x[95]	x[97]
x[26]	x[25]	x[28]	x[29]	x[27]	x[27]	x[29]	x[28]	x[25]	x[26]	x[27]	x[27]	x[97]	x[94]	x[98]	x[95]	x[97]	x[98]
x[27]	x[27]	x[29]	x[28]	x[28]	x[29]	x[27]	x[27]	x[26]	x[25]	x[25]	x[26]	x[98]	x[98]	x[94]	x[98]	x[97]	x[95]
v[20]	v[20]	v[20]	v[20]	v[27]	v[27]	v[26]	v[25]	v[25]	v[26]	v[27]	v[27]	~[00]	v[05]	v[00]	v[0/1	v[00]	~[00]
A[27]	A[20]	A[20]	A[27]	A[27]	A[4/]	A[20]	A[20]	A[2J]	A[20]	A[27]	A[27]	A[20]	v[00]	A[20]	A[24]	A[20]	v[00]
x[28]	x[29]	x[2/]	X[2/]	x[29]	x[28]	x[25]	x[26]	x[2/]	x[2/]	X[20]	x[23]	x[95]	x[98]	x[9/]	x[9/]	x[94]	x[98]
x[27]	x[27]	x[29]	x[28]	x[25]	x[26]	x[27]	x[27]	x[26]	x[25]	x[28]	x[29]	x[97]	x[98]	x[95]	x[98]	x[98]	x[94]
x[25]	x[26]	x[27]	x[27]	x[29]	x[28]	x[28]	x[29]	x[27]	x[27]	x[26]	x[25]	x[94]	x[97]	x[97]	x[98]	x[96]	x[98]
x[29]	x[28]	x[25]	x[26]	x[27]	x[27]	x[26]	x[25]	x[28]	x[29]	x[27]	x[27]	x[98]	x[94]	x[97]	x[96]	x[98]	x[97]
x[27]	x[27]	x[26]	x[25]	x[25]	x[26]	x[27]	x[27]	x[29]	x[28]	x[28]	x[29]	x[97]	x[97]	x[94]	x[97]	x[98]	x[96]
x[26]	x[25]	x[25]	x[26]	x[27]	x[27]	x[29]	x[28]	x[28]	x[29]	x[27]	x[27]	x[97]	x[96]	x[97]	x[94]	x[97]	x[97]
x[25]	x[26]	x[27]	x[27]	x[26]	x[25]	x[28]	x[29]	x[27]	x[27]	x[29]	x[28]	x[96]	x[97]	x[98]	x[98]	x[94]	x[97]
x[27]	x[27]	x[26]	x[25]	x[28]	x[29]	x[27]	x[27]	x[29]	x[28]	x[25]	x[26]	x[98]	x[97]	x[96]	x[97]	x[97]	x[94]
2	5				,												

x[37]	x[40]	x[40]	x[40]	x[39]	x[40]	x[37]	x[38]	x[38]	x[38]	x[39]	x[38]	x[37]	x[40]	x[40]	x[40]	x[39]	x[40]
x[40]	x[37]	x[38]	x[39]	x[38]	x[40]	x[38]	x[37]	x[40]	x[39]	x[40]	x[38]	x[40]	x[37]	x[38]	x[39]	x[38]	x[40]
x[38]	x[38]	x[37]	x[40]	x[38]	x[39]	x[40]	x[40]	x[37]	x[38]	x[40]	x[39]	x[38]	x[38]	x[37]	x[40]	x[38]	x[39]
x[38]	x[39]	x[40]	x[37]	x[40]	x[38]	x[40]	x[39]	x[38]	x[37]	x[38]	x[40]	x[38]	x[39]	x[40]	x[37]	x[40]	x[38]
x[39]	x[38]	x[38]	x[38]	x[37]	x[38]	x[39]	x[40]	x[40]	x[40]	x[37]	x[40]	x[39]	x[38]	x[38]	x[38]	x[37]	x[38]
x[40]	x[40]	x[39]	x[38]	x[40]	x[37]	x[38]	x[38]	x[39]	x[40]	x[38]	x[37]	x[40]	x[40]	x[39]	x[38]	x[40]	x[37]
x[41]	x[42]	x[42]	x[42]	x[43]	x[42]	x[41]	x[44]	x[44]	x[44]	x[43]	x[44]	x[41]	x[42]	x[42]	x[42]	x[43]	x[42]
v[42]	v[41]	v[44]	v[43]	v[44]	v[42]	v[44]	v[41]	v[42]	v[43]	v[42]	v[44]	v[42]	v[41]	v[44]	v[43]	v[44]	v[42]
x[44]	[44]	··[/1]	x[40]	*[44]	··[42]	.[12]	[42]	[11]	[44]	[42]	*[12]	*[44]	[44]	[11]	[40]	[44]	*[12]
X[44]	x[44]	X[41]	X[42]	x[44]	X[43]	x[42]	X[42]	X[41]	X[44]	X[42]	x[43]	X[44]	x[44]	x[41]	X[42]	x[44]	x[43]
X[44]	X[43]	X[42]	X[41]	X[42]	X[44]	X[42]	X[43]	X[44]	X[41]	X[44]	X[42]	X[44]	x[43]	X[42]	X[41]	X[42]	X[44]
x[43]	x[44]	X[44]	x[44]	X[41]	X[44]	x[43]	x[42]	x[42]	x[42]	X[41]	x[42]	X[43]	x[44]	X[44]	x[44]	X[41]	X[44]
x[42]	x[42]	x[43]	x[44]	x[42]	x[41]	x[44]	x[44]	x[43]	x[42]	x[44]	x[41]	x[42]	x[42]	x[43]	x[44]	x[42]	x[41]
x[56]	x[56]	x[58]	x[55]	x[60]	x[57]	x[56]	x[54]	x[59]	x[60]	x[60]	x[58]	x[54]	x[56]	x[57]	x[55]	x[55]	x[58]
x[55]	x[54]	x[59]	x[60]	x[54]	x[58]	x[55]	x[56]	x[58]	x[55]	x[54]	x[57]	x[60]	x[54]	x[58]	x[60]	x[56]	x[59]
x[60]	x[60]	x[58]	x[54]	x[56]	x[59]	x[60]	x[55]	x[57]	x[56]	x[56]	x[58]	x[55]	x[60]	x[59]	x[54]	x[54]	x[58]
x[54]	x[55]	x[57]	x[56]	x[55]	x[58]	x[54]	x[60]	x[58]	x[54]	x[55]	x[59]	x[56]	x[55]	x[58]	x[56]	x[60]	x[57]
x[57]	x[56]	x[60]	x[60]	x[58]	x[56]	x[58]	x[56]	x[60]	x[60]	x[59]	x[56]	x[58]	x[54]	x[55]	x[55]	x[57]	x[54]
x[58]	x[55]	x[55]	x[54]	x[57]	x[54]	x[59]	x[55]	x[55]	x[54]	x[58]	x[54]	x[57]	x[60]	x[60]	x[56]	x[58]	x[56]
x[59]	x[60]	x[56]	x[56]	x[58]	x[60]	x[58]	x[60]	x[56]	x[56]	x[57]	x[60]	x[58]	x[55]	x[54]	x[54]	x[59]	x[55]
x[58]	x[54]	x[54]	x[55]	x[59]	x[55]	x[57]	x[54]	x[54]	x[55]	x[58]	x[55]	x[59]	x[56]	x[56]	x[60]	x[58]	x[60]
x[56]	x[57]	x[55]	x[58]	x[55]	x[56]	x[54]	x[58]	x[60]	x[59]	x[60]	x[54]	x[56]	x[58]	x[55]	x[57]	x[55]	x[56]
x[55]	x [58]	x[60]	x [59]	x[56]	x[54]	x[60]	x [57]	x[55]	x [58]	x[54]	x[56]	x[55]	x[59]	x[60]	x [58]	x[56]	x[54]
v[60]	v[59]	v[54]	v [58]	v[54]	v[60]	v[55]	v[58]	x[56]	v[57]	v[56]	v[55]	v[60]	v[58]	v[54]	v[59]	v[54]	v[60]
*[E4]	[E0]	[54]	x[50]	[CO]	*[EE]	[56]	*[E0]	[54]	**[E0]	*[EE]	[CO]	*[E4]	[57]	[54]	**[E0]	[CO]	*[EE]
X[J4]	x[J0]	x[J0]	x[J7]	x[00]	x[JJ]	X[J0]	x[J9]	X[J4]	x[J0]	x[JJ]	x[00]	x[J4]	x[J/]	x[J0]	x[J0]	x[00]	x[JJ]
x[01]	x[01]	x[0J]	x[0/]	x[02]	X[00]	x[01]	x[03]	X[04]	x[02]	x[02]	x[0J]	x[03]	x[01]	X[00]	x[0/]	X[0/]	x[0J]
X[6/]	X[63]	X[64]	X[62]	X[63]	X[65]	X[6/]	X[01]	X[65]	X[6/]	X[63]	X[00]	X[62]	X[63]	X[65]	X[62]	X[01]	X[64]
x[62]	x[62]	x[65]	x[63]	x[61]	x[64]	x[62]	x[67]	x[66]	x[61]	x[61]	x[65]	x[67]	x[62]	x[64]	x[63]	x[63]	x[65]
x[63]	x[67]	x[66]	x[61]	x[67]	x[65]	x[63]	x[62]	x[65]	x[63]	x[67]	x[64]	x[61]	x[67]	x[65]	x[61]	x[62]	x[66]
x[66]	x[61]	x[62]	x[62]	x[65]	x[61]	x[65]	x[61]	x[62]	x[62]	x[64]	x[61]	x[65]	x[63]	x[67]	x[67]	x[66]	x[63]
x[65]	x[67]	x[67]	x[63]	x[66]	x[63]	x[64]	x[67]	x[67]	x[63]	x[65]	x[63]	x[66]	x[62]	x[62]	x[61]	x[65]	x[61]
x[64]	x[62]	x[61]	x[61]	x[65]	x[62]	x[65]	x[62]	x[61]	x[61]	x[66]	x[62]	x[65]	x[67]	x[63]	x[63]	x[64]	x[67]
x[65]	x[63]	x[63]	x[67]	x[64]	x[67]	x[66]	x[63]	x[63]	x[67]	x[65]	x[67]	x[64]	x[61]	x[61]	x[62]	x[65]	x[62]
x[61]	x[66]	x[67]	x[65]	x[67]	x[61]	x[63]	x[65]	x[62]	x[64]	x[62]	x[63]	x[61]	x[65]	x[67]	x[66]	x[67]	x[61]
x[67]	x[65]	x[62]	x[64]	x[61]	x[63]	x[62]	x[66]	x[67]	x[65]	x[63]	x[61]	x[67]	x[64]	x[62]	x[65]	x[61]	x[63]
x[62]	x[64]	x[63]	x[65]	x[63]	x[62]	x[67]	x[65]	x[61]	x[66]	x[61]	x[67]	x[62]	x[65]	x[63]	x[64]	x[63]	x[62]
x[63]	x[65]	x[61]	x[66]	x[62]	x[67]	x[61]	x[64]	x[63]	x[65]	x[67]	x[62]	x[63]	x[66]	x[61]	x[65]	x[62]	x[67]
x[28]	x[29]	x[27]	x[26]	x[28]	x[27]	x[28]	x[26]	x[27]	x[29]	x[28]	x[27]	x[25]	x[29]	x[27]	x[26]	x[25]	x[27]
x[29]	x[28]	x[27]	x[25]	x[29]	x[27]	x[29]	x[25]	x[27]	x[28]	x[29]	x[27]	x[26]	x[28]	x[27]	x[25]	x[26]	x[27]
x[27]	x[28]	x[29]	x[28]	x[27]	x[29]	x[27]	x[28]	x[29]	x[28]	x[27]	x[29]	x[27]	x[25]	x[26]	x[25]	x[27]	x[26]
v[27]	v[29]	v[28]	v[29]	v[27]	v[28]	v[27]	v[29]	v[28]	v[29]	v[27]	v[28]	v[27]	v[26]	v[25]	v[26]	v[27]	v[25]
v[29]	v[27]	v[25]	v[27]	v[26]	v[28]	v[26]	v[27]	v[28]	v[27]	v[29]	v[25]	v[29]	v[27]	v[25]	v[27]	v[26]	v[28]
* [20]	[27]	*[26]	[27]	**[25]	[20]	*[25]	[27]	[20]	[27]	[20]	* [26]	[20]	[27]	[26]	[27]	[25]	[20]
x[20]	x[27]	x[20]	x[27]	x[2J]	x[27]	x[2J]	x[27]	x[29]	x[27]	x[20]	x[20]	x[20]	x[27]	x[20]	x[27]	x[2J]	x[29]
x[25]	X[20]	X[27]	x[29]	x[25]	x[27]	x[25]	x[29]	X[27]	x[20]	x[25]	X[27]	x[20]	x[20]	X[27]	x[29]	x[20]	x[27]
X[20]	x[25]	X[2/]	X[20]	X[20]	X[2/]	X[20]	X[20]	X[2/]	x[25]	x[20]	X[2/]	x[29]	x[25]	X[2/]	x[20]	x[29]	x[2/]
x[2/]	x[25]	x[26]	x[25]	x[2/]	x[26]	x[2/]	x[25]	x[26]	x[25]	x[2/]	x[26]	x[2/]	x[28]	x[29]	x[28]	x[2/]	x[29]
x[27]	x[26]	x[25]	x[26]	x[27]	x[25]	x[27]	x[26]	x[25]	x[26]	x[27]	x[25]	x[27]	x[29]	x[28]	x[29]	x[27]	x[28]
x[26]	x[27]	x[28]	x[27]	x[29]	x[25]	x[29]	x[27]	x[25]	x[27]	x[26]	x[28]	x[26]	x[27]	x[28]	x[27]	x[29]	x[25]
x[25]	x[27]	x[29]	x[27]	x[28]	x[26]	x[28]	x[27]	x[26]	x[27]	x[25]	x[29]	x[25]	x[27]	x[29]	x[27]	x[28]	x[26]
x[92]	x[93]	x[91]	x[91]	x[90]	x[93]	x[94]	x[97]	x[98]	x[98]	x[95]	x[97]	x[94]	x[98]	x[97]	x[97]	x[96]	x[98]
x[93]	x[92]	x[93]	x[90]	x[93]	x[93]	x[98]	x[94]	x[98]	x[95]	x[98]	x[98]	x[97]	x[94]	x[97]	x[96]	x[97]	x[97]
x[91]	x[93]	x[92]	x[94]	x[94]	x[90]	x[98]	x[98]	x[94]	x[98]	x[97]	x[95]	x[97]	x[97]	x[94]	x[97]	x[98]	x[96]
x[91]	x[90]	x[93]	x[92]	x[91]	x[93]	x[97]	x[95]	x[98]	x[94]	x[97]	x[98]	x[98]	x[96]	x[97]	x[94]	x[98]	x[97]
x[90]	x[93]	x[93]	x[91]	x[92]	x[91]	x[95]	x[97]	x[97]	x[98]	x[94]	x[98]	x[96]	x[98]	x[98]	x[97]	x[94]	x[97]
x[93]	x[93]	x[90]	x[93]	x[91]	x[92]	x[97]	x[98]	x[95]	v[98]		v[94]	x[98]	x[97]	x[96]	x[97]	v[07]	x[94]
x[89]									7 [J O]	X[90]	A[24]					~[<i>J</i> /]	
	x[91]	x[93]	x[93]	x[90]	x[91]	x[94]	x[98]	x[97]	x[97]	x[96] x[96]	x[98]	x[94]	x[97]	x[98]	x[98]	x[95]	x[97]
x[91]	x[91] x[89]	x[93] x[91]	x[93] x[90]	x[90] x[91]	x[91] x[91]	x[94] x[97]	x[98] x[94]	x[97] x[97]	x[97] x[96]	x[98] x[96] x[97]	x[98] x[97]	x[94] x[98]	x[97] x[94]	x[98] x[98]	x[98] x[95]	x[95] x[98]	x[97] x[98]
x[91] x[93]	x[91] x[89] x[91]	x[93] x[91] x[89]	x[93] x[90] x[91]	x[90] x[91] x[91]	x[91] x[91] x[90]	x[94] x[97] x[97]	x[98] x[94] x[97]	x[97] x[97] x[94]	x[97] x[96] x[97]	x[96] x[96] x[97] x[98]	x[98] x[97] x[96]	x[94] x[98] x[98]	x[97] x[94] x[98]	x[98] x[98] x[94]	x[98] x[95] x[98]	x[95] x[95] x[98] x[97]	x[97] x[98] x[95]
x[91] x[93] x[93]	x[91] x[89] x[91] x[90]	x[93] x[91] x[89] x[91]	x[93] x[90] x[91] x[89]	x[90] x[91] x[91] x[93]	x[91] x[91] x[90] x[91]	x[94] x[97] x[97] x[98]	x[98] x[94] x[97] x[96]	x[97] x[97] x[94] x[97]	x[97] x[96] x[97] x[97]	x[96] x[96] x[97] x[98] x[98]	x[98] x[97] x[96] x[97]	x[94] x[98] x[98] x[97]	x[97] x[94] x[98] x[95]	x[98] x[98] x[94] x[98]	x[98] x[95] x[98] x[94]	x[97] x[95] x[98] x[97] x[97]	x[97] x[98] x[95] x[98]
x[91] x[93] x[93] x[90]	x[91] x[89] x[91] x[90] x[91]	x[93] x[91] x[89] x[91] x[91]	x[93] x[90] x[91] x[89] x[93]	x[90] x[91] x[91] x[93] x[89]	x[91] x[91] x[90] x[91] x[91]	x[94] x[97] x[97] x[98] x[96]	x[98] x[94] x[97] x[96] x[98]	x[97] x[97] x[94] x[97] x[98]	x[97] x[96] x[97] x[94] x[97]	x[96] x[96] x[97] x[98] x[98] x[94]	x[97] x[97] x[97] x[97] x[97]	x[94] x[98] x[98] x[97] x[95]	x[97] x[94] x[98] x[95] x[97]	x[98] x[98] x[94] x[98] x[97]	x[98] x[95] x[98] x[94] x[98]	x[97] x[95] x[98] x[97] x[97] x[94]	x[97] x[98] x[95] x[98] x[98]
x[91] x[93] x[93] x[90]	x[91] x[89] x[91] x[90] x[91]	x[93] x[91] x[89] x[91] x[91] x[91]	x[93] x[90] x[91] x[89] x[93]	x[90] x[91] x[91] x[93] x[89]	x[91] x[91] x[90] x[91] x[91] x[93]	x[94] x[97] x[97] x[98] x[96]	x[98] x[94] x[97] x[96] x[98]	x[97] x[97] x[94] x[97] x[97] x[98]	x[97] x[96] x[97] x[94] x[97]	x[96] x[97] x[97] x[98] x[98] x[94]	x[97] x[97] x[97] x[97] x[97] x[97]	x[94] x[98] x[98] x[97] x[97] x[95]	x[97] x[94] x[98] x[95] x[97]	x[98] x[98] x[94] x[98] x[97]	x[98] x[95] x[98] x[94] x[98]	x[97] x[95] x[98] x[97] x[97] x[94]	x[97] x[98] x[95] x[98] x[98]
x[91] x[93] x[93] x[90] x[91]	x[91] x[89] x[91] x[91] x[91] x[91] x[91]	x[93] x[91] x[89] x[91] x[91] x[90] x[97]	x[93] x[90] x[91] x[93] x[93] x[91]	x[90] x[91] x[91] x[93] x[89] x[93] x[93]	x[91] x[91] x[90] x[90] x[91] x[93] x[89]	x[94] x[97] x[97] x[98] x[96] x[98]	x[98] x[94] x[97] x[96] x[98] x[97]	x[97] x[97] x[94] x[94] x[97] x[98] x[96]	x[97] x[96] x[97] x[97] x[97] x[97] x[97]	x[96] x[96] x[97] x[98] x[98] x[94] x[97] x[90]	x[97] x[97] x[96] x[97] x[97] x[97] x[97] x[94]	x[94] x[98] x[98] x[97] x[95] x[97]	x[97] x[94] x[98] x[95] x[97] x[97] x[98]	x[98] x[98] x[94] x[98] x[97] x[97] x[95]	x[98] x[95] x[98] x[94] x[98] x[98]	x[95] x[95] x[98] x[97] x[97] x[94] x[98] x[90]	x[97] x[98] x[95] x[98] x[98] x[94]
x[91] x[93] x[93] x[90] x[91] x[94]	x[91] x[89] x[91] x[90] x[91] x[91] x[91] x[97]	x[93] x[91] x[89] x[91] x[91] x[90] x[97]	x[93] x[90] x[91] x[89] x[93] x[91] x[91] x[98]	x[90] x[91] x[91] x[93] x[89] x[89] x[93] x[96]	x[91] x[91] x[90] x[91] x[93] x[93] x[89] x[98]	x[94] x[97] x[97] x[98] x[96] x[98] x[89]	x[98] x[94] x[97] x[96] x[98] x[97] x[93]	x[97] x[97] x[94] x[97] x[98] x[96] x[96] x[93]	x[97] x[97] x[97] x[97] x[97] x[97] x[97] x[91]	x[96] x[96] x[97] x[98] x[98] x[94] x[94] x[97] x[90]	x[94] x[97] x[96] x[97] x[97] x[97] x[94] x[91]	x[94] x[98] x[98] x[97] x[95] x[97] x[97] x[92]	x[97] x[94] x[94] x[95] x[95] x[97] x[97] x[98] x[91]	x[98] x[98] x[94] x[98] x[97] x[97] x[95] x[91]	x[98] x[95] x[98] x[98] x[98] x[98] x[98] x[93]	x[95] x[95] x[97] x[97] x[97] x[94] x[98] x[90]	x[97] x[98] x[95] x[98] x[98] x[94] x[93]
x[91] x[93] x[93] x[90] x[91] x[94] x[98]	x[91] x[89] x[91] x[90] x[91] x[91] x[91] x[97] x[94]	x[93] x[91] x[89] x[91] x[91] x[90] x[97] x[97]	x[93] x[90] x[91] x[89] x[93] x[91] x[91] x[98] x[96]	x[90] x[91] x[91] x[93] x[89] x[93] x[93] x[96] x[96] x[98]	x[91] x[91] x[90] x[91] x[93] x[93] x[89] x[98] x[97]	x[94] x[97] x[97] x[98] x[96] x[98] x[98] x[98] x[93]	x[98] x[94] x[97] x[96] x[98] x[97] x[93] x[89]	x[97] x[97] x[94] x[97] x[98] x[96] x[96] x[93] x[91]	x[97] x[96] x[97] x[94] x[97] x[97] x[97] x[91] x[90]	x[96] x[96] x[97] x[98] x[98] x[94] x[97] x[90] x[93]	x[94] x[98] x[97] x[96] x[97] x[97] x[97] x[94] x[91] x[91]	x[94] x[98] x[98] x[97] x[95] x[97] x[97] x[92] x[91]	x[97] x[94] x[98] x[95] x[97] x[98] x[91] x[92]	x[98] x[98] x[94] x[97] x[97] x[95] x[91] x[93]	x[98] x[95] x[95] x[98] x[94] x[98] x[98] x[93] x[90]	x[95] x[95] x[97] x[97] x[97] x[94] x[98] x[90] x[91]	x[97] x[98] x[95] x[98] x[98] x[94] x[93] x[93]
x[91] x[93] x[93] x[90] x[91] x[94] x[94] x[97]	x[91] x[89] x[91] x[90] x[91] x[91] x[91] x[97] x[94] x[97]	x[93] x[91] x[89] x[91] x[91] x[90] x[97] x[97] x[97] x[94]	x[93] x[90] x[91] x[89] x[93] x[91] x[93] x[91] x[98] x[96] x[97]	x[90] x[91] x[91] x[93] x[93] x[93] x[93] x[96] x[98] x[98]	x[91] x[91] x[90] x[91] x[93] x[93] x[89] x[98] x[98] x[97] x[96]	x[94] x[97] x[97] x[98] x[96] x[98] x[98] x[89] x[93] x[93]	x[98] x[94] x[97] x[96] x[98] x[97] x[93] x[93] x[89] x[91]	x[97] x[97] x[94] x[97] x[98] x[96] x[96] x[93] x[91] x[89]	x[97] x[96] x[97] x[97] x[97] x[97] x[97] x[91] x[90] x[91]	x[96] x[96] x[97] x[98] x[98] x[94] x[97] x[90] x[90] x[93] x[91]	x[94] x[97] x[97] x[97] x[97] x[97] x[94] x[91] x[91] x[90]	x[94] x[98] x[98] x[97] x[95] x[97] x[92] x[91] x[91]	x[97] x[94] x[98] x[95] x[95] x[97] x[98] x[91] x[92] x[93]	x[98] x[98] x[94] x[97] x[97] x[95] x[91] x[93] x[92]	x[98] x[95] x[95] x[98] x[94] x[98] x[98] x[93] x[90] x[93]	x[95] x[95] x[97] x[97] x[97] x[94] x[98] x[90] x[91] x[93]	x[97] x[98] x[95] x[98] x[98] x[94] x[93] x[93] x[90]
x[91] x[93] x[93] x[90] x[91] x[94] x[94] x[97] x[97]	x[91] x[89] x[91] x[90] x[91] x[91] x[91] x[97] x[97] x[97] x[97]	x[93] x[91] x[89] x[91] x[91] x[91] x[90] x[97] x[97] x[94] x[97]	x[93] x[90] x[91] x[93] x[93] x[93] x[91] x[98] x[96] x[97] x[97]	x[90] x[91] x[91] x[93] x[93] x[93] x[93] x[96] x[98] x[98] x[98]	x[91] x[91] x[90] x[91] x[93] x[93] x[93] x[98] x[97] x[96] x[97]	x[94] x[97] x[97] x[98] x[96] x[98] x[98] x[93] x[93] x[93]	x[98] x[94] x[97] x[96] x[98] x[97] x[93] x[93] x[91] x[91] x[90]	x[97] x[97] x[94] x[97] x[98] x[96] x[93] x[91] x[89] x[91]	x[97] x[96] x[97] x[97] x[97] x[97] x[97] x[91] x[90] x[91] x[89]	x[98] x[96] x[97] x[98] x[98] x[94] x[97] x[97] x[90] x[91] x[91]	x[94] x[97] x[96] x[97] x[97] x[97] x[91] x[91] x[90] x[91]	x[94] x[98] x[98] x[97] x[95] x[97] x[92] x[91] x[91] x[93]	x[97] x[94] x[98] x[95] x[97] x[97] x[97] x[91] x[92] x[93] x[90]	x[98] x[98] x[94] x[98] x[97] x[97] x[95] x[91] x[92] x[92] x[93]	x[98] x[95] x[98] x[94] x[94] x[98] x[98] x[93] x[90] x[93] x[92]	x[95] x[95] x[97] x[97] x[97] x[94] x[94] x[90] x[91] x[93] x[93]	x[97] x[98] x[95] x[98] x[98] x[98] x[94] x[93] x[93] x[90] x[93]
x[91] x[93] x[93] x[90] x[91] x[94] x[94] x[97] x[97] x[97]	x [91] x [89] x [91] x [90] x [91] x [91] x [91] x [97] x [94] x [97] x [96] x [97]	x[93] x[91] x[89] x[91] x[91] x[91] x[91] x[97] x[97] x[94] x[97] x[98]	x [93] x [90] x [91] x [91] x [93] x [93] x [91] x [98] x [96] x [97] x [94] x [98]	x[90] x[91] x[91] x[93] x[93] x[93] x[93] x[96] x[98] x[98] x[97] x[94]	x [91] x [91] x [90] x [91] x [93] x [93] x [93] x [98] x [97] x [96] x [97]	x[94] x[97] x[97] x[98] x[98] x[98] x[98] x[93] x[93] x[91] x[90]	x [98] x [94] x [97] x [96] x [98] x [97] x [93] x [99] x [90] x [93]	x[97] x[97] x[94] x[94] x[97] x[98] x[96] x[93] x[91] x[89] x[91]	x [90] x [97] x [96] x [97] x [94] x [97] x [97] x [91] x [90] x [91] x [89]	x[96] x[97] x[98] x[98] x[94] x[97] x[90] x[93] x[91] x[91] x[92]	x[93] x[97] x[96] x[97] x[97] x[97] x[91] x[91] x[90] x[91] x[93]	x[94] x[98] x[98] x[97] x[95] x[97] x[92] x[91] x[91] x[93] x[90]	x[97] x[94] x[98] x[95] x[97] x[98] x[91] x[92] x[93] x[90] x[91]	x[98] x[98] x[94] x[97] x[95] x[91] x[93] x[92] x[93]	x [98] x [95] x [98] x [94] x [98] x [98] x [93] x [90] x [93] x [92] x [93]	x[97] x[98] x[97] x[97] x[97] x[94] x[98] x[90] x[91] x[93] x[93] x[92]	x [97] x [98] x [95] x [98] x [98] x [94] x [93] x [90] x [90] x [91]
x[91] x[93] x[93] x[90] x[91] x[94] x[94] x[97] x[97] x[97] x[96] x[98]	x [91] x [89] x [91] x [90] x [91] x [91] x [91] x [97] x [94] x [97] x [97]	x[93] x[91] x[89] x[91] x[91] x[91] x[90] x[97] x[97] x[94] x[97] x[98] x[96]	x [93] x [90] x [91] x [91] x [93] x [93] x [93] x [94] x [94] x [97]	x[90] x[91] x[91] x[93] x[93] x[93] x[96] x[98] x[98] x[97] x[94] x[97]	x [91] x [91] x [90] x [90] x [91] x [93] x [93] x [98] x [97] x [96] x [97] x [94]	x[94] x[97] x[97] x[98] x[96] x[98] x[98] x[93] x[93] x[91] x[90]	x [98] x [94] x [97] x [96] x [98] x [97] x [93] x [93] x [91] x [91]	x[97] x[97] x[94] x[97] x[98] x[96] x[93] x[91] x[91] x[91] x[90]	x [97] x [97] x [96] x [97] x [94] x [97] x [97] x [91] x [99] x [91]	x[96] x[97] x[98] x[98] x[94] x[97] x[90] x[93] x[91] x[91] x[89] x[93]	x [98] x [97] x [96] x [97] x [97] x [97] x [91] x [91] x [91] x [93] x [89]	x [94] x [98] x [98] x [97] x [95] x [97] x [92] x [91] x [91] x [93] x [93]	x [97] x [94] x [98] x [95] x [97] x [98] x [91] x [92] x [93] x [91] x [93]	x[98] x[98] x[94] x[97] x[95] x[91] x[93] x[92] x[93] x[93] x[90]	x [98] x [95] x [98] x [94] x [98] x [98] x [93] x [90] x [93] x [93]	x[97] x[95] x[97] x[97] x[97] x[94] x[94] x[90] x[91] x[93] x[92] x[91]	x [97] x [98] x [98] x [98] x [98] x [94] x [93] x [93] x [90] x [91] x [92]
x[91] x[93] x[93] x[90] x[91] x[94] x[94] x[97] x[97] x[96] x[98] x[94]	x[91] x[89] x[91] x[91] x[91] x[91] x[91] x[91] x[97] x[94] x[97] x[96] x[97] x[97] x[98]	x[93] x[91] x[89] x[91] x[91] x[91] x[90] x[97] x[97] x[94] x[97] x[98] x[96] x[98]	x [93] x [90] x [90] x [91] x [89] x [93] x [93] x [94] x [94] x [97] x [97]	x[90] x[91] x[91] x[93] x[93] x[93] x[93] x[94] x[94] x[97] x[95]	x [91] x [91] x [90] x [90] x [91] x [93] x [93] x [98] x [98] x [97] x [96] x [97] x [94] x [97]	x [94] x [97] x [97] x [98] x [98] x [98] x [98] x [93] x [93] x [91] x [90] x [91] x [92]	x[98] x[94] x[97] x[96] x[98] x[97] x[93] x[93] x[91] x[91] x[91]	x[97] x[97] x[94] x[97] x[98] x[96] x[93] x[91] x[91] x[90] x[91]	x [97] x [97] x [96] x [97] x [94] x [97] x [97] x [91] x [91] x [91] x [93]	x[96] x[97] x[98] x[98] x[94] x[97] x[90] x[91] x[91] x[93] x[93] x[93] x[90]	x [98] x [97] x [96] x [97] x [97] x [97] x [91] x [91] x [91] x [93] x [89] x [93]	x [94] x [98] x [98] x [97] x [95] x [97] x [92] x [91] x [91] x [93] x [90] x [93] x [89]	x [97] x [94] x [94] x [98] x [95] x [97] x [98] x [91] x [92] x [93] x [93] x [93]	x[98] x[94] x[94] x[97] x[95] x[91] x[93] x[92] x[93] x[90] x[93]	x [98] x [95] x [98] x [94] x [98] x [98] x [93] x [90] x [93] x [92] x [93] x [91]	x[95] x[95] x[97] x[97] x[94] x[94] x[94] x[91] x[91] x[93] x[93] x[92] x[91] x[90]	x [97] x [98] x [98] x [98] x [98] x [94] x [93] x [93] x [90] x [93] x [91] x [92] x [91]
x[91] x[93] x[93] x[90] x[91] x[94] x[94] x[97] x[97] x[96] x[94] x[97]	x[91] x[89] x[91] x[91] x[91] x[91] x[91] x[91] x[97] x[94] x[97] x[97] x[97] x[98] x[94]	x[93] x[91] x[89] x[91] x[91] x[91] x[97] x[97] x[94] x[97] x[98] x[96] x[98] x[98]	x[93] x[90] x[91] x[91] x[93] x[93] x[91] x[98] x[96] x[97] x[94] x[97] x[97] x[97]	x[90] x[91] x[91] x[93] x[93] x[93] x[93] x[94] x[98] x[97] x[94] x[97] x[95] x[97]	x [91] x [91] x [90] x [91] x [93] x [93] x [93] x [93] x [93] x [97] x [96] x [97] x [94] x [97] x [98]	x[94] x[97] x[97] x[98] x[96] x[98] x[93] x[93] x[93] x[91] x[90] x[91] x[92] x[91]	x[98] x[94] x[97] x[96] x[98] x[97] x[93] x[93] x[91] x[91] x[91] x[92]	x[97] x[97] x[94] x[97] x[98] x[96] x[93] x[91] x[91] x[91] x[91] x[91] x[93]	x [90] x [97] x [97] x [94] x [97] x [97] x [91] x [90] x [91] x [91] x [91] x [93] x [90]	x[96] x[97] x[98] x[98] x[94] x[97] x[90] x[90] x[91] x[91] x[93] x[93] x[93] x[90] x[91]	x [98] x [98] x [96] x [97] x [97] x [97] x [91] x [91] x [91] x [91] x [91] x [93] x [89] x [93] x [93]	x[94] x[98] x[98] x[97] x[95] x[97] x[92] x[91] x[91] x[93] x[90] x[93] x[89] x[89]	x [97] x [94] x [94] x [98] x [95] x [97] x [98] x [91] x [92] x [93] x [91] x [93] x [93] x [89]	x[98] x[98] x[94] x[97] x[95] x[91] x[93] x[93] x[93] x[93] x[90] x[93] x[91]	x[98] x[95] x[94] x[94] x[98] x[93] x[90] x[93] x[92] x[93] x[93] x[91] x[90]	x[95] x[95] x[97] x[97] x[94] x[94] x[94] x[91] x[93] x[93] x[92] x[91] x[90] x[93]	x[97] x[98] x[95] x[98] x[94] x[93] x[93] x[90] x[93] x[91] x[91] x[91]
x[91] x[91] x[93] x[93] x[90] x[91] x[94] x[94] x[97] x[97] x[96] x[94] x[94] x[97] x[98]	x[91] x[89] x[91] x[91] x[91] x[91] x[97] x[94] x[97] x[96] x[97] x[98] x[94]	x[93] x[91] x[89] x[91] x[91] x[97] x[97] x[94] x[97] x[98] x[96] x[98] x[98] x[94]	x[93] x[90] x[91] x[91] x[93] x[91] x[93] x[91] x[94] x[96] x[97] x[94] x[97] x[97] x[97] x[95] x[98]	x[90] x[91] x[91] x[93] x[93] x[96] x[98] x[98] x[97] x[97] x[97] x[97] x[97]	x [91] x [91] x [90] x [91] x [93] x [93] x [98] x [98] x [97] x [96] x [97] x [97] x [94] x [97] x [98] x [95]	x[94] x[97] x[97] x[98] x[96] x[98] x[93] x[93] x[93] x[91] x[90] x[91] x[91]	x [98] x [94] x [97] x [96] x [98] x [97] x [93] x [91] x [91] x [91] x [92] x [93]	x[97] x[97] x[94] x[97] x[98] x[96] x[91] x[91] x[91] x[91] x[91] x[93] x[92]	x [90] x [97] x [97] x [94] x [97] x [97] x [91] x [90] x [91] x [91] x [91] x [91] x [93] x [93]	x[96] x[97] x[97] x[98] x[98] x[94] x[97] x[90] x[93] x[91] x[91] x[93] x[90] x[91] x[93]	x [98] x [97] x [97] x [97] x [97] x [97] x [91] x [91] x [91] x [91] x [93] x [89] x [93] x [93] x [90]	x [94] x [98] x [98] x [97] x [95] x [97] x [92] x [91] x [91] x [93] x [90] x [93] x [93] x [93]	x[97] x[94] x[94] x[95] x[97] x[97] x[97] x[91] x[92] x[93] x[90] x[90] x[93] x[93] x[93] x[89] x[91]	x[98] x[98] x[94] x[97] x[95] x[91] x[93] x[93] x[93] x[93] x[90] x[93] x[91] x[89]	x[98] x[95] x[94] x[94] x[94] x[98] x[93] x[90] x[93] x[92] x[93] x[93] x[91] x[90] x[91]	x[97] x[97] x[97] x[97] x[97] x[94] x[90] x[91] x[93] x[93] x[91] x[91]	x [97] x [98] x [95] x [98] x [98] x [94] x [93] x [93] x [90] x [91] x [91] x [90]
x[91] x[91] x[93] x[93] x[90] x[91] x[94] x[94] x[97] x[97] x[96] x[94] x[94] x[97] x[98] x[98]	x[91] x[89] x[91] x[91] x[91] x[97] x[94] x[97] x[94] x[97] x[96] x[97] x[97] x[98] x[98] x[95]	x[93] x[91] x[89] x[91] x[91] x[97] x[97] x[94] x[97] x[96] x[98] x[98] x[94] x[98]	x[93] x[90] x[91] x[93] x[93] x[94] x[96] x[97] x[94] x[97] x[97] x[97] x[95] x[94]	x[90] x[91] x[91] x[93] x[93] x[93] x[96] x[98] x[98] x[97] x[97] x[97] x[97] x[97]	x [91] x [91] x [91] x [90] x [91] x [93] x [93] x [93] x [97] x [96] x [97] x [97] x [97] x [97] x [98] x [95] x [98]	x[94] x[97] x[97] x[98] x[98] x[93] x[93] x[93] x[91] x[91] x[91] x[91] x[91] x[93]	x [98] x [94] x [97] x [96] x [98] x [93] x [93] x [91] x [90] x [91] x [91] x [92] x [93] x [90]	x[97] x[97] x[94] x[97] x[98] x[93] x[91] x[91] x[91] x[91] x[91] x[93] x[92] x[93]	x [97] x [97] x [97] x [94] x [97] x [91] x [91] x [91] x [91] x [91] x [91] x [91] x [91] x [93] x [90] x [93] x [92]	x[96] x[96] x[96] x[98] x[98] x[94] x[97] x[90] x[91] x[91] x[90] x[90] x[91] x[93] x[93]	x [98] x [98] x [97] x [96] x [97] x [97] x [91] x [91] x [91] x [91] x [93] x [93] x [93] x [93] x [93]	x[94] x[98] x[98] x[97] x[95] x[97] x[92] x[91] x[91] x[93] x[93] x[93] x[93] x[93] x[93]	x[97] x[94] x[94] x[95] x[95] x[97] x[98] x[91] x[92] x[93] x[90] x[93] x[93] x[93] x[93] x[91] x[90]	x[98] x[94] x[94] x[97] x[95] x[91] x[93] x[92] x[93] x[93] x[90] x[93] x[91]	x[98] x[95] x[95] x[94] x[98] x[93] x[93] x[93] x[92] x[93] x[91] x[91] x[89]	x[95] x[95] x[97] x[97] x[97] x[94] x[90] x[91] x[93] x[92] x[92] x[90] x[93] x[91]	x[97] x[98] x[95] x[98] x[94] x[93] x[93] x[90] x[93] x[91] x[91] x[91]
x[91] x[93] x[93] x[90] x[91] x[94] x[94] x[97] x[97] x[96] x[98] x[97] x[98] x[97] x[98] x[98] x[95]	x[91] x[89] x[91] x[91] x[91] x[91] x[97] x[94] x[97] x[97] x[97] x[97] x[98] x[98] x[95] x[98]	x[93] x[91] x[89] x[91] x[91] x[97] x[97] x[94] x[97] x[98] x[98] x[98] x[98] x[94] x[98] x[94]	x[93] x[90] x[91] x[93] x[91] x[93] x[94] x[96] x[97] x[94] x[97] x[95] x[95] x[94] x[94] x[97]	x[90] x[91] x[91] x[93] x[93] x[93] x[93] x[93] x[93] x[94] x[97] x[97] x[97] x[97] x[97] x[97] x[94]	x [91] x [91] x [90] x [91] x [93] x [93] x [93] x [97] x [96] x [97] x [97] x [94] x [97] x [95] x [98] x [98]	x[94] x[97] x[97] x[98] x[98] x[98] x[93] x[93] x[91] x[90] x[91] x[91] x[91] x[90]	x [98] x [94] x [97] x [96] x [98] x [97] x [93] x [91] x [91] x [91] x [92] x [90] x [91]	x[97] x[97] x[94] x[94] x[97] x[98] x[91] x[91] x[91] x[91] x[91] x[91] x[91] x[92] x[93]	x [97] x [97] x [97] x [97] x [97] x [97] x [91] x [91] x [91] x [91] x [91] x [91] x [91] x [93] x [92] x [93]	x[96] x[96] x[97] x[98] x[98] x[94] x[97] x[90] x[91] x[91] x[93] x[90] x[91] x[93] x[93] x[93] x[93]	x [94] x [94] x [97] x [97] x [97] x [97] x [91] x [91] x [90] x [91] x [93] x [93] x [93] x [93] x [93] x [91]	x[94] x[98] x[97] x[95] x[97] x[92] x[91] x[91] x[93] x[90] x[93] x[93] x[93] x[91] x[90]	x[97] x[94] x[94] x[95] x[97] x[97] x[92] x[91] x[91] x[93] x[93] x[93] x[93] x[93] x[90] x[93]	x[98] x[98] x[94] x[97] x[95] x[95] x[93] x[93] x[93] x[93] x[90] x[93] x[91]	x[98] x[95] x[95] x[98] x[94] x[98] x[93] x[90] x[93] x[92] x[93] x[93] x[91] x[90] x[91] x[91]	x[95] x[95] x[98] x[97] x[97] x[94] x[94] x[90] x[91] x[93] x[93] x[92] x[91] x[91] x[91] x[89]	x[97] x[98] x[95] x[98] x[93] x[93] x[93] x[90] x[91] x[91] x[91] x[91] x[91] x[91] x[93]

d) Matriz B (72x30):

(1	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0 -	-1 0	0	0	0	0 0	0	0	0	0	0)
0	0	0	0	1 0 0 0	0	0	0 - 1	0	0 0	0	0	0	0	0	0	0 -1	1 0	0	0	0 0 0 0	0	0	0	0	0
0	0	0	0	0 0	0	0	0 0	0	-1 0 0 0	0	0 L 0	0	0	0	0	0 1 1 0	0	0	0	0 0 0 0	0	0	0	0	0
0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0	0	1	0 0	-1	0	0	0 0 0 0	0	0	0	0	0
0	0	0	0	-1 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	1	0 0	0	0	0	0	0
0	0	0	0	0 0	0	0	0	0	1 0	0	0	0	0	0	0	0 0	0	0	-1	0 0	0	0	0	0	0
0	0	0	0	0 0	0	0	0	0	0 0	1	0	0	0	0	0 -1	0 0 0 0	0	-1 0	0	0 0 1 0	0	0	0	0	0
0	-1 0	0	-1 1	0 0	0	0	0	0	0 0	0	0	0	0	0	0 -	1 1	0	0	0	0 0 0 0	0	0	0	0	0
0	0	0	0	0 0	0	0	0	1	0 0	0	1	0	0	0	0 -	1 -1	LO	0	0	0 0	0	0	0	0	0
0	0	0	0	0 -1	0	0	0	0	0 0	0	0	0	0	- 1	0	0 1	1	0	0	0 0	0	0	0	0	0
0	0	0	0	0 0	0	0	0	0	0 -:	L 0 0	0	0	0	1 0	0	0 -1	1 1 1 -1	0	0	0 0 0 0	0	0	0	0	0
0	0	0 - 1	0	0 1 0 0	0	-1 0	0 0	0	0 0	0	0	0	0 -1	0	0	0 1 1 0	-1	0	0 0	0 0 0 0	0	0	0	0	0
0	0	0	0	0 0	0	0	0	0	0 0	0	0	-1	1	0	0 -	-1 0	1	0	0	0 0	0	0	0	0	0
0	0	1	0	0 0	-1	0	0	0	0 0	0	0	0	0	0	0	1 0	-1	0	0	0 0	0	0	0	0	0
0	0	0	-1	0 0	0	0	0	0	0 0	0	1	0	0	0	0	0 0	0	-1	-1	0 0	0	0	0	0	0
0	0 - 1	0	0	0 0	0	0	0 0	-1 1	0 0	0	-1 0	0	0	0	0	0 0 0 0	0	1 -1	1 1	0 0 0 0	0	0	0	0	0
0	0	0	0	0 1	0	0	0	0	0 0	0	0	0	0	1 -1	0	0 0 0 0	0	0	-1 -	1 0	0	0	0	0	0
0	0	0	0	0 0	0	-1	0	0	0 -:	L 0	0	0	0	0	0	0 0	0	0	1	1 0	0	0	0	0	0
0	0	1	0	0 0	0	0	0	0	0 0	0	0	0	1	0	0	0 0	0	-1	0 -	1 0	0	0	0	0	0
0	0	0	0	0 0	0 -1	0	0	0	0 0	0	0	1 -1	-1 0	0	0	0 0 0 0	0	1	0 -	1 0 1 0	0	0	0	0	0
0	0 - 1	-1 0	0	0 0	1 0	0	0 0	0 0	0 0	0	0 1	0	0	0	0	0 0 0 0	0	-1 0	0 0	1 0 0 0	0	0	0	0	0
0	0	0	-1	0 0	0	0	0	1	0 0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0
0	0	0	0	0 0	0	1	0	0	0 0	0	0	0	0	-1	0	0 0	0	0	0	0 0	0	0	0	0	0
0	0	-1	0	0 0	0	0	0	0	0 0	0	0	1	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0
0	1	0	0	0 0	0	0	0 0	0 -1	0 0	0	-1 0	0	0	0	0 0	0 0 0 0	0	0 0	0	0 0 0 0	0	0	0	0	0
0	0	0	0	0 1 0 0	0	0 - 1	0 0	0	0 -3	L 0 0	0	0	0	0 1	0 0	0 0 0 0	0	0	0 0	0 0 0 0	0	0	0	0	0
0	0	0	0	0 0	-1	0	0	0	0 0	0	0	0	1	0	0	0 0	0	0	0	0 0	0	0	0	0	0
0	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0 0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	0	0
0	0	0	$-\frac{1}{\sqrt{2}}$	$0 = \frac{1}{\sqrt{2}}$	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	$0 \frac{1}{\sqrt{2}}$	- 0	$\frac{1}{\sqrt{2}}$	0	0	0
0	0	0	0	0 0	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	$0 \frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	- 0	0	0	0
0	0	0	0	0 0	0	0	0 -	$\frac{1}{\sqrt{2}}$	$0 = \frac{1}{\sqrt{2}}$	0	0	0	0	0	0	0 0	0	0	0	$0 \frac{1}{\sqrt{2}}$	- 0	$-\frac{1}{\sqrt{2}}$	0	0	0
0	0	0	0	0 0	0	0	0	0	0 0	0	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0 0	0	0	0	0 0	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	0	0
0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0 0	0	0	0	$0 \frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	0	0	0
0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0 0	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0	0
0	0	0	$\frac{1}{\sqrt{2}}$	$0 \frac{1}{\sqrt{2}}$	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	$0 - \frac{1}{\sqrt{2}}$	- 0 2 1	$-\frac{1}{\sqrt{2}}$	0	0	0
	0	0	0	0 0	$\sqrt{\frac{2}{2}}$	$-\sqrt{\frac{2}{2}}$	0	1	0 0	1 0	0	0	0	0	0	0 0	0	0	0	$\sqrt{\frac{1}{\sqrt{1}}}$	$\overline{2}$ $\sqrt{2}$	1	0	0	0
	Ű	Û	U	U U	U	Û	U	$\sqrt{\frac{2}{2}}$	u - <u>√</u>	2	1	1	U	U	0	v 0	U	U	U	u = <u> </u>	- U 2 1	$\sqrt{\frac{2}{2}}$	Û	U	Ŭ
0	0	0	U	U 0	0	0	U	U	υ 0	0	$-\frac{1}{\sqrt{2}}$	$\sqrt{2}$	U	0	U	u 0	0	U	U	u 0	1 1 2 2	$-\frac{1}{\sqrt{2}}$	0	0	U
0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	$\sqrt{\frac{1}{2}}$	$\sqrt{\frac{1}{2}}$	0	0 0	0	0	0	$0 = \frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$. 0	0	0	0
0	$\sqrt{\frac{1}{2}}$	$-\frac{1}{\sqrt{2}}$	0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0	$-\frac{1}{\sqrt{2}}$	$\sqrt{\frac{1}{2}}$
0	0	0	$-\frac{1}{\sqrt{2}}$	$0 \frac{1}{\sqrt{2}}$	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	$\sqrt{\frac{1}{2}}$	0	$-\frac{1}{\sqrt{2}}$
0	0	0	0	0 0	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	0
0	0	0	0	0 0	0	0	0 -	$\frac{1}{\sqrt{2}}$	$0 - \frac{1}{\sqrt{2}}$	2 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	$\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$
0	0	0	0	0 0	0	0	0	0	0 0	0	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0 0	0	0	0	0 0	0	0	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
0	0		0	0 0	U N	0	0	0	0 0	0	0	n	$-\frac{1}{\sqrt{2}}$	$\sqrt{\frac{1}{2}}$	0	0 0	U N	0	0	0 0	0	0	√ 2 0	√ 2 _1	1
0	√2 0	$\sqrt{\frac{2}{2}}$	1	0 - 1	. 0	0	0	0	0 0	0	0	0	0	0	0	- 0 0 0	0	0	0	- 0 0 n	0	0		$\sqrt{\frac{2}{2}}$	√ 2 1
0	0	0	√ 2 0	√2 0 0	1	1	0	0	0 0	n	0	0	0	0	0	0 0	0	0	0	0 0	0	0	√2 1		√2 0
0	0	0	0	0 0	√ 2 0	√ 2 0	0	1	0 _1	_ 0	0	0	0	0	0	0 0	0	0	0	0 n	0	0	$\sqrt{\frac{2}{2}}$	$\sqrt{\frac{2}{2}}$	1
0	0	0	0	0 0	0	0	0	√ 2 0	√: 0 0	2 0	1	1	0	0	0	0 0	0	0	0	0 0	0	0	√ 2 0	1	$\sqrt{\frac{2}{2}}$
0	0	0	0	0 0	0	0	0	0	0 0	0	√ 2 0	√ 2 0	1		0	0 0	0	0	0	0 0	0	0	- 1	√ 2 _1	√ 2 0
($\sqrt{2}$	$\sqrt{2}$									$\sqrt{2}$	$\sqrt{2}$	J.

e) Matriz G⁻¹ (30x30)

(μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_1	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_2	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_2	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_2	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_3	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_3	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_3	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_4	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_4	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_4	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_4	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_4	0
(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	μ_4

f) Matrix UB (10x30):

$\frac{1}{\sqrt{6}}$	0	0	0	$\frac{1}{\sqrt{6}}$	0	0	0	$-\frac{1}{\sqrt{6}}$	0	$-\frac{1}{\sqrt{6}}$	0	$-\frac{1}{\sqrt{6}}$	0	0	0	0	$\frac{1}{\sqrt{6}}$	0	0	0	0	0	0	0	0	0	0	0	0
$\frac{1}{2\sqrt{3}}$	0	0	0	$\frac{1}{2\sqrt{3}}$	0	0	0	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{2\sqrt{3}}$	0	$-\frac{1}{2\sqrt{3}}$	0	0	0	0	$-\frac{1}{\sqrt{3}}$	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	$-\frac{1}{2}$	0	$-\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0	0	0	0	1 2	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0	0	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{\sqrt{2}}$	0	0 ·	$-\frac{1}{\sqrt{2}}$	0	0
$\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	1 2	0	0	0	0	0	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0
$-\frac{1}{\sqrt{15}}$	0	0	$\frac{\sqrt{\frac{3}{5}}}{2}$	0	0	$\frac{\sqrt{\frac{3}{5}}}{2}$	0	0	$\frac{\sqrt{\frac{3}{5}}}{2}$	0	0	$-\frac{1}{\sqrt{15}}$	0	0	$\frac{\sqrt{\frac{3}{5}}}{2}$	0	0	$-\frac{1}{\sqrt{15}}$	0	0	$=\frac{1}{\sqrt{15}}$	0	0 –	$\frac{1}{\sqrt{15}}$	0	0 -	$\frac{1}{\sqrt{15}}$	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{\sqrt{2}}$	0	0	$-\frac{1}{\sqrt{2}}$	0	0	0	0	0	0	0	0
$-\frac{1}{2\sqrt{3}}$	0	0	0	0	0	0	0	0	0	0	0	$-\frac{1}{2\sqrt{3}}$	0	0	0	0	0	$-\frac{1}{2\sqrt{3}}$	0	0	$-\frac{1}{2\sqrt{3}}$	0	0	$\frac{1}{\sqrt{3}}$	0	0	$\frac{1}{\sqrt{3}}$	0	0
0	0	0	1/2	0	0	$-\frac{1}{2}$	0	0	1 2	0	0	0	0	0	$-\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0)

Anexo II.14.- Cálculos necesarios para obtener F_{sym} y G_{sym}

Matriz Gsym:

$$UB_{mp} = U \cdot Mp \cdot B$$

$$Gsym = \langle VB_{mp} \rangle G^{-1} \cdot \langle VB_{mp} \rangle$$

Matriz Fsym:

$$Fsym = U \cdot Mp \cdot F \cdot Mp' \cdot U'$$

Además es necesario para simetrizar anular los siguientes valores de constantes de fuerzas:

$$x \ 1 = x \ 2 = x \ 1 = x \ 2 = x \ 4 = x \ 3 = x \ 4 = x \ 5 = x \ 6 = x \ 3 = x \ 4 = x \ 5 = x \ 6 = x \ 7 = x \ 8 = x \ 3 = x \ 4 = 0$$

Anexo II.15.- Matrices G_{sym} para distintas elpasolitas del tipo $Cs_2NaLnCl_6$.

a) Matriz G simétrica (G_{sym}) , expresión general.

(μ1	0	0	0	0	0	0	0	0	0)
0	μ_1	0	0	0	0	0	0	0	0
0	0	μ_1	0	0	0	0	0	0	0
0	0	0	μ_1	0	0	0	0	0	0
0	0	0	0	μ 4	0	0	0	0	0
0	0	0	0	0	$\frac{1}{4}$ (2 μ_1 + μ_2 + μ_3)	$\frac{-2\mu_1 + \mu_2 + \mu_3}{2\sqrt{15}}$	$\frac{-\mu_2+\mu_3}{2\sqrt{2}}$	$\frac{-2\mu_1+\mu_2+\mu_3}{4\sqrt{3}}$	0
0	0	0	0	0	$\frac{-2\mu_{1}+\mu_{2}+\mu_{3}}{2\sqrt{15}}$	$\frac{1}{15} (11 \mu_1 + \mu_2 + \mu_3 + 2 \mu_4)$	$\frac{-\mu_2 + \mu_3}{\sqrt{30}}$	$\frac{2\mu_1 + \mu_2 + \mu_3 - 4\mu_4}{6\sqrt{5}}$	0
0	0	0	0	0	$\frac{-\mu_2+\mu_3}{2\sqrt{2}}$	$\frac{-\mu_2+\mu_3}{\sqrt{30}}$	$\frac{1}{2}$ ($\mu_2 + \mu_3$)	$\frac{-\mu_2+\mu_3}{2\sqrt{6}}$	0
0	0	0	0	0	$\frac{-2\mu_1+\mu_2+\mu_3}{4\sqrt{3}}$	$\frac{2\mu_{1}+\mu_{2}+\mu_{3}-4\mu_{4}}{6\sqrt{5}}$	$\frac{-\mu_2+\mu_3}{2\sqrt{6}}$	$\frac{1}{12} (2 \mu_1 + \mu_2 + \mu_3 + 8 \mu_4)$	0
0 /	0	0	0	0	0	0	0	0	$\mu_1)$

b) $Cs_2NaDyCl_6$:

(0.0282064	0	0	0	0	0	0	0	0	0)
0	0.0282064	0	0	0	0	0	0	0	0
0	0	0.0282064	0	0	0	0	0	0	0
0	0	0	0.0282064	0	0	0	0	0	0
0	0	0	0	0.00752417	0	0	0	0	0
0	0	0	0	0	0.0265164	-0.000872687	0.0132035	-0.000975694	0
0	0	0	0	0	-0.000872687	0.0249981	0.00681827	0.00566239	0
0	0	0	0	0	0.0132035	0.00681827	0.0248265	0.00762306	0
0	0	0	0	0	-0.000975694	0.00566239	0.00762306	0.0138549	0
0	0	0	0	0	0	0	0	0	0.0282064)

c) $Cs_2NaHoCl_6$:

(0.0282064	0	0	0	0	0	0	0	0	0)
0	0.0282064	0	0	0	0	0	0	0	0
0	0	0.0282064	0	0	0	0	0	0	0
0	0	0	0.0282064	0	0	0	0	0	0
0	0	0	0	0.00752417	0	0	0	0	0
0	0	0	0	0	0.0264937	-0.000884392	0.0132356	-0.000988781	0
0	0	0	0	0	-0.000884392	0.024992	0.00683483	0.00565563	0
0	0	0	0	0	0.0132356	0.00683483	0.0247811	0.00764157	0
0	0	0	0	0	-0.000988781	0.00565563	0.00764157	0.0138474	0
\ 0	0	0	0	0	0	0	0	0	0.0282064)

d) $Cs_2 Na \operatorname{Pr} Cl_6$:

(0.0282064	0	0	0	0	0	0	0	0	0)
0	0.0282064	0	0	0	0	0	0	0	0
0	0	0.0282064	0	0	0	0	0	0	0
0	0	0	0.0282064	0	0	0	0	0	0
0	0	0	0	0.00752417	0	0	0	0	0
0	0	0	0	0	0.0267522	-0.000750942	0.0128701	-0.000839579	0
0	0	0	0	0	-0.000750942	0.0250609	0.0066461	0.00573268	0
0	0	0	0	0	0.0128701	0.0066461	0.025298	0.00743056	0
0	0	0	0	0	-0.000839579	0.00573268	0.00743056	0.0139335	0
0	0	0	0	0	0	0	0	0	0.0282064)

e) $Cs_2NaEuCl_6$:

(0.0282064	0	0	0	0	0	0	0	0	0)
0	0.0282064	0	0	0	0	0	0	0	0
0	0	0.0282064	0	0	0	0	0	0	0
0	0	0	0.0282064	0	0	0	0	0	0
0	0	0	0	0.00752417	0	0	0	0	0
0	0	0	0	0	0.0266231	-0.000817583	0.0130526	-0.000914086	0
0	0	0	0	0	-0.000817583	0.0250265	0.00674034	0.0056942	0
0	0	0	0	0	0.0130526	0.00674034	0.0250399	0.00753593	0
0	0	0	0	0	-0.000914086	0.0056942	0.00753593	0.0138905	0
0	0	0	0	0	0	0	0	0	0.0282064

f) $Cs_2NaTbCl_6$:

(0.0282064	0	0	0	0	0	0	0	0	0)
0	0.0282064	0	0	0	0	0	0	0	0
0	0	0.0282064	0	0	0	0	0	0	0
0	0	0	0.0282064	0	0	0	0	0	0
0	0	0	0	0.00752417	0	0	0	0	0
0	0	0	0	0	0.026551	-0.000854811	0.0131546	-0.000955707	0
0	0	0	0	0	-0.000854811	0.0250073	0.00679299	0.00567271	0
0	0	0	0	0	0.0131546	0.00679299	0.0248957	0.0075948	0
0	0	0	0	0	-0.000955707	0.00567271	0.0075948	0.0138665	0
0	0	0	0	0	0	0	0	0	0.0282064)

g) $Cs_2NaErCl_6$:

(0.0282064	0	0	0	0	0	0	0	0	0)
	0	0.0282064	0	0	0	0	0	0	0	0
	0	0	0.0282064	0	0	0	0	0	0	0
	0	0	0	0.0282064	0	0	0	0	0	0
	0	0	0	0	0.00752417	0	0	0	0	0
	0	0	0	0	0	0.0264726	-0.000895296	0.0132654	-0.00100097	0
	0	0	0	0	0	-0.000895296	0.0249864	0.00685025	0.00564934	0
	0	0	0	0	0	0.0132654	0.00685025	0.0247389	0.00765881	0
	0	0	0	0	0	-0.00100097	0.00564934	0.00765881	0.0138403	0
l	0	0	0	0	0	0	0	0	0	0.0282064)

h) $Cs_2NaTmCl_6$:

(0.0282064	0	0	0	0	0	0	0	0	0)
0	0.0282064	0	0	0	0	0	0	0	0
0	0	0.0282064	0	0	0	0	0	0	0
0	0	0	0.0282064	0	0	0	0	0	0
0	0	0	0	0.00752417	0	0	0	0	0
0	0	0	0	0	0.0264578	-0.000902945	0.0132864	-0.00100952	0
0	0	0	0	0	-0.000902945	0.0249825	0.00686106	0.00564492	0
0	0	0	0	0	0.0132864	0.00686106	0.0247093	0.0076709	0
0	0	0	0	0	-0.00100952	0.00564492	0.0076709	0.0138354	0
0	0	0	0	0	0	0	0	0	0.0282064)

Anexo II.16.- Anexo de Matriz "F" simetrizada (F_{sym}), enumerando sus elementos.

F11:

$$\frac{1}{4} (x[1] + 4x[2] + x[3] + x[4] + 4x[5] + x[6] - 2x[7] - 8x[8] - 2x[9])$$

F22:

$$\frac{1}{4} \ (x[1] - 2x[2] + x[3] + x[4] - 2x[5] + x[6] - 2x[7] + 4x[8] - 2x[9])$$

F33:

$$\frac{1}{16} \left(4\sqrt{2} x[25] - 4\sqrt{2} x[26] - 4\sqrt{2} x[28] + 4\sqrt{2} x[29] + x[30] - x[33] - x[35] + x[36] + 2x[89] - 4x[91] - 2x[92] - 2x[95] + 2x[96] - 4x[97] + 4x[98] \right)$$

F44:

$$\frac{1}{36} (x[10] - 2x[11] + x[12] + x[15] - 2x[16] + x[17] + 4x[20] - 2x[23] - 2x[24] + x[30] - x[33] + x[35] - x[36] + 4x[77] - 4x[78] - 4x[80] + 4x[81])$$

F55:

$$\frac{1}{8} \left(-4\sqrt{2} x[25] - 4\sqrt{2} x[26] + 4\sqrt{2} x[28] + 4\sqrt{2} x[29] + x[30] - x[33] + x[35] - x[36] + 2x[89] + 4x[91] - 2x[92] - 2x[95] + 2x[96] + 4x[97] - 4x[98] \right)$$

F66:

$$\frac{1}{8} (x[1] - x[3] + x[4] - x[6] - 2x[7] + 2x[9])$$

F77:

$$\frac{1}{30} \left(x[1] - x[3] + x[4] - x[6] - 2x[7] + 2x[9] + x[10] - x[12] + 2x[13] - 2x[14] + x[15] - x[17] + 2x[18] - 2x[19] + 2x[23] - 2x[24] + 4\sqrt{2} x[38] - 4\sqrt{2} x[40] + 4\sqrt{2} x[42] - 4\sqrt{2} x[44] - 4x[45] + 4x[46] - 4x[48] + 4x[49] + 4x[51] - 4x[53] + 2\sqrt{2} x[54] - 2\sqrt{2} x[55] - 2\sqrt{2} x[56] - 2\sqrt{2} x[57] + 2\sqrt{2} x[59] + 2\sqrt{2} x[60] + 2\sqrt{2} x[61] - 2\sqrt{2} x[62] - 2\sqrt{2} x[63] - 2\sqrt{2} x[64] + 2\sqrt{2} x[66] + 2\sqrt{2} x[67] + 4x[68] - 4x[70] + x[89] + 2x[91] - x[92] + x[95] - x[96] - 2x[97] + 2x[98] \right)$$

F88:

$$\frac{1}{4} (x[1] - x[3] + x[4] - x[6] + 2x[7] - 2x[9])$$

F99:

$$\frac{1}{24} \left(x[1] - x[3] + x[4] - x[6] - 2x[7] + 2x[9] + x[10] - x[12] + 2x[13] - 2x[14] + x[15] - x[17] + 2x[18] - 2x[19] + 2x[23] - 2x[24] - 8\sqrt{2} x[38] + 8\sqrt{2} x[40] - 8\sqrt{2} x[42] + 8\sqrt{2} x[44] - 4x[45] + 4x[46] - 4x[48] + 4x[49] + 4x[51] - 4x[53] - 4\sqrt{2} x[54] + 4\sqrt{2} x[55] + 4\sqrt{2} x[56] + 4\sqrt{2} x[57] - 4\sqrt{2} x[59] - 4\sqrt{2} x[60] - 4\sqrt{2} x[61] + 4\sqrt{2} x[62] + 4\sqrt{2} x[63] + 4\sqrt{2} x[64] - 4\sqrt{2} x[66] - 4\sqrt{2} x[67] + 4x[68] - 4x[70] + 4x[89] + 8x[91] - 4x[92] + 4x[95] - 4x[96] - 8x[97] + 8x[98] \right)$$

F10,10:

$$\frac{1}{18} \left(x[10] - x[12] - 2x[13] + 2x[14] + x[15] - x[17] - 2x[18] + 2x[19] + 2x[23] - 2x[24] + 2\sqrt{2} x[54] - 2\sqrt{2} x[55] - 2\sqrt{2} x[56] + 2\sqrt{2} x[57] - 2\sqrt{2} x[59] + 2\sqrt{2} x[60] + 2\sqrt{2} x[61] - 2\sqrt{2} x[62] - 2\sqrt{2} x[63] + 2\sqrt{2} x[64] - 2\sqrt{2} x[66] + 2\sqrt{2} x[67] + x[89] - 2x[91] - x[92] + x[95] - x[96] + 2x[97] - 2x[98] \right)$$

F4,5:

$$\begin{array}{c} \displaystyle \frac{1}{24} & \left(4\,x[\,25]\,+4\,x[\,26]\,-4\,x[\,28]\,-4\,x[\,29]\,-\sqrt{2}\,\,x[\,30]\,+ \right. \\ & \displaystyle \sqrt{2}\,\,x[\,33]\,-\sqrt{2}\,\,x[\,35]\,+\sqrt{2}\,\,x[\,36]\,+4\,x[\,54]\,+4\,x[\,55]\,-4\,x[\,56]\,-4\,x[\,60]\,+4\,x[\,61]\,+ \\ \displaystyle 4\,x[\,62]\,-4\,x[\,63]\,-4\,x[\,67]\,-2\,\sqrt{2}\,\,x[\,77]\,+2\,\sqrt{2}\,\,x[\,78]\,+2\,\sqrt{2}\,\,x[\,80]\,-2\,\sqrt{2}\,\,x[\,81]\,\right) \end{array}$$

F6,7:

$$\begin{array}{c} \displaystyle \frac{1}{4\sqrt{15}} \left(-x[1] + x[3] - x[4] + x[6] + 2 x[7] - 2 x[9] - 2 \sqrt{2} x[38] + 2 \sqrt{2} x[40] - 2 \sqrt{2} x[42] + 2 \sqrt{2} x[44] + 2 x[45] - 2 x[46] + 2 x[48] - 2 x[49] - 2 x[51] + 2 x[53] - 2 x[68] + 2 x[70] \right) \end{array}$$

F6,8:

$$\frac{-x[1] + x[3] + x[4] - x[6]}{4\sqrt{2}}$$

F6,9:

$$\frac{1}{8\sqrt{3}} \left(-x[1] + x[3] - x[4] + x[6] + 2x[7] - 2x[9] + 4\sqrt{2} x[38] - 4\sqrt{2} x[40] + 4\sqrt{2} x[42] - 4\sqrt{2} x[44] + 2x[45] - 2x[46] + 2x[48] - 2x[49] - 2x[51] + 2x[53] - 2x[68] + 2x[70] \right)$$

F7,8:

$$\frac{1}{4\sqrt{15}} \left(\sqrt{2} \mathbf{x}[1] - \sqrt{2} \mathbf{x}[3] - \sqrt{2} \mathbf{x}[4] + \sqrt{2} \mathbf{x}[6] + 4 \mathbf{x}[38] - 4 \mathbf{x}[40] - 4 \mathbf{x}[42] + 4 \mathbf{x}[44] + 2\sqrt{2} \mathbf{x}[45] - 2\sqrt{2} \mathbf{x}[46] - 2\sqrt{2} \mathbf{x}[48] + 2\sqrt{2} \mathbf{x}[49] + 2\sqrt{2} \mathbf{x}[51] - 2\sqrt{2} \mathbf{x}[53] - 2\sqrt{2} \mathbf{x}[68] + 2\sqrt{2} \mathbf{x}[70] \right)$$

F7,9:

$\frac{1}{12\sqrt{5}}$

 $\begin{array}{l} 12\sqrt{5} \\ & \left(x[1] - x[3] + x[4] - x[6] - 2x[7] + 2x[9] + x[10] - x[12] + 2x[13] - 2x[14] + x[15] - x[17] + 2x[18] - 2x[19] + 2x[23] - 2x[24] - 2\sqrt{2} x[38] + 2\sqrt{2} x[40] - 2\sqrt{2} x[42] + 2\sqrt{2} x[44] - 4x[45] + 4x[46] - 4x[48] + 4x[49] + 4x[51] - 4x[53] - \sqrt{2} x[54] + \sqrt{2} x[55] + \sqrt{2} x[56] + \sqrt{2} x[57] - \sqrt{2} x[59] - \sqrt{2} x[60] - \sqrt{2} x[61] + \sqrt{2} x[62] + \sqrt{2} x[63] + \sqrt{2} x[64] - \sqrt{2} x[66] - \sqrt{2} x[67] + 4x[68] - 4x[70] - 2x[89] - 4x[91] + 2x[92] - 2x[95] + 2x[96] + 4x[97] - 4x[98] \right)$

F8,9:

$$\frac{1}{8\sqrt{3}} \left(\sqrt{2} \text{ x}[1] - \sqrt{2} \text{ x}[3] - \sqrt{2} \text{ x}[4] + \sqrt{2} \text{ x}[6] - 8 \text{ x}[38] + 8 \text{ x}[40] + 8 \text{ x}[42] - 8 \text{ x}[44] + 2\sqrt{2} \text{ x}[45] - 2\sqrt{2} \text{ x}[46] - 2\sqrt{2} \text{ x}[48] + 2\sqrt{2} \text{ x}[49] + 2\sqrt{2} \text{ x}[51] - 2\sqrt{2} \text{ x}[53] - 2\sqrt{2} \text{ x}[68] + 2\sqrt{2} \text{ x}[70]\right)$$

Anexo II.17.- Datos experimentales necesarios para la obtención de las matrices de Energía Potencial.

Ln	ν_1	v ₂	v ₃	ν_4	v ₅	v ₆	v ₇	ν ₈	ν ₉	v ₁₀
Pr	282	220	21	114	46	255	105	173	59	77
Eu	290	228	21	118	47	260	105	176	58	79
Tb	292	233	(20)	123	45	268	111	182	56	82
Dy	295	235	(21)	124	45	266	111	181	(61)	80
Но	297	239	(21)	127	47	267	114	176	61	83
Er	297	236	21	126	47	268	116	182	62	86
Tm	297	237	(20)	127	47	268	118	182	63	88

a) Tabla de datos de número de onda (cm⁻¹) en elpasolitas $Cs_2NaLnCl_6$.

Ln	λ_1	λ2	λ ₃	λ_4	λ ₅
Pr	0.04683	0.02850	0.00026	0.00765	0.00125
Eu	0.04952	0.03061	0.00026	0.00820	0.00130
Tb	0.05021	0.03197	0.00024	0.00891	0.00119
Dy	0.05124	0.03252	0.00026	0.00905	0.01192
Но	0.05194	0.03364	0.00026	0.00950	0.00130
Er	0.05194	0.03280	0.00026	0.00935	0.00130
Tm	0.05194	0.03308	0.00024	0.00950	0.00130

b) Tabla de datos de valores propios de GF = H en elpasolitas $Cs_2NaLnCl_6$.

Ln	λ_6	λ,	λ ₈	λ ₉	λ_{10}
Pr	0.03829	0.00649	0.01762	0.00205	0.00349
Eu	0.03981	0.00649	0.01824	0.00198	0.00368
Tb	0.04229	0.00726	0.01951	0.00185	0.00396
Dy	0.04167	0.00726	0.01929	0.00219	0.00377
Но	0.04198	0.00765	0.01824	0.00219	0.00406
Er	0.04229	0.00792	0.01951	0.00226	0.00436
Tm	0.04229	0.00820	0.01951	0.00234	0.00456

$$\lambda = \left(\frac{\nu}{1303.16}\right)^2$$

Anexo II.18.- Matrices de Energía potencial.

a) Praseodimio:

	1.66018	0	0	0	0	0	0	0	0	0]
	0	1.01042	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.27098	0.01668	0	0	0	0	0
F _	0	0	0	0.01668	0.16682	0	0	0	0	0
$\boldsymbol{r}_{\text{Pr1}} =$	0	0	0	0	0	0.82616	0.00123	0.17145	0.10277	0
	0	0	0	0	0	0.00123	0.64832	0.02974	0.01916	0
	0	0	0	0	0	0.17145	0.02974	0.65105	0.08723	0
	0	0	0	0	0	0.10277	0.01916	0.08723	0.25018	0
	0	0	0	0	0	0	0	0	0	0.12378

	1.66018	0	0	0	0	0	0	0	0	0]
	0	1.01042	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.27098	0.01668	0	0	0	0	0
F _	0	0	0	0.01668	0.16682	0	0	0	0	0
$r_{\rm Pr2}$ –	0	0	0	0	0	0.72988	0.05867	0.04530	0.20179	0
	0	0	0	0	0	0.05867	0.71331	0.11569	0.16229	0
	0	0	0	0	0	0.04530	0.11569	0.72925	0.02645	0
	0	0	0	0	0	0.20179	0.16229	0.02645	0.29238	0
	0	0	0	0	0	0	0	0	0	0.12378

	1.66018	0	0	0	0	0	0	0	0	0]
	0	1.01042	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.27098	0.01668	0	0	0	0	0
F _	0	0	0	0.01668	0.16682	0	0	0	0	0
$r_{\rm Pr3} =$	0	0	0	0	0	0.80707	0.01905	0.10523	0.03503	0
	0	0	0	0	0	0.01905	0.55379	0.13026	0.07030	0
	0	0	0	0	0	0.10523	0.13026	0.70318	0.13689	0
	0	0	0	0	0	0.03503	0.07030	0.13689	0.28737	0
	0	0	0	0	0	0	0	0	0	0.12378

b) Europio:

	1.75571	0	0	0	0	0	0	0	0	0]
	0	1.08524	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.29035	0.01741	0	0	0	0	0
$F_{Eu1} =$	0	0	0	0.01741	0.17412	0	0	0	0	0
	0	0	0	0	0	0.99326	0.16363	0.08854	0.08038	0
	0	0	0	0	0	0.16363	0.51165	0.00894	0.29247	0
	0	0	0	0	0	0.08854	0.00894	0.61295	0.01781	0
	0	0	0	0	0	0.08038	0.29247	0.01781	0.45397	0
	0	0	0	0	0	0	0	0	0	0.13029
	[1.75571	0	0	0	0	0	0	0	0	0]
	0	1.08524	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.29035	0.01741	0	0	0	0	0
г	0	0	0	0.01741	0.17412	0	0	0	0	0
$F_{Eu2} =$	0	0	0	0	0	0.77474	0.04662	0.01203	0.03638	0
	0	0	0	0	0	0.04662	0.69919	0.25098	0.07726	0
	0	0	0	0	0	0.01203	0.25098	0.74961	0.10986	0
	0	0	0	0	0	0.03638	0.07726	0.10986	0.25443	0
	0	0	0	0	0	0	0	0	0	0.13029

	1.75571	0	0	0	0	0	0	0	0	0
	0	1.08524	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.29035	0.01741	0	0	0	0	0
Б	0	0	0	0.01741	0.17412	0	0	0	0	0
Г _{Еи3} —	0	0	0	0	0	0.85904	0.00609	0.07653	0.22864	0
	0	0	0	0	0	0.00609	0.63957	0.09723	0.08218	0
	0	0	0	0	0	0.07653	0.09723	0.64869	0.18191	0
	0	0	0	0	0	0.22864	0.08218	0.18191	0.34855	0
	0	0	0	0	0	0	0	0	0	0.13029

c) Terbio:

	1.78001	0	0	0	0	0	0	0	0	0
F _	0	1.13336	0	0	0	0	0	0	0	0
	0	0	0.00835	0	0	0	0	0	0	0
	0	0	0	0.31559	0.01594	0	0	0	0	0
	0	0	0	0.01594	0.15941	0	0	0	0	0
Γ_{Tb1} –	0	0	0	0	0	0.97188	0.08584	0.08231	0.01257	0
	0	0	0	0	0	0.08584	0.57456	0.11182	0.14158	0
	0	0	0	0	0	0.08231	0.11182	0.73206	0.18290	0
	0	0	0	0	0	0.01257	0.14158	0.18290	0.33202	0
	0	0	0	0	0	0	0	0	0	0.14037
	[1.78001	0	0	0	0	0	0	0	0	0]
	0	1.13336	0	0	0	0	0	0	0	0
	0	0	0.00835	0	0	0	0	0	0	0
	0	0	0	0.31559	0.01594	0	0	0	0	0
$F_{} =$	0	0 0	0 0	0.31559 0.01594	0.01594 0.15941	0 0	0 0	0 0	0 0	0 0
$F_{Tb2} =$	0	0 0 0	0 0 0	0.31559 0.01594 0	0.01594 0.15941 0	0 0 1.29198	0 0 0.09153	0 0 0.01597	0 0 0.02163	0 0 0
$F_{Tb2} =$	0 0 0	0 0 0 0	0 0 0 0	0.31559 0.01594 0 0	0.01594 0.15941 0 0	0 0 1.29198 0.09153	0 0 0.09153 0.59309	0 0 0.01597 0.05777	0 0 0.02163 0.10161	0 0 0 0
$F_{Tb2} =$	0 0 0 0	0 0 0 0 0	0 0 0 0	0.31559 0.01594 0 0 0 0	0.01594 0.15941 0 0 0	0 0 1.29198 0.09153 0.01597	0 0 0.09153 0.59309 0.05777	0 0 0.01597 0.05777 0.64421	0 0 0.02163 0.10161 0.02589	0 0 0 0 0
$F_{Tb2} =$	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0.31559 0.01594 0 0 0 0 0	0.01594 0.15941 0 0 0 0 0	0 0 1.29198 0.09153 0.01597 0.02163	0 0 0.09153 0.59309 0.05777 0.10161	0 0.01597 0.05777 0.64421 0.02589	0 0 0.02163 0.10161 0.02589 0.22888	0 0 0 0 0 0
$F_{Tb2} =$		0 0 0 0 0 0 0	0 0 0 0 0 0 0	0.31559 0.01594 0 0 0 0 0 0 0	0.01594 0.15941 0 0 0 0 0 0 0	0 0 1.29198 0.09153 0.01597 0.02163 0	0 0.09153 0.59309 0.05777 0.10161 0	0 0.01597 0.05777 0.64421 0.02589 0	0 0.02163 0.10161 0.02589 0.22888 0	0 0 0 0 0 0 0.14037

	[1.78001	0	0	0	0	0	0	0	0	0]
	0	1.13336	0	0	0	0	0	0	0	0
	0	0	0.00835	0	0	0	0	0	0	0
	0	0	0	0.31559	0.01594	0	0	0	0	0
F	0	0	0	0.01594	0.15941	0	0	0	0	0
Γ_{Tb3} –	0	0	0	0	0	0.98684	0.09371	0.00826	0.07848	0
	0	0	0	0	0	0.09371	0.60898	0.15442	0.14566	0
	0	0	0	0	0	0.00826	0.15442	0.73597	0.19793	0
	0	0	0	0	0	0.07848	0.14566	0.19793	0.32330	0
	0	0	0	0	0	0	0	0	0	0.14037
d) Disprosio:

	1.81677	0	0	0	0	0	0	0	0	0]
	0	1.15290	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.32075	0.01594	0	0	0	0	0
F	0	0	0	0.01594	0.15939	0	0	0	0	0
$\boldsymbol{\Gamma}_{Dy1} =$	0	0	0	0	0	1.01418	0.10096	0.06033	0.03355	0
	0	0	0	0	0	0.10096	0.59150	0.09297	0.14829	0
	0	0	0	0	0	0.06033	0.09297	0.75359	0.08529	0
	0	0	0	0	0	0.03355	0.14829	0.08529	0.31871	0
	0	0	0	0	0	0	0	0	0	0.13361
	[1.81677	0	0	0	0	0	0	0	0	0]
		1.13290	0 00021	0	0	0	0	0	0	0
		0	0.00921	0 22075	0 01504	0	0	0	0	
		0	0	0.01504	0.01394	0	0	0	0	0
$F_{Dy2} =$		0	0	0.01394	0.13939	1 04865	0 08542	0 00068	0 10144	
		0	0	0	0	0.09542	0.00042	0.00908	0.10144	0
		0	0	0	0	0.00342	0.11296	0.11200	0.13923	
		0	0	0	0	0.00908	0.112002	0.04617	0.0401/	0
		0	0	0	0	0.10144	0.13923	0.04617	0.28701	0 122(1)
		0	0	0	0	0	0	0	0	0.13361

	1.81677	0	0	0	0	0	0	0	0	0]
	0	1.15290	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.32075	0.01594	0	0	0	0	0
F _	0	0	0	0.01594	0.15939	0	0	0	0	0
Γ_{Dy3} –	0	0	0	0	0	0.96664	0.01872	0.05816	0.30624	0
	0	0	0	0	0	0.01872	0.71926	0.02093	0.07496	0
	0	0	0	0	0	0.05816	0.02093	0.76882	0.06912	0
	0	0	0	0	0	0.30624	0.07496	0.06912	0.33271	0
	0	0	0	0	0	0	0	0	0	0.13361

e) Holmio:

	1.84149	0	0	0	0	0	0	0	0	0]
	0	1.19248	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.33644	0.01739	0	0	0	0	0
F _	0	0	0	0.01739	0.17392	0	0	0	0	0
Γ_{Ho1} –	0	0	0	0	0	1.00939	0.12868	0.05657	0.04257	0
	0	0	0	0	0	0.12868	0.58767	0.07355	0.14039	0
	0	0	0	0	0	0.05657	0.07355	0.77447	0.08372	0
	0	0	0	0	0	0.04257	0.14039	0.08372	0.31645	0
	0	0	0	0	0	0	0	0	0	0.14382
	[1.84149	0	0	0	0	0	0	0	0	0]
	0	1.19248	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.33644	0.01739	0	0	0	0	0
	0	0	0	0.01739	0.17392	0	0	0	0	0
$F_{Ho2} =$	0	0	0	0	0	1.04340	0.11474	0.00532	0.11014	0
	0	0	0	0	0	0.11474	0.59362	0.09167	0.13583	0
	0	0	0	0	0	0.00532	0.09167	0.82535	0.04250	0
	0	0	0	0	0	0.11014	0.13583	0.04250	0.28678	0
	0	0	0	0	0	0	0	0	0	0.14382

	1.84149	0	0	0	0	0	0	0	0	0]
	0	1.19248	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.33644	0.01739	0	0	0	0	0
F –	0	0	0	0.01739	0.17392	0	0	0	0	0
Г _{Но3} —	0	0	0	0	0	1.10785	0.00212	0.10509	0.08088	0
	0	0	0	0	0	0.00212	0.63334	0.00333	0.01543	0
	0	0	0	0	0	0.10509	0.00333	0.73868	0.02248	0
	0	0	0	0	0	0.08088	0.01543	0.02248	0.24523	0
	0	0	0	0	0	0	0	0	0	0.14382

f) Erbio:

0

0 0 0

	1.84149	0	0	0	0	0	0	0	0	0
	0	1.16274	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.33115	0.01739	0	0	0	0	0
E _	0	0	0	0.01739	0.17394	0	0	0	0	0
$\Gamma_{Er1} =$	0	0	0	0	0	0.99747	0.03184	0.01829	0.09697	0
	0	0	0	0	0	0.03184	0.60256	0.15105	0.03090	0
	0	0	0	0	0	0.01829	0.15105	0.79446	0.20015	0
	0	0	0	0	0	0.09697	0.03090	0.20015	0.37222	0
	0	0	0	0	0	0	0	0	0	0.15440
	[1.84149	0	0	0	0	0	0	0	0	0]
	0	1.16274	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.33115	0.01739	0	0	0	0	0
F	0	0	0	0.01739	0.17394	0	0	0	0	0
$F_{Er2} =$	0	0	0	0	0	0.96247	0.11407	0.04674	0.08092	0
	0	0	0	0	0	0.11407	0.60517	0.07958	0.17958	0
	0	0	0	0	0	0.04674	0.07958	0.67119	0.24562	0
	0	0	0	0	0	0.08092	0.17958	0.24562	0.50760	0
	0	0	0	0	0	0	0	0	0	0.15440
	[1.84149	0	0	0	0	0	0	0	0	0]
	0	1.16274	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.33115	0.01739	0	0	0	0	0
E _	0	0	0	0.01739	0.17394	0	0	0	0	0
$\Gamma_{Er3} =$	0	0	0	0	0	1.20030	0.01322	0.04979	0.03891	0
	0	0	0	0	0	0.01322	0.58026	0.04080	0.04243	0
	0	0	0	0	0	0.04979	0.04080	0.73276	0.08289	0
	0	0	0	0	0	0.03891	0.04243	0.08289	0.29311	0

0.15440

g) Tulio:

	1.84149	0	0	0	0	0	0	0	0	0]
	0	1.17261	0	0	0	0	0	0	0	0
	0	0	0.00835	0	0	0	0	0	0	0
	0	0	0	0.33644	0.01739	0	0	0	0	0
F	0	0	0	0.01739	0.17392	0	0	0	0	0
$\boldsymbol{F}_{Tm1} =$	0	0	0	0	0	0.91227	0.00902	0.11216	0.09336	0
	0	0	0	0	0	0.00902	0.61818	0.06595	0.05955	0
	0	0	0	0	0	0.11216	0.06595	0.73004	0.24897	0
	0	0	0	0	0	0.09336	0.05955	0.24897	0.47293	0
	0	0	0	0	0	0	0	0	0	0.16167
	[1.84149	0	0	0	0	0	0	0	0	0]
	0	1.17261	0	0	0	0	0	0	0	0
	0	0	0.00835	0	0	0	0	0	0	0
	0	0	0	0.33644	0.01739	0	0	0	0	0
F _	0	0	0	0.01739	0.17392	0	0	0	0	0
$\boldsymbol{r}_{Tm2} =$	0	0	0	0	0	0.85790	0.06901	0.02679	0.00827	0
	0	0	0	0	0	0.06901	0.62648	0.19720	0.09288	0
	0	0	0	0	0	0.02679	0.19720	0.69539	0.29295	0
	0	0	0	0	0	0.00827	0.09288	0.29295	0.57704	0
	0	0	0	0	0	0	0	0	0	0.16167
	[1.84149	0	0	0	0	0	0	0	0	0]
	0	1.17261	0	0	0	0	0	0	0	0
	0	0	0.00835	0	0	0	0	0	0	0
	0	0	0	0.33644	0.01739	0	0	0	0	0
F –	0	0	0	0.01739	0.17392	0	0	0	0	0
Γ_{Tm3} –	0	0	0	0	0	1.01420	0.03016	0.01328	0.06938	0
	0	0	0	0	0	0.03016	0.52001	0.14332	0.00477	0
	0	0	0	0	0	0.01328	0.14332	0.76138	0.28395	0
	0	0	0	0	0	0.06938	0.00477	0.28395	0.51764	0
	0	0	0	0	0	0	0	0	0	0.16167

Anexo II.19.- Cálculo de valores de L.

a) Caso T_{2g} :

Se tiene la ecuación $GFL = L\Lambda$, la cual puede rescribirse considerando GF = H, rescribiendo la ecuación de la forma $HL = L\Lambda$.

Ya que el bloque T_{2g} es una matriz de 2 x 2, la relación anterior permite establecer dos ecuaciones:

$$(H_{11} - \lambda_k)L_{1k} + H_{12}L_{2k} = 0$$
$$H_{21}L_{1k} + (H_{22} - \lambda_k)L_{2k} = 0$$

Se define a partir de la expresión anterior:

$$B_{1k} = H_{11} - \lambda_k$$

$$B_{2k} = H_{22} - \lambda_k$$

$$p_1 = \frac{L_{21}}{L_{11}}$$

$$p_2 = \frac{L_{22}}{L_{12}}$$

$$a_{21,k} = -\frac{B_{1k}}{H_{12}} = -\frac{H_{21}}{B_{2k}}$$

luego es posible establecer:

$$a_{21,k} = -\frac{1}{2} \left[\frac{B_{1k}}{H_{12}} + \frac{H_{21}}{B_{2k}} \right]$$

entonces
$$L = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\ p_1 L_{11} & p_2 L_{12} \end{bmatrix}$$

y además
$$G = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} = LL' = \begin{bmatrix} L_{11}^2 + L_{12}^2 & p_1 L_{11}^2 + p_2 L_{12}^2 \\ p_1 L_{11}^2 + p_2 L_{12}^2 & p_1^2 L_{11}^2 + p_2^2 L_{12}^2 \end{bmatrix}$$

Se sabe además que G es simétrica y por lo tanto $G_{12} = G_{21}$

De este modo ya que la matriz G es conocida es posible determinar la matriz L usando las ecuaciones:

 $L_{11}^2 + L_{12}^2 = G_{11}$ $p_1^2 L_{11}^2 + p_2^2 L_{12}^2 = G_{22}$

Además se conoce p_1 y p_2 ya que $a_{21,k} = p_k$

Lo cual genera cuatro soluciones para L_{11} y L_{12} con todas las combinaciones de signos posibles.

b) Caso T_{1u} :

Para el bloque de simetría T_{1u} , que consiste en una matriz de 4 x 4 se derivan las siguientes ecuaciones:

$$(H_{11} - \lambda_k)L_{1k} + H_{12}L_{2k} + H_{13}L_{3k} + H_{14}L_{4k} = 0 H_{21}L_{1k} + (H_{22} - \lambda_k)L_{2k} + H_{23}L_{3k} + H_{24}L_{4k} = 0 H_{31}L_{1k} + H_{32}L_{2k} + (H_{33} - \lambda_k)L_{3k} + H_{34}L_{4k} = 0 H_{41}L_{1k} + H_{42}L_{2k} + H_{43}L_{3k} + (H_{44} - \lambda_k)L_{4k} = 0$$

Se define a continuación:

$$B_{1k} = (H_{11} - \lambda_k)$$

$$B_{2k} = (H_{22} - \lambda_k)$$

$$B_{3k} = (H_{33} - \lambda_k)$$

$$B_{3k} = (H_{44} - \lambda_k)$$

Además:

$$p_{k} = \frac{L_{2k}}{L_{1k}}$$
$$q_{k} = \frac{L_{3k}}{L_{1k}}$$
$$r_{k} = \frac{L_{4k}}{L_{1k}}$$

Se tiene entonces:

(1)
$$B_{1k} + H_{12}p_k + H_{13}q_k + H_{14}r_k = 0$$

(1)
$$B_{1k} + H_{12}p_k + H_{13}q_k + H_{14}r_k = 0$$

(2) $H_{21} + B_{2k}p_k + H_{23}q_k + H_{24}r_k = 0$

(3)
$$H_{31} + H_{32}p_k + B_{3k}q_k + H_{34}r_k = 0$$

$$(4) \quad H_{41} + H_{42} p_k + H_{43} q_k + B_{4k} r_k = 0$$

Se buscan posibles soluciones para p_k , q_k , r_k , combinando conjuntos de tres ecuaciones de las cuatro anteriores.

De este modo se obtienen los siguientes resultados:

$pk \rightarrow $	B3k H14 H21 – B1k B3k H24 – H14 H23 H31 + H13 H24 H31 – H13 H21 H34 + B1k H23 H34	
	-B2k B3k H14 + B3k H12 H24 + H14 H23 H32 - H13 H24 H32 + B2k H13 H34 - H12 H23 H34	'
$qk \rightarrow $	$B2k \ \text{H14} \ \text{H31} - \text{H12} \ \text{H24} \ \text{H31} - \text{H14} \ \text{H21} \ \text{H32} + B1k \ \text{H24} \ \text{H32} - B1k \ B2k \ \text{H34} + \text{H12} \ \text{H21} \ \text{H34}$	
	-B2k B3k H14 + B3k H12 H24 + H14 H23 H32 - H13 H24 H32 + B2k H13 H34 - H12 H23 H34	'
rk→	B1k B2k B3k - B3k H12 H21 - B2k H13 H31 + H12 H23 H31 + H13 H21 H32 - B1k H23 H32	
	-B2k B3k H14 + B3k H12 H24 + H14 H23 H32 - H13 H24 H32 + B2k H13 H34 - H12 H23 H34	

b) combinando (1), (2) y (4):

$pk {\rightarrow}$	B4k H13 H21 – B1k B4k H23 + H14 H23 H41 – H13 H24 H41 – H14 H21 H43 + B1k H24 H43	
	- B2k B4k H13 + B4k H12 H23 - H14 H23 H42 + H13 H24 H42 + B2k H14 H43 - H12 H24 H43	'
$qk \rightarrow $	B1k B2k B4k - B4k H12 H21 - B2k H14 H41 + H12 H24 H41 + H14 H21 H42 - B1k H24 H42	
	-B2k B4k H13 + B4k H12 H23 - H14 H23 H42 + H13 H24 H42 + B2k H14 H43 - H12 H24 H43	'
$\texttt{rk} \! \rightarrow \!$	B2k H13 H41 - H12 H23 H41 - H13 H21 H42 + B1k H23 H42 - B1k B2k H43 + H12 H21 H43	
	- B2k B4k H13 + B4k H12 H23 - H14 H23 H42 + H13 H24 H42 + B2k H14 H43 - H12 H24 H43	

c) combinando (1), (3) y (4):

pk→	B1k B3k B4k – B4k H13 H31 – B3k H14 H41 + H13 H34 H41 + H14 H31 H43 – B1k H34 H43	
	- B3k B4k H12 + B4k H13 H32 + B3k H14 H42 - H13 H34 H42 - H14 H32 H43 + H12 H34 H43	'
$qk \rightarrow $	$B4k \ \text{H12 H31} - B1k \ B4k \ \text{H32} + H14 \ \text{H32 H41} - H12 \ \text{H34 H41} - H14 \ \text{H31 H42} + B1k \ \text{H34 H42}$	
	-B3k B4k H12 + B4k H13 H32 + B3k H14 H42 - H13 H34 H42 - H14 H32 H43 + H12 H34 H43	'
$\texttt{rk} \! \rightarrow \!$	B3k H12 H41 - H13 H32 H41 - B1k B3k H42 + H13 H31 H42 - H12 H31 H43 + B1k H32 H43	
	-B3k B4k H12 + B4k H13 H32 + B3k H14 H42 - H13 H34 H42 - H14 H32 H43 + H12 H34 H43	

$pk \rightarrow $	B3k B4k H21 – B4k H23 H31 – B3k H24 H41 + H23 H34 H41 + H24 H31 H43 – H21 H34 H43
	- B2k B3k B4k + B4k H23 H32 + B3k H24 H42 - H23 H34 H42 - H24 H32 H43 + B2k H34 H43
qk→	$B2k \ B4k \ H31 \ - \ B4k \ H21 \ H32 \ + \ H24 \ H32 \ H41 \ - \ B2k \ H34 \ H41 \ - \ H24 \ H31 \ H42 \ + \ H21 \ H34 \ H42$
	- B2k B3k B4k + B4k H23 H32 + B3k H24 H42 - H23 H34 H42 - H24 H32 H43 + B2k H34 H43
$\texttt{rk} \! \rightarrow \!$	B2k B3k H41 - H23 H32 H41 - B3k H21 H42 + H23 H31 H42 - B2k H31 H43 + H21 H32 H43
	-B2k B3k B4k + B4k H23 H32 + B3k H24 H42 - H23 H34 H42 - H24 H32 H43 + B2k H34 H43

Por lo tanto, es posible promediar las soluciones, obteniendo:

(5) p_k :

 $\frac{1}{2} \left(\frac{\text{B3k H14 H21} - \text{B1k B3k H24} - \text{H14 H23 H31} + \text{H13 H24 H31} - \text{H13 H21 H34} + \text{B1k H23 H34} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{$

4	[\] – B2k B3k H14 + B3k H12 H24 + H14 H23 H32 – H13 H24 H32 + B2k H13 H34 – H12 H23 H34	
	$B4k\ H13\ H21\ -\ B1k\ B4k\ H23\ +\ H14\ H23\ H41\ -\ H13\ H24\ H41\ -\ H14\ H21\ H43\ +\ B1k\ H24\ H43$	
	- B2k B4k H13 + B4k H12 H23 - H14 H23 H42 + H13 H24 H42 + B2k H14 H43 - H12 H24 H43	+
	B1k B3k B4k - B4k H13 H31 - B3k H14 H41 + H13 H34 H41 + H14 H31 H43 - B1k H34 H43	
	-B3k B4k H12 + B4k H13 H32 + B3k H14 H42 - H13 H34 H42 - H14 H32 H43 + H12 H34 H43	+
	B3k B4k H21 – B4k H23 H31 – B3k H24 H41 + H23 H34 H41 + H24 H31 H43 – H21 H34 H43	١
	- B2k B3k B4k + B4k H23 H32 + B3k H24 H42 - H23 H34 H42 - H24 H32 H43 + B2k H34 H43)

(6) q_k :

 $\frac{1}{4} \left(\frac{\text{B2k H14 H31} - \text{H12 H24 H31} - \text{H14 H21 H32} + \text{B1k H24 H32} - \text{B1k B2k H34} + \text{H12 H21 H34} + \text{H12 H21 H34} + \text{H12 H21 H34} + \text{H12 H21 H34} + \text{H12 H24 H12 H24} + \text{H14 H23 H32} - \text{H13 H24 H32} + \text{B2k H13 H34} - \text{H12 H23 H34} + \text{H12 H21 H34} + \text{H12 H24} + \text{H14 H23 H34} + \text{H14 H24} + \text{H14 H23 H34} + \text{H14 H23 H$

1	- B2k B3k H14 + B3k H12 H24 + H14 H23 H32 - H13 H24 H32 + B2k H13 H34 - H12 H23 H34	:
	BIK B2K B4K - B4K HIZ HZI - B2K HI4 H4I + HIZ HZ4 H4I + HI4 HZI H4Z - BIK HZ4 H4Z 	+
	- B2k B4k H13 + B4k H12 H23 - H14 H23 H42 + H13 H24 H42 + B2k H14 H43 - H12 H24 H43	
	B2k B4k H31 – B4k H21 H32 + H24 H32 H41 – B2k H34 H41 – H24 H31 H42 + H21 H34 H42	+
	-B2kB3kB4k+B4kH23H32+B3kH24H42-H23H34H42-H24H32H43+B2kH34H43	
	B4k H12 H31 – B1k B4k H32 + H14 H32 H41 – H12 H34 H41 – H14 H31 H42 + B1k H34 H42)
	-B3kB4kH12+B4kH13H32+B3kH14H42-H13H34H42-H14H32H43+H12H34H43)

(7) r_k :

- 1 / B1k B2k B3k B3k H12 H21 B2k H13 H31 + H12 H23 H31 + H13 H21 H32 B1k H23 H32
- $\begin{array}{c} \hline 4 \\ \hline B2k \ B3k \ H14 + B3k \ H12 \ H24 + H14 \ H23 \ H32 H13 \ H24 \ H32 + B2k \ H13 \ H34 H12 \ H23 \ H34 \\ \hline B2k \ H13 \ H41 H12 \ H23 \ H41 H13 \ H21 \ H42 + B1k \ H23 \ H42 B1k \ B2k \ H43 + H12 \ H21 \ H43 \\ \hline B2k \ B4k \ H13 + B4k \ H12 \ H23 H14 \ H23 \ H42 + H13 \ H24 \ H42 + B2k \ H14 \ H43 H12 \ H24 \ H43 \\ \hline B2k \ B3k \ H41 H23 \ H32 \ H41 B3k \ H21 \ H42 + H23 \ H31 \ H42 B2k \ H31 \ H43 + H21 \ H32 \ H43 \\ \hline B2k \ B3k \ B4k + B4k \ H23 \ H32 + B3k \ H24 \ H42 H23 \ H34 \ H42 H24 \ H32 \ H43 + B2k \ H34 \ H43 \\ \hline B2k \ B3k \ B4k + B4k \ H23 \ H32 + B3k \ H24 \ H42 H13 \ H31 \ H42 H12 \ H31 \ H43 + B1k \ H32 \ H43 \\ \hline B3k \ B4k \ H12 + B4k \ H13 \ H32 + B3k \ H14 \ H42 H13 \ H34 \ H42 H14 \ H32 \ H43 + H12 \ H34 \ H43 \\ \hline \end{array}$

De este modo se tiene:

$$L = \begin{bmatrix} L_{11} & L_{12} & L_{13} & L_{14} \\ p_1 L_{11} & p_2 L_{12} & p_3 L_{13} & p_4 L_{14} \\ q_1 L_{11} & q_2 L_{12} & q_3 L_{13} & q_4 L_{14} \\ r_1 L_{11} & r_2 L_{12} & r_3 L_{13} & r_4 L_{14} \end{bmatrix}$$

y como se cumple G = LL' se construye el siguiente sistema de ecuaciones de modo que es posible calcular $L_{11}, L_{12}, L_{13}, L_{14}$ y de este modo determinar la matriz L:

$$G_{ii} = (LL')_{ii}$$

Esto genera 16 soluciones que se originan dado las posibles combinaciones de signos.

Anexo II.20.- Consideraciones para el cálculo de PED para sistemas de dimensión dos o cuatro.

La matriz "Mdiagonal" considera contribuciones diagonales cuyos elementos se calculan usando la siguiente expresión:

$$[Mdiagonal]_{i,j} = L_{i,j}^{2} \cdot F_{i,i}$$

La matriz "Mnodiagonal" considera contribuciones no diagonales cuyos elementos se calculan usando la siguiente expresión:

$$[Mnodiag]_{i,j} = \sum_{ll \neq i} L_{i,j} \cdot L_{ll,j} \cdot F_{i,ll} \quad ll \begin{cases} 1, 2, 3, 4 & si \text{ pertenece a } T_{1u} \\ 1, 2 & si \text{ pertenece a } T_{2g} \end{cases}$$

La matriz diagonal se suma a la matriz no diagonal y genera una matriz resultante (M_{d+nd}). La suma de cada una de las columnas de está matriz genera como resultado los valores propios de la matriz H para el bloque de simetría utilizado.

Finalmente es posible determinar la Matriz de Distribución de Energía Potencial (P.E.D.) cuyos elementos se obtienen como porcentaje de acuerdo a la siguiente ecuación:

$$\left[P.E.D.\right]_{i,j} = 100 \cdot \frac{\left[M_{d+nd}\right]_{i,j}}{\lambda_{j}}$$

siendo $\lambda_{\it j}$ el valor propio "j" asociado al bloque.

Tanto las filas como las columnas de la matriz P.E.D. suman 100%.

Anexo II.21.- Cálculos PED para simetría T_{2g}.

a) Praseodimio:

$$L = \begin{bmatrix} 0.167826 & 0.006376 \\ 0.003293 & -0.086679 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.007632 & 0.000011\\ 1.8089 \cdot 10^{-6} & 0.001253 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0076342 & 0.0012644 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 9.219 \cdot 10^{-6} & -9.219 \cdot 10^{-6} \\ 9.219 \cdot 10^{-6} & -9.219 \cdot 10^{-6} \end{bmatrix}$$

Suma no diag. =
$$\begin{bmatrix} 0.00001843 & -0.00001843 \end{bmatrix}$$

$$M diagonal + M no diagonal = \begin{bmatrix} 0.00764165 & 1.79565 \cdot 10^{-6} \\ 0.00001102 & 0.00124421 \end{bmatrix}$$

Suma diag + *nodiag* = $[0.00765268 \quad 0.00124601]$

 $P.E.D. = \begin{bmatrix} 99.8559 & 0.1441 \\ 0.1441 & 99.8559 \end{bmatrix}$

b) Europio:

$$L = \begin{bmatrix} 0.167834 & 0.006179 \\ 0.003191 & -0.086683 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.008178 & 0.000011 \\ 1.7738 \cdot 10^{-6} & 0.001308 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0081804 & 0.0013194 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 9.327 \cdot 10^{-6} & -9.327 \cdot 10^{-6} \\ 9.327 \cdot 10^{-6} & -9.327 \cdot 10^{-6} \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.00001865 & -0.00001865 \end{bmatrix}$

$$M diagonal + M no diagonal = \begin{bmatrix} 0.00818803 & 1.76117 \cdot 10^{-6} \\ 0.00001110 & 0.00129901 \end{bmatrix}$$

Suma diag + $nodiag = [0.00819913 \quad 0.00130077]$

 $P.E.D. = \begin{bmatrix} 99.8646 & 0.1354 \\ 0.1354 & 99.8646 \end{bmatrix}$

c) Terbio:

$$L = \begin{bmatrix} 0.167871 & 0.005057 \\ 0.002612 & -0.086703 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.008893 & 8.0701 \cdot 10^{-6} \\ 1.0873 \cdot 10^{-6} & 0.0011983 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0088947 & 0.0012064 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 6.989 \cdot 10^{-6} & -6.989 \cdot 10^{-6} \\ 6.989 \cdot 10^{-6} & -6.989 \cdot 10^{-6} \end{bmatrix}$$

Suma no diag. =
$$[0.000013978 - 0.000013978]$$

$$M diagonal + M nodiagonal = \begin{bmatrix} 0.00890062 & 1.08103 \cdot 10^{-6} \\ 8.07646 \cdot 10^{-6} & 0.00119134 \end{bmatrix}$$

 $Suma \ diag + nodiag = [0.00890869 \quad 0.00119242]$

 $P.E.D. = \begin{bmatrix} 99.9093 & 0.0907 \\ 0.0907 & 99.9093 \end{bmatrix}$

d) Disprosio:

$$L = \begin{bmatrix} 0.167874 & 0.0049626 \\ 0.002563 & -0.0867041 \end{bmatrix}$$

Mdiagonal =
$$\begin{bmatrix} 0.00903938 & 7.89942 \cdot 10^{-6} \\ 1.04713 \cdot 10^{-6} & 0.00119824 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.00904042 & 0.00120614 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 6.858 \cdot 10^{-6} & -6.858 \cdot 10^{-6} \\ 6.858 \cdot 10^{-6} & -6.858 \cdot 10^{-6} \end{bmatrix}$$

Suma no diag. = [0.0000137166 - 0.0000137166]

$$M diagonal + M nodiagonal = \begin{bmatrix} 0.00904624 & 1.04114 \cdot 10^{-6} \\ 7.90542 \cdot 10^{-6} & 0.00119138 \end{bmatrix}$$

Suma diag + *nodiag* = $\begin{bmatrix} 0.00905414 & 0.00119242 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 99.9127 & 0.0873 \\ 0.0873 & 99.9127 \end{bmatrix}$$

e) Holmio:

$$L = \begin{bmatrix} 0.167867 & 0.00519391 \\ 0.0026825 & -0.0867005 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.00948061 & 9.07597 \cdot 10^{-6} \\ 1.25156 \cdot 10^{-6} & 0.00130736 \end{bmatrix}$$

$$Suma \ diag. = \begin{bmatrix} 0.00948187 & 0.00131644 \end{bmatrix}$$

$$Mnodiagonal = \begin{bmatrix} 7.8319 \cdot 10^{-6} & -7.8319 \cdot 10^{-6} \\ 7.8319 \cdot 10^{-6} & -7.8319 \cdot 10^{-6} \end{bmatrix}$$

$$Suma \ no \ diag. = \begin{bmatrix} 0.0000156638 & -0.0000156638 \end{bmatrix}$$

$$Mdiagonal + Mnodiagonal = \begin{bmatrix} 0.00948844 & 1.24406 \cdot 10^{-6} \\ 9.08347 \cdot 10^{-6} & 0.00129953 \end{bmatrix}$$

$$Suma \ diag + nodiag = \begin{bmatrix} 0.00949753 & 0.00130077 \end{bmatrix}$$

 $P.E.D. = \begin{bmatrix} 99.9043 & 0.0957 \\ 0.0957 & 99.9043 \end{bmatrix}$

f) Erbio:

$$L = \begin{bmatrix} 0.167864 & 0.00529072 \\ 0.00273257 & -0.0866989 \end{bmatrix}$$
$$Mdiagonal = \begin{bmatrix} 0.00933131 & 9.26951 \cdot 10^{-6} \\ 1.2988 \cdot 10^{-6} & 0.00130746 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.00933261 & 0.00131673 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 7.9786 \cdot 10^{-6} & -7.9786 \cdot 10^{-6} \\ 7.9786 \cdot 10^{-6} & -7.9786 \cdot 10^{-6} \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.0000159573 & -0.0000159573 \end{bmatrix}$

 $M diagonal + M no diagonal = \begin{bmatrix} 0.00933929 & 1.29087 \cdot 10^{-6} \\ 9.27744 \cdot 10^{-6} & 0.00129948 \end{bmatrix}$

Suma diag + *nodiag* = $[0.00934857 \quad 0.00130077]$

 $P.E.D. = \begin{bmatrix} 99.9008 & 0.0992 \\ 0.0992 & 99.9008 \end{bmatrix}$

g) Tulio:

$$L = \begin{bmatrix} 0.167867 & 0.00519388\\ 0.00268255 & -0.0867005 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.00948063 & 9.07591 \cdot 10^{-6}\\ 1.25155 \cdot 10^{-6} & 0.00130736 \end{bmatrix}$$

$$Suma \ diag. = \begin{bmatrix} 0.00948188 & 0.00131643 \end{bmatrix}$$

$$Mnodiagonal = \begin{bmatrix} 7.83186 \cdot 10^{-6} & -7.83186 \cdot 10^{-6}\\ 7.83186 \cdot 10^{-6} & -7.83186 \cdot 10^{-6} \end{bmatrix}$$

Suma no diag. =
$$\begin{bmatrix} 0.0000156637 & -0.0000156637 \end{bmatrix}$$

 $M diagonal + M no diagonal = \begin{bmatrix} 0.00948846 & 1.24405 \cdot 10^{-6} \\ 9.08341 \cdot 10^{-6} & 0.00129953 \end{bmatrix}$

Suma diag + *nodiag* = $[0.00949754 \quad 0.00130077]$

 $P.E.D. = \begin{bmatrix} 99.9044 & 0.0956 \\ 0.0956 & 99.9044 \end{bmatrix}$

Anexo II.22.- Cálculos PED para simetría T_{1u}.

a) Praseodimio:

a1) asociado a F_{Pr1} :

$$L = \begin{bmatrix} 0.135919 & 0.0618643 & 0.0666885 & 0.0018878 \\ 0.0459526 & 0.0434167 & -0.145074 & -0.00422731 \\ 0.138042 & -0.0703336 & -0.0223126 & -0.0282453 \\ 0.0382889 & -0.0514831 & -0.0453618 & 0.0880867 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.0152625 & 0.00316186 & 0.00367422 & 2.94425 \cdot 10^{-6} \\ 0.00136902 & 0.00122209 & 0.0136448 & 0.0000115856 \\ 0.0124061 & 0.00322063 & 0.000324128 & 0.000519407 \\ 0.000366778 & 0.000663112 & 0.000514799 & 0.00194124 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0294044 & 0.00826769 & 0.018158 & 0.00247517 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 0.00375929 & -0.00107001 & -0.000577865 & 7.93741 \cdot 10^{-6} \\ 0.000230071 & -0.00013038 & 0.000210557 & -3.59612 \cdot 10^{-6} \\ 0.00386656 & -0.000520947 & -0.0000705381 & -0.000222634 \\ 0.00102962 & -0.0000542775 & -0.0000964405 & -0.000207092 \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.00888555 & -0.00177561 & -0.000534287 & -0.000425385 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0190218 & 0.00209185 & 0.00309635 & 0.0000108817 \\ 0.00159909 & 0.00109171 & 0.0138554 & 7.98944 \cdot 10^{-6} \\ 0.0162727 & 0.00269969 & 0.00025359 & 0.000296773 \\ 0.0013964 & 0.000608835 & 0.000418359 & 0.00173415 \end{bmatrix}$

Suma diag + $nodiag = \begin{bmatrix} 0.03829 & 0.00649208 & 0.0176237 & 0.00204979 \end{bmatrix}$

<i>P.E.D.</i> =	49.6783	32.2216	17.5693	0.530867
	4.17627	16.816	78.618	0.389769
	42.4986	41.5843	1.43891	14.4782
	3.64691	9.37811	2.37385	84.6011

a2) asociado a F_{Pr2} :

	0.106411	0.0573216	0.107848	0.0226266
T _	0.0883957	0.041338	-0.121757	0.0267121
L =	0.13839	-0.0751658	0.0215799	0.00552958
	0.0549038	-0.0146302	-0.0336546	-0.0978386

Mdiagonal =	0.00826469	0.00239821	0.00848934	0.000373672
	0.00557366	0.00121893	0.0105746	0.000508972
	0.0139666	0.00412021	0.000339608	0.0000222979
	0.000881357	0.0000625815	0.000331159	0.00279878

Suma diag. = $\begin{bmatrix} 0.0286863 & 0.00779993 & 0.0197347 & 0.00370372 \end{bmatrix}$

Mnodiagonal =	0.00239796	-0.000225399	-0.00139739	-0.000405583
	0.00275474	-0.000318591	-0.000409342	-0.000371611
	0.00228337	-0.000525565	-0.000217741	$8.44322 \cdot 10^{-6}$
	0.00216761	-0.000238287	-0.0000865821	-0.000885184

Suma no diag. = $\begin{bmatrix} 0.00960368 & -0.00130784 & -0.00211105 & -0.00165393 \end{bmatrix}$

$$M diagonal + M nodiagonal = \begin{bmatrix} 0.0106626 & 0.00217281 & 0.00709195 & -0.0000319112 \\ 0.0083284 & 0.000900337 & 0.0101653 & 0.000137361 \\ 0.0162499 & 0.00359465 & 0.000121868 & 0.0000307411 \\ 0.00304897 & -0.000175705 & 0.000244577 & 0.00191359 \end{bmatrix}$$

Suma diag + nodiag = $\begin{bmatrix} 0.03829 & 0.00649209 & 0.0176237 & 0.00204979 \end{bmatrix}$

<i>P.E.D.</i> =	27.8471	32.4686	40.2411	-1.55681
	21.7509	13.8682	57.6797	6.70125
	42.4392	55.3696	0.691499	1.49972
	7.96284	-2.70645	1.38778	93.3558

a3) asociado a F_{Pr3} :

	0.122178	0.0417316	0.100013	0.00898331
I _	0.0657282	0.0790523	-0.120203	-0.0065252
L =	0.14211	-0.0615785	-0.0163245	-0.0323204
	0.046466	-0.0426426	-0.0548523	0.0833502

Mdiagonal =	0.0120475	0.00140552	0.00807269	0.0000651301
	0.0023925	0.0034608	0.00800167	0.0000235795
	0.014201	0.00266617	0.00018739	0.000734553
	0.000620467	0.00052256	0.000864645	0.00199647

Suma diag. = $\begin{bmatrix} 0.0292614 & 0.00805506 & 0.0171264 & 0.00281973 \end{bmatrix}$

Mnodiagonal =	0.00217895	-0.000269895	-0.000593056	$-5.43488 \cdot 10^{-6}$
	0.00158439	-0.000808183	0.000490081	-0.0000118818
	0.00394764	-0.000545009	0.000206371	-0.000371851
	0.00131754	0.0000601008	0.000393897	-0.00038077

Suma no diag. = $\begin{bmatrix} 0.00902853 & -0.00156299 & 0.000497294 & -0.000769938 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0142264 & 0.00113563 & 0.00747963 & 0.0000596952 \\ 0.00397689 & 0.00265262 & 0.00849175 & 0.0000116978 \\ 0.0181487 & 0.00212117 & 0.000393761 & 0.000362703 \\ 0.00193801 & 0.000582661 & 0.00125854 & 0.00161569 \end{bmatrix}$

Suma diag + $nodiag = \begin{bmatrix} 0.03829 & 0.00649207 & 0.0176237 & 0.00204979 \end{bmatrix}$

<i>P.E.D.</i> =	37.1544	17.4926	42.4408	2.91226
	10.3862	40.8593	48.1837	0.570681
	47.398	32.6732	2.23427	17.6946
	5.0614	8.97496	7.1412	78.8224

b) Europio:

b1) asociado a F_{Eu1} :

$$L = \begin{bmatrix} 0.134218 & 0.0333893 & 0.086023 & 0.00969139 \\ 0.0617525 & 0.0550256 & -0.12036 & -0.0608182 \\ 0.131765 & -0.0841734 & -0.0195472 & -0.0145104 \\ 0.0410906 & -0.0211608 & -0.0753108 & 0.0779908 \end{bmatrix}$$

Mdiagonal =	0.0178929	0.00110733	0.00735007	0.0000932897
	0.00195112	0.00154919	0.00741206	0.00189253
	0.0106421	0.00434285	0.000234204	0.000129058
	0.000766508	0.00020328	0.00257482	0.00276133

Suma diag. = $\begin{bmatrix} 0.0312527 & 0.00720265 & 0.0175711 & 0.00487621 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 0.00336543 & -5.02249 \cdot 10^{-6} & -0.0023638 & -0.0000481367 \\ 0.0021711 & -0.0000813584 & 0.00097797 & -0.00147581 \\ 0.00173514 & -0.000258567 & -0.000101621 & -0.0000247114 \\ 0.00128189 & -0.000365621 & 0.00215651 & -0.00134666 \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.00855356 & -0.000710568 & 0.000669053 & -0.00289531 \end{bmatrix}$

$$M diagonal + M nodiagonal = \begin{bmatrix} 0.0212584 & 0.00110231 & 0.00498627 & 0.000045153 \\ 0.00412223 & 0.00146783 & 0.00839003 & 0.000416725 \\ 0.0123772 & 0.00408428 & 0.000132583 & 0.000104347 \\ 0.0020484 & -0.000162341 & 0.00473132 & 0.00141467 \end{bmatrix}$$

 $Suma \ diag + nodiag = \begin{bmatrix} 0.0398062 & 0.00649208 & 0.0182402 & 0.00198089 \end{bmatrix}$

<i>P.E.D.</i> =	53.4046	16.9793	27.3367	2.27943
	10.3557	22.6096	45.9975	21.0372
	31.0938	62.9117	0.726872	5.26766
	5.14592	-2.50059	25.939	71.4157

b2) asociado a F_{Eu2} :

	0.0968713	0.0338241	0.126788	0.00444644
τ_	0.0969085	0.0746158	-0.100302	-0.00268594
<i>L</i> =	0.138919	-0.0692525	0.0162003	-0.0261372
	0.0535882	-0.0434152	-0.0396212	0.0869717

Mdiagonal =	0.00727026	0.000886364	0.0124542	0.0000153174
	0.0065663	0.00389277	0.00703423	$5.04418 \cdot 10^{-6}$
	0.0144663	0.00359507	0.000196735	0.000512101
	0.000730645	0.000479569	0.000399413	0.00192453

Suma diag. = $\begin{bmatrix} 0.0290335 & 0.00885378 & 0.0200846 & 0.00245699 \end{bmatrix}$

Mnodiagonal =	0.000788459	0.0000360268	-0.000750886	0.0000121156
	0.00421766	-0.00142954	-0.000693617	$-9.84565 \cdot 10^{-7}$
	0.00435864	-0.000994794	-0.000453624	-0.000233515
	0.00140795	0.0000266016	0.0000537285	-0.000253712

Suma no diag. = $\begin{bmatrix} 0.0107727 & -0.0023617 & -0.0018444 & -0.000476096 \end{bmatrix}$

$$M diagonal + M nodiagonal = \begin{bmatrix} 0.00805872 & 0.000922391 & 0.0117033 & 0.000027433 \\ 0.010784 & 0.00246323 & 0.00634062 & 4.05962 \cdot 10^{-6} \\ 0.018825 & 0.00260028 & -0.000256889 & 0.000278586 \\ 0.00213859 & 0.000506171 & 0.000453141 & 0.00167081 \end{bmatrix}$$

 $Suma \ diag + nodiag = \begin{bmatrix} 0.0398062 & 0.00649207 & 0.0182402 & 0.00198089 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 20.2449 & 14.208 & 64.1623 & 1.38488 \\ 27.0911 & 37.9422 & 34.7618 & 0.204939 \\ 47.2915 & 40.0531 & -1.40837 & 14.0637 \\ 5.37251 & 7.79675 & 2.4843 & 84.3465 \end{bmatrix}$$

b3) asociado a F_{Eu3} :

$$L = \begin{bmatrix} 0.11974 & 0.0554847 & 0.0949737 & 0.0136666 \\ 0.0669546 & 0.060632 & -0.129618 & 0.00815283 \\ 0.139796 & -0.0635017 & -0.00712915 & 0.0376002 \\ 0.0549779 & -0.0435092 & -0.0412484 & -0.0852846 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0123167 & 0.00264459 & 0.00774852 & 0.000160449 \\ 0.00286716 & 0.00235124 & 0.0107454 & 0.0000425117 \\ 0.0126772 & 0.00261581 & 0.0000329694 & 0.000917098 \\ 0.00105351 & 0.000659816 & 0.000593027 & 0.00253514 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0289145 & 0.00827145 & 0.0191199 & 0.0036552 \end{bmatrix}$

 $Mnodiagonal = \begin{bmatrix} 0.00283515 & -0.000801113 & -0.00102259 & -0.000226491 \\ 0.00126149 & -0.000570659 & 0.000454173 & -0.0000266529 \\ 0.00358929 & -0.000141436 & 0.0000915261 & -0.000514192 \\ 0.00320577 & -0.000266166 & -0.000402858 & -0.000906965 \end{bmatrix}$

Suma no diag. = $\begin{bmatrix} 0.0108917 & -0.00177937 & -0.000879745 & -0.0016743 \end{bmatrix}$

0.0151518 0.00184348 0.00672594 -0.0000660428 0.004128650.00178058 0.0111996 0.0000158588M diagonal + M nodiagonal =0.0162665 0.00247437 0.000124495 0.000402905 0.00425928 0.00019017 0.000393649 0.00162818

Suma diag + $nodiag = [0.0398062 \quad 0.00649208 \quad 0.0182402 \quad 0.0019809]$

$$P.E.D. = \begin{bmatrix} 38.0639 & 28.3958 & 36.8743 & -3.33399 \\ 10.3719 & 27.4269 & 61.4006 & 0.800587 \\ 40.8642 & 38.1137 & 0.682534 & 20.3395 \\ 10.7 & 6.06353 & 1.04258 & 82.1939 \end{bmatrix}$$

c) Terbio:

c1) asociado a F_{Tb1} :

	0.124288	0.027816	0.101132	0.0101026
T	0.0669252	0.0865631	-0.11266	-0.0185175
L =	0.139394	-0.0631039	-0.0206319	-0.0325161
	0.0465033	-0.0371849	-0.0642358	0.0787083

Mdiagonal =	0.0150132	0.000751976	0.00994023	0.0000991925
	0.00257345	0.00430528	0.00729246	0.000197016
	0.0142245	0.00291516	0.000311621	0.00077401
	0.000718007	0.000459088	0.00136998	0.00205685

Suma diag. = $\begin{bmatrix} 0.0325291 & 0.0084315 & 0.0189143 & 0.00312707 \end{bmatrix}$

 $Mnodiagonal = \begin{bmatrix} 0.00221283 & 0.0000492182 & -0.00123153 & -0.0000331045 \\ 0.00219788 & -0.000859831 & 0.000306391 & -0.000155082 \\ 0.00365486 & -0.000326127 & 0.000330554 & -0.0004278 \\ 0.00169888 & -0.000039555 & 0.00118532 & -0.000664444 \end{bmatrix}$

Suma no diag. = $\begin{bmatrix} 0.00976444 & -0.00117629 & 0.000590742 & -0.00128043 \end{bmatrix}$

$$M diagonal + M nodiagonal = \begin{bmatrix} 0.017226 & 0.000801194 & 0.00870871 & 0.000066088 \\ 0.00477132 & 0.00344545 & 0.00759886 & 0.0000419337 \\ 0.0178793 & 0.00258903 & 0.000642175 & 0.000346211 \\ 0.00241689 & 0.000419533 & 0.00255531 & 0.00139241 \end{bmatrix}$$

Suma diag + $nodiag = \begin{bmatrix} 0.0422936 & 0.00725521 & 0.019505 & 0.00184664 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 40.7297 & 11.043 & 44.6485 & 3.57883 \\ 11.2814 & 47.4893 & 38.9584 & 2.27081 \\ 42.2743 & 35.6851 & 3.29235 & 18.7482 \\ 5.71455 & 5.78251 & 13.1008 & 75.4022 \end{bmatrix}$$

c2) asociado a F_{Tb2} :

$$L = \begin{bmatrix} 0.150295 & 0.0208615 & 0.0592556 & 0.00398871 \\ 0.0384675 & 0.0696956 & -0.1352 & -0.0197724 \\ 0.121428 & -0.0824039 & -0.0559619 & -0.015126 \\ 0.021596 & -0.0322814 & -0.0655814 & 0.0897613 \end{bmatrix}$$

	0.0291841	0.00056227	0.00453643	0.0000205551
Mdiagonal –	0.000877635	0.00288095	0.0108413	0.000231869
Malagonal =	0.00949873	0.00437445	0.00201749	0.000147393
	0.000106748	0.000238518	0.000984412	0.00184414

Suma diag. = $\begin{bmatrix} 0.0396672 & 0.00805619 & 0.0183796 & 0.00224396 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 0.000891018 & 0.0000910574 & -0.000870417 & -4.3574 \cdot 10^{-7} \\ 0.000883503 & -0.000427328 & 0.000604753 & -0.000170289 \\ 0.000629306 & -0.000290386 & 0.000479156 & -0.0000188389 \\ 0.000222548 & -0.000174322 & 0.000911927 & -0.000207754 \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.00262638 & -0.00080098 & 0.00112542 & -0.000397318 \end{bmatrix}$

	0.0300751	0.000653328	0.00366602	0.0000201194
Mdiagonal - Mugdiagonal -	0.00176114	0.00245362	0.011446	0.0000615799
Matagonal + Mnoatagonal =	0.010128	0.00408406	0.00249665	0.000128554
	0.000329296	0.0000641953	0.00189634	0.00163639

 $Suma \ diag + nodiag = \begin{bmatrix} 0.0422935 & 0.00725521 & 0.019505 & 0.00184664 \end{bmatrix}$

<i>P.E.D.</i> =	71.1103	9.00495	18.7952	1.08951
	4.16408	33.8188	58.6825	3.3347
	23.947	56.2915	12.8	6.9615
	0.778597	0.884817	9.7223	88.6143

c3) asociado a F_{Tb3} :

	0.115134	0.0236364	0.112851	0.00103816
τ_	0.0781245	0.0870512	-0.105375	-0.0149043
L =	0.139041	-0.0659312	-0.0111741	-0.0330389
	0.0527889	-0.0355235	-0.0556392	0.081989

Mdiagonal =	0.0130813	0.000551327	0.0125678	$1.06359 \cdot 10^{-6}$
	0.0037169	0.00461484	0.00676207	0.000135279
	0.0142281	0.00319923	0.0000918944	0.00080337
	0.000900927	0.000407977	0.0100084	0.00217328

Suma diag. = $\begin{bmatrix} 0.0319272 & 0.00877337 & 0.0204226 & 0.003113 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 0.00145227 & 0.000114047 & -0.0016767 & 4.94715 \cdot 10^{-6} \\ 0.00312105 & -0.00114388 & -0.0000786038 & -0.000103407 \\ 0.00326246 & -0.000435569 & 0.000294462 & -0.000460413 \\ 0.00253055 & -0.0000527576 & 0.000484246 & -0.000707485 \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.0103663 & -0.00151816 & -0.000917569 & -0.00126636 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0145336 & 0.000665374 & 0.0109501 & 6.01074 \cdot 10^{-6} \\ 0.00683795 & 0.00347096 & 0.00668347 & 0.0000318718 \\ 0.0174906 & 0.00276366 & 0.000386356 & 0.000342957 \\ 0.00343147 & 0.000355219 & 0.00148509 & 0.0014658 \end{bmatrix}$

Suma diag + $nodiag = [0.0422936 \quad 0.00725521 \quad 0.019505 \quad 0.00184664]$

	34.3635	9.17098	56.14	0.325496
	16.1678	47.8409	34.2653	1.72594
P.E.D. =	41.3552	38.092	1.9808	18.572
	8.11346	4.89606	7.61387	79.3766

d) Disprosio:

d1) asociado a F_{Dy1} :

$$L = \begin{bmatrix} 0.129828 & 0.0297543 & 0.093357 & 0.00775959 \\ 0.0635314 & 0.0768035 & -0.12006 & -0.0254677 \\ 0.136998 & -0.0705188 & -0.0248106 & -0.021672 \\ 0.0408154 & -0.032139 & -0.0639552 & 0.0840585 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0170943 & 0.000897869 & 0.00883907 & 0.0000610648 \\ 0.00238742 & 0.0034891 & 0.00852613 & 0.000383646 \\ 0.0141437 & 0.00374756 & 0.000463888 & 0.000353946 \\ 0.00053093 & 0.000329195 & 0.00130359 & 0.00225192 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0341564 & 0.00846373 & 0.0191327 & 0.00305058 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 0.00208348 & 0.000072042 & -0.00147165 & -8.20861 \cdot 10^{-6} \\ 0.00202646 & -0.000638895 & 0.00028405 & -0.000286096 \\ 0.00235911 & -0.00043683 & 0.000272561 & -0.000114208 \\ 0.00103927 & -0.000204824 & 0.00107366 & -0.000450954 \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.00750832 & -0.00120851 & 0.000158621 & -0.000859466 \end{bmatrix}$

$$M diagonal + M nodiagonal = \begin{bmatrix} 0.0191778 & 0.000969911 & 0.00736743 & 0.0000528562 \\ 0.00441388 & 0.00285021 & 0.00881018 & 0.0000975496 \\ 0.0165028 & 0.00331073 & 0.000736449 & 0.000239738 \\ 0.0015702 & 0.000124371 & 0.00237725 & 0.00180097 \end{bmatrix}$$

Suma diag +
$$nodiag = \begin{bmatrix} 0.0416647 & 0.00725522 & 0.0192913 & 0.00219111 \end{bmatrix}$$

$$P.E.D. = \begin{bmatrix} 46.0288 & 13.3685 & 38.1904 & 2.4123 \\ 10.5938 & 39.285 & 45.6692 & 4.45206 \\ 39.6087 & 45.6324 & 3.81752 & 10.9414 \\ 3.76865 & 1.71422 & 12.3229 & 82.1942 \end{bmatrix}$$

d2) asociado a F_{Dy2} :

$$L = \begin{bmatrix} 0.128793 & 0.0297542 & 0.0950834 & 0.00161305 \\ 0.0648369 & 0.0745031 & -0.120752 & 0.0257385 \\ 0.137195 & -0.0722833 & -0.0245776 & 0.0132279 \\ 0.0417404 & -0.0230852 & -0.0580387 & -0.0906158 \end{bmatrix}$$

	0.0173946	0.000928379	0.00948067	$2.72851 \cdot 10^{-6}$
Mdiagonal –	0.00251765	0.0033243	0.00873255	0.000396751
Malagonal –	0.0151025	0.00419223	0.000484674	0.000140396
	0.000500041	0.000152953	0.000966781	0.00235668

Suma diag. = $\begin{bmatrix} 0.0355148 & 0.00859787 & 0.0196647 & 0.00289655 \end{bmatrix}$

Mnodiagonal =	0.00142981	0.000098871	-0.00156325	-0.0000110731
	0.00209409	-0.000657869	0.000329853	-0.000282753
	0.00143948	-0.000551563	0.000378176	-0.0000167165
	0.00118652	-0.000232084	0.000481849	-0.000394899
	-			-
Suma no diag.=	0.0061499	-0.00134265	-0.000373372	-0.000705441

Mdiagonal + Mnodiagonal =	0.0188244	0.00102725	0.00791742	$-8.34461 \cdot 10^{-6}$
	0.00461174	0.00266643	0.0090624	0.000113998
	0.016542	0.00364067	0.000862849	0.000123679
	0.00168656	-0.0000791311	0.00144863	0.00196178

 $Suma \ diag + nodiag = \begin{bmatrix} 0.0416647 & 0.00725522 & 0.0192913 & 0.00219111 \end{bmatrix}$

<i>P.E.D.</i> =	45.1807	14.1588	41.0414	-0.38084
	11.0687	36.7519	46.9766	5.20276
	39.7027	50.18	4.47274	5.64458
	4.04795	-1.09068	7.50924	89.5335

d3) asociado a F_{Dy3} :

	0.129802	0.0580081	0.075018	0.0259869
<i>I</i> _	0.0545353	0.0405095	-0.142099	0.0138114
L =	0.13834	-0.0720524	-0.0137256	0.0175704
	0.0477401	-0.0299463	-0.0393491	-0.0955545

$$M diagonal = \begin{bmatrix} 0.0162864 & 0.0032527 & 0.00543997 & 0.000652794 \\ 0.00213916 & 0.00118032 & 0.0145235 & 0.000137202 \\ 0.0147135 & 0.00399135 & 0.000144839 & 0.00023735 \\ 0.000758288 & 0.000298369 & 0.000515153 & 0.00303787 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0338974 & 0.00872274 & 0.0206235 & 0.00406522 \end{bmatrix}$

Mnodiagonal =	0.00307451	-0.000731061	-0.00116342	-0.000727163
	0.000485557	-0.000108025	0.000260383	-0.0000871276
	0.00165868	-0.000155029	0.0000182624	-0.0000844082
	0.00254929	-0.000473773	-0.000447521	-0.000975404

Suma no diag. =
$$\begin{bmatrix} 0.00776805 & -0.00146789 & -0.0013323 & -0.0018741 \end{bmatrix}$$

	0.0193609	0.00252164	0.00427655	-0.0000743695
Mdiaconal - Mucdiaconal -	0.00262471	0.0010723	0.0147839	0.0000500746
Malagonal + Mnoalagonal =	0.0163722	0.00383632	0.000163102	0.000152942
	0.00330758	-0.000175404	0.0000676314	0.00206247

 $Suma \ diag + nodiag = \begin{bmatrix} 0.0416654 & 0.00725485 & 0.0192912 & 0.00219111 \end{bmatrix}$

<i>P.E.D.</i> =	46.4676	34.758	22.1685	-3.39414
	6.2995	14.7804	76.6355	2.28535
	39.2944	52.8794	0.845473	6.98009
	7.93843	-2.41775	0.350582	94.1287

e) Holmio:

e1) asociado a F_{Ho1} :

$$L = \begin{bmatrix} 0.129773 & 0.0297416 & 0.0933171 & 0.00775627 \\ 0.0634629 & 0.0767792 & -0.120087 & -0.0254677 \\ 0.137091 & -0.0700728 & -0.0246813 & -0.021631 \\ 0.0408516 & -0.0324507 & -0.0640309 & 0.0838183 \end{bmatrix}$$

	0.016999	0.000892866	0.00878982	0.0000607245
Mdiagonal =	0.00236689	0.00346437	0.00847478	0.000381169
	0.0145553	0.0038028	0.000471779	0.000362374
	0.000528108	0.000333237	0.00129743	0.00222323

Suma diag. = $\begin{bmatrix} 0.0344493 & 0.00849328 & 0.0190338 & 0.00302749 \end{bmatrix}$

Mnodiagonal =	0.00229188	0.000134853	-0.00182662	$-7.23481 \cdot 10^{-6}$
	0.00206364	-0.000451673	-0.000144453	-0.000284591
	0.0021152	-0.000323253	0.000220006	-0.000120757
	0.0010585	-0.000200515	0.000957466	-0.000423801
	_			-

Suma no diag. = $\begin{bmatrix} 0.00752921 & -0.000840587 & -0.000793603 & -0.000836383 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0205154 & 0.00123302 & 0.00300969 & -0.0000746 \\ 0.00332338 & 0.00293304 & 0.00436907 & -0.000016541 \\ 0.015607 & 0.0036803 & 0.000890462 & 0.0000921703 \\ 0.00232729 & -0.000010005 & -0.000422072 & 0.00220671 \end{bmatrix}$

Suma diag + $nodiag = \begin{bmatrix} 0.0419785 & 0.00765269 & 0.0182402 & 0.00219111 \end{bmatrix}$

 $P.E.D. = \begin{bmatrix} 45.9543 & 13.4295 & 38.175 & 2.44122 \\ 10.5543 & 39.3679 & 45.6701 & 4.40775 \\ 39.7119 & 45.4683 & 3.79264 & 11.0272 \\ 3.77956 & 1.73432 & 12.3623 & 82.1239 \end{bmatrix}$

e2) asociado a F_{Ho2} :

	0.128738	0.0297415	0.0950428	0.00161236
T	0.0647687	0.0744792	-0.120779	0.0257342
L =	0.137287	-0.0718362	-0.0244451	0.013241
	0.0417768	-0.0234192	-0.0581289	-0.0904137

452

	0.0172927	0.000922941	0.00942513	$2.71253 \cdot 10^{-6}$
Mdiagonal =	0.00249021	0.00329288	0.00865946	0.000393123
	0.015556	0.00425918	0.000493199	0.000144703
	0.000500514	0.000157286	0.000969018	0.00234431

Suma diag. = $\begin{bmatrix} 0.0358395 & 0.00863228 & 0.0195468 & 0.00288485 \end{bmatrix}$

Mnodiagonal =	0.00164308	0.000166098	-0.00193799	-0.000011181
	0.00213943	-0.000473225	-0.0000928674	-0.000280045
	0.0011529	-0.000430331	0.000318699	-0.0000195324
	0.00120365	-0.00024213	0.000405566	-0.000382981

Suma no diag. = $\begin{bmatrix} 0.00613906 & -0.000979588 & -0.0013066 & -0.000693739 \end{bmatrix}$

	0.0189358	0.00108904	0.00748714	$-8.46843 \cdot 10^{-6}$
Mdiagonal + Mnodiagonal -	0.00462965	0.00281965	0.00856659	0.000113078
Malagonal + Mnoalagonal =	0.0167089	0.00382885	0.000811898	0.00012517
	0.00170416	-0.0000848439	0.00137458	0.00196133

 $Suma \ diag + nodiag = \begin{bmatrix} 0.0419785 & 0.00765269 & 0.0182402 & 0.00219111 \end{bmatrix}$

<i>P.E.D.</i> =	45.1083	14.2308	41.0474	-0.386491
	11.0286	36.8452	46.9654	5.16077
	39.8035	50.0327	4.45114	5.71265
	4.0596	-1.10868	7.53601	89.5131
e3) asociado a F_{Ho3} :

	0.147294	0.0453499	0.0523546	0.000831063
τ_	0.0289589	0.054463	-0.145454	-0.00551952
L =	0.129573	-0.0732952	-0.0479583	-0.0178858
	0.0259088	-0.0451808	-0.0540801	0.0906098

	0.0240352	0.00227841	0.00303661	$7.65151 \cdot 10^{-7}$
Mdiagonal –	0.000531133	0.00187864	0.0133995	0.0000192949
malagonal –	0.0124017	0.0039683	0.00169895	0.000236303
	0.000164615	0.000500589	0.000717216	0.00201337

Suma diag. = $\begin{bmatrix} 0.0371326 & 0.00862594 & 0.0188523 & 0.00226974 \end{bmatrix}$

	0.00232337	-0.000509798	-0.000509031	$4.51904 \cdot 10^{-6}$
Mnodiagonal –	0.0000331432	-0.0000460523	0.000128518	$-7.39968 \cdot 10^{-6}$
Minoulugonai –	0.00209365	-0.000288157	-0.000182277	-0.000037675
	0.000395743	-0.000129244	-0.0000492816	-0.0000380705

Suma no diag. = $\begin{bmatrix} 0.00484591 & -0.00097325 & -0.000612071 & -0.0000786262 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0263586 & 0.00176862 & 0.00252758 & 5.28419 \cdot 10^{-6} \\ 0.000564277 & 0.00183259 & 0.013528 & 0.0000118952 \\ 0.0144953 & 0.00368014 & 0.00151668 & 0.000198628 \\ 0.000560358 & 0.000371346 & 0.000667934 & 0.0019753 \end{bmatrix}$

Suma diag + $nodiag = \begin{bmatrix} 0.0419785 & 0.00765269 & 0.0182402 & 0.00219111 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 62.7906 & 23.111 & 13.8572 & 0.241165 \\ 1.3442 & 23.947 & 74.1659 & 0.542885 \\ 34.5303 & 48.0895 & 8.31502 & 9.06518 \\ 1.33487 & 4.85248 & 3.66188 & 90.1508 \end{bmatrix}$$

f) Erbio:

f1) asociado a F_{Er1} :

$$L = \begin{bmatrix} 0.120828 & 0.0321695 & 0.104099 & 0.00124196 \\ 0.0667559 & 0.0876155 & -0.113228 & 0.00574084 \\ 0.141454 & -0.0528207 & -0.0199649 & -0.0392546 \\ 0.0501454 & -0.048372 & -0.0538022 & 0.0780462 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0145626 & 0.00103227 & 0.0108093 & 1.53857 \cdot 10^{-6} \\ 0.00268521 & 0.00462552 & 0.00772515 & 0.0000198587 \\ 0.0158966 & 0.00221655 & 0.000316668 & 0.0012242 \\ 0.000935963 & 0.000870933 & 0.00107745 & 0.00226726 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0340804 & 0.00874527 & 0.0199286 & 0.00351285 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 0.00115704 & -0.0000922376 & -0.000956449 & 8.7348 \cdot 10^{-6} \\ 0.00178663 & -0.000740259 & 0.000154386 & -0.0000199693 \\ 0.00315875 & -0.000218745 & 0.00051844 & -0.000648127 \\ 0.00211071 & 0.000229543 & -0.000139902 & -0.000589952 \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.00821312 & -0.000821698 & -0.000423525 & -0.00124931 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0157196 & 0.000940028 & 0.00985288 & 0.0000102734 \\ 0.00447184 & 0.00388526 & 0.00787953 & -1.10626 \cdot 10^{-7} \\ 0.0190553 & 0.00199781 & 0.000835109 & 0.00057607 \\ 0.00304668 & 0.00110048 & 0.000937547 & 0.00167731 \end{bmatrix}$

 $Suma \ diag + nodiag = \begin{bmatrix} 0.0422935 & 0.00792357 & 0.0195051 & 0.00226354 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 37.168 & 11.8637 & 50.5144 & 0.453863 \\ 10.5734 & 49.0342 & 40.3974 & -0.00488729 \\ 45.055 & 25.2135 & 4.2815 & 25.45 \\ 7.20365 & 13.8886 & 4.80668 & 74.101 \end{bmatrix}$$

455

f2) asociado a F_{Er2} :

	0.11501	0.0263641	0.111748	0.00792383
τ_	0.0750346	0.0892526	-0.1049	-0.0196514
L =	0.138613	-0.0580946	-0.00699444	-0.0458403
	0.0571	-0.0428999	-0.0625306	0.069494

 $Mdiagonal = \begin{bmatrix} 0.0127308 & 0.000668979 & 0.0120189 & 0.0000604308 \\ 0.00340723 & 0.00482081 & 0.00665931 & 0.000233705 \\ 0.012896 & 0.00226525 & 0.0000328361 & 0.0014104 \\ 0.00165498 & 0.000934188 & 0.00198475 & 0.002455141 \end{bmatrix}$

Suma diag. = $\begin{bmatrix} 0.030689 & 0.00868923 & 0.0206958 & 0.00415594 \end{bmatrix}$

	0.002261	0.000105299	-0.00193918	$9.82014 \cdot 10^{-6}$
Mnodiagonal –	0.00258159	-0.000831866	-0.000100807	-0.000191322
Mnoulugonal –	0.00351698	0.000127899	0.000129286	-0.000727746
	0.00324491	-0.000166994	0.000719946	-0.000983152

Suma no diag. = $\begin{bmatrix} 0.0116045 & -0.000765662 & -0.00119076 & -0.0018924 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0149918 & 0.000774278 & 0.0100797 & 0.000070251 \\ 0.00598883 & 0.00398895 & 0.0065585 & 0.0000423831 \\ 0.016413 & 0.00239315 & 0.000162122 & 0.000682649 \\ 0.00489989 & 0.000767194 & 0.0027047 & 0.00146826 \end{bmatrix}$

Suma diag + $nodiag = \begin{bmatrix} 0.0422935 & 0.00792357 & 0.0195051 & 0.00226354 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 35.447 & 9.77183 & 51.6776 & 3.10359 \\ 14.1602 & 50.3428 & 33.6246 & 1.87243 \\ 38.8074 & 30.203 & 0.831178 & 30.1585 \\ 11.5854 & 9.68243 & 13.8666 & 64.8655 \end{bmatrix}$$

f3) asociado a F_{Er3} :

	0.147421	0.0310131	0.061269	0.00488745
I _	0.0355946	0.079307	-0.132578	-0.00758159
L =	0.12841	-0.0649682	-0.0574156	-0.027063
	0.0266412	-0.0418984	-0.0659196	0.0838432

	0.0260861	0.00115446	0.0045058	0.0000286718
Mdiaconal	0.000616475	0.00364962	0.0101992	0.0000333538
maiagonai =	0.0120825	0.00309288	0.00241558	0.00053668
	0.0002208034	0.000514542	0.00127366	0.00206045

Suma diag. = $\begin{bmatrix} 0.0389932 & 0.00841151 & 0.0183943 & 0.00265916 \end{bmatrix}$

	0.00115896	-0.000118369	-0.000439737	$8.87087 \cdot 10^{-6}$
Mnodiagonal –	0.000271161	-0.000318703	0.000574009	-0.0000190894
Minoulugonal –	0.00139692	-0.00008493	0.000449157	-0.000186294
	0.000473248	0.0000340739	0.000527366	-0.000199105

Suma no diag. = $\begin{bmatrix} 0.00330029 & -0.000487929 & 0.00111079 & -0.000395617 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0272451 & 0.00103609 & 0.00406607 & 0.0000375427 \\ 0.000887635 & 0.00333092 & 0.0107732 & 0.0000142644 \\ 0.0134795 & 0.00300795 & 0.00286474 & 0.000350386 \\ 0.000681282 & 0.000548616 & 0.00180103 & 0.00186134 \end{bmatrix}$

 $Suma \ diag + nodiag = \begin{bmatrix} 0.0422935 & 0.00792358 & 0.0195051 & 0.00226354 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 64.4192 & 13.0761 & 20.8462 & 1.65858 \\ 2.09875 & 42.0381 & 55.233 & 0.630183 \\ 31.8713 & 37.962 & 14.6871 & 15.4796 \\ 1.61084 & 6.92384 & 9.23365 & 82.2317 \end{bmatrix}$$

g) Tulio:

g1) asociado a F_{Tm1} :

$$L = \begin{bmatrix} 0.122798 & 0.0464109 & 0.095559 & 0.0096453 \\ 0.0582869 & 0.0801838 & -0.123092 & -0.00199928 \\ 0.142073 & -0.0449191 & -0.0169603 & -0.0471085 \\ 0.0523714 & -0.0550576 & -0.0580382 & 0.0685045 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.0137564 & 0.00196501 & 0.00833041 & 0.0000848701 \\ 0.0021002 & 0.00397458 & 0.00936654 & 2.47095 \cdot 10^{-6} \\ 0.0147356 & 0.00147302 & 0.000209996 & 0.00162011 \\ 0.00129714 & 0.00143362 & 0.00159304 & 0.0022194 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0318893 & 0.00884622 & 0.0195 & 0.00392685 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 0.00262172 & -0.000438816 & -0.00080565 & 0.00001055 \\ 0.0007925 & -0.0000466886 & 0.000457031 & -2.11843 \cdot 10^{-6} \\ 0.00435538 & 0.00014436 & 0.00020098 & -0.000848206 \\ 0.00263464 & 0.000114271 & 0.000152733 & -0.000749924 \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.0104042 & -0.000647071 & 5.09458 \cdot 10^{-6} & -0.0015897 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0163781 & 0.00152619 & 0.00752476 & 0.0000954201 \\ 0.0028927 & 0.0035077 & 0.00982357 & 3.5252 \cdot 10^{-7} \\ 0.019091 & 0.00161738 & 0.000410976 & 0.000771903 \\ 0.00393178 & 0.00154789 & 0.00174577 & 0.00146948 \end{bmatrix}$

 $Suma \ diag + nodiag = \begin{bmatrix} 0.0422936 & 0.00819915 & 0.0195051 & 0.00233715 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 38.7248 & 18.614 & 38.5785 & 4.08275 \\ 6.83957 & 42.7812 & 50.3642 & 0.0150833 \\ 45.1393 & 19.7262 & 2.10702 & 33.0275 \\ 9.2964 & 18.8786 & 8.95033 & 62.8747 \end{bmatrix}$$

458

g2) asociado a F_{Tm2} :

	0.097576	0.0164568	0.128441	0.0129941
L =	0.0881713	0.097416	-0.0873991	0.00893517
	0.140478	-0.0446646	0.00791059	-0.054016
	0.0636639	-0.0549127	-0.0553461	0.0608581

	0.00816816	0.000232342	0.0141529	0.000144855
Mdiaconal	0.00487037	0.00594523	0.00478543	0.0000500164
malagonal =	0.0137229	0.00138725	0.0000435157	0.00202896
	0.0023388	0.00174002	0.00176759	0.00213719

Suma diag. = $\begin{bmatrix} 0.0291002 & 0.00930483 & 0.0207494 & 0.00436102 \end{bmatrix}$

$$Mnodiagonal = \begin{bmatrix} 0.00101277 & 0.0000835613 & -0.00080686 & -4.24612 \cdot 10^{-6} \\ 0.00355816 & -0.00124418 & -0.000462356 & -0.0000366516 \\ 0.00542974 & -0.000159222 & -0.000237382 & -0.001077 \\ 0.00319271 & 0.000214168 & 0.000262262 & -0.000905973 \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.0131934 & -0.00110567 & -0.00124434 & -0.00202387 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.00918092 & 0.000315903 & 0.013346 & 0.000140608 \\ 0.00842853 & 0.00470104 & 0.00432307 & 0.0000133648 \\ 0.0191526 & 0.00122803 & -0.000193867 & 0.000951957 \\ 0.00553151 & 0.00195418 & 0.00202985 & 0.00123122 \end{bmatrix}$

Suma diag + $nodiag = [0.0422936 \quad 0.00819916 \quad 0.0195051 \quad 0.00233715]$

$$P.E.D. = \begin{bmatrix} 21.7076 & 3.85287 & 68.4233 & 6.01623 \\ 19.9286 & 57.3357 & 22.1639 & 0.571843 \\ 45.2849 & 14.9775 & -0.99393 & 40.7315 \\ 13.0788 & 23.834 & 10.4068 & 52.6804 \end{bmatrix}$$

g3) asociado a F_{Tm3} :

	0.119865	0.0200023	0.107988	0.00535957
Ι_	0.0629369	0.105052	-0.0985109	0.0167656
L =	0.142153	-0.0357843	-0.0256093	-0.0506505
	0.0540331	-0.0489386	-0.0635807	0.0669204

	0.0145716	0.000405776	0.0118271	0.000029133
Mdigoonal	0.00205979	0.00573884	0.0050464	0.000146168
malagonal =	0.0153856	0.000974957	0.000499341	0.0019533
	0.0015113	0.00123975	0.00209258	0.00231818

Suma diag. = $\begin{bmatrix} 0.0335283 & 0.00835932 & 0.0194654 & 0.00444678 \end{bmatrix}$

Mnodiagonal =	0.000903223	-0.0000140433	-0.000833934	0.000023987
	0.00152598	-0.000499911	0.0000705852	-0.000113642
	0.00368956	-0.0000510176	0.000787162	-0.00108776
	0.00264654	0.000404819	0.0000158761	-0.000932215

Suma no diag. = $\begin{bmatrix} 0.0087653 & -0.000160154 & 0.0000396893 & -0.00210963 \end{bmatrix}$

 $M diagonal + M nodiagonal = \begin{bmatrix} 0.0154748 & 0.000391732 & 0.0109931 & 0.0000531199 \\ 0.00358577 & 0.00523892 & 0.00511699 & 0.0000325262 \\ 0.0190751 & 0.000923939 & 0.0012865 & 0.000865537 \\ 0.00415783 & 0.00164457 & 0.00210845 & 0.00138597 \end{bmatrix}$

Suma diag + $nodiag = [0.0422936 \quad 0.00819916 \quad 0.0195051 \quad 0.00233715]$

$$P.E.D. = \begin{bmatrix} 36.5891 & 4.77771 & 56.3603 & 2.27285 \\ 8.47829 & 63.8959 & 26.2341 & 1.3917 \\ 45.1017 & 11.2687 & 6.59574 & 37.0338 \\ 9.83089 & 20.0577 & 10.8098 & 59.3016 \end{bmatrix}$$

Anexo II.23.- Cálculo elementos "L" para bloques de 1 x 1 (Simetrías A_{1g} , E_g , T_{1g} y T_{2u}).

En este caso $L = \sqrt{G}$.

Para todas las simetrías señaladas, en las elpasolitas de Pr, Eu, Tb, Dy, Ho, Er y Tm, los elementos son iguales de modo que se tiene en todos los casos lo siguiente:

 $G_{1,1} = G_{2,2} = G_{3,3} = G_{10,10} = 0.0282064$

De este modo el elemento L, en todo los casos es:

$$L_{1,1} = L_{2,2} = L_{3,3} = L_{10,10} = \sqrt{G_{ii}} = \sqrt{0.0282064} = 0.167947610879$$

Se considera que toda la contribución es diagonal y por tanto pierde sentido un análisis de P.E.D.

Anexo II.24.- Cálculo de diferencias de constantes de fuerza.

a) Diferencias encontradas entre elementos de la matriz de constantes de fuerza:

$$\begin{aligned} x[9] - x[7] &= 2F_{66} - F_{88} \\ x[1] - x[3] &= (2F_{66} + F_{88}) - 2\sqrt{2}F_{68} \\ x[4] - x[6] &= (2F_{66} + F_{88}) + 2\sqrt{2}F_{68} \\ x[1] - x[3] + x[4] - x[6] &= 2(2F_{66} + F_{88}) \\ x[2] + x[5] - 2x[8] &= \frac{2}{3}(F_{11} - F_{22}) \\ x[1] + x[4] - 2x[9] &= \frac{2}{3}(F_{11} + 2F_{22} + 3F_{88}) \\ x[3] + x[6] - 2x[9] &= \frac{2}{3}(F_{11} + 2F_{22} - 6F_{66}) \\ x[38] - x[40] &= \frac{1}{6}(-\sqrt{30}F_{67} + 2\sqrt{6}F_{69} + \sqrt{15}F_{78} - 2\sqrt{3}F_{89}) \\ x[42] - x[44] &= -\frac{\sqrt{10}F_{67} - 2\sqrt{2}F_{69} + \sqrt{5}F_{78} - 2F_{89}}{2\sqrt{3}} \\ x[48] - x[49] - x[51] + x[53] &= \frac{1}{3}(6F_{66} + 2\sqrt{15}F_{67} - 3\sqrt{2}F_{68} + 2\sqrt{3}F_{69} - \sqrt{30}F_{78} - \sqrt{6}F_{89}) \\ x[45] - x[46] - x[68] + x[70] &= \frac{1}{3}(6F_{66} + 2\sqrt{15}F_{67} + 3\sqrt{2}F_{68} + 2\sqrt{3}F_{69} + \sqrt{30}F_{78} + \sqrt{6}F_{89}) \end{aligned}$$

b) Praseodimio.

b1) Asociado a
$$F_{Pr1}$$
:
 $x[9] - x[7] = 1.00127$
 $x[1] - x[3] = 1.81844$
 $x[4] - x[6] = 2.7883$
 $x[1] - x[3] + x[4] - x[6] = 4.60674$
 $x[2] + x[5] - 2x[8] = 0.433173$
 $x[1] + x[4] - 2x[9] = 3.75611$
 $x[3] + x[6] - 2x[9] = -0.850627$
 $x[38] - x[40] = 0.0516233$
 $x[42] - x[44] = 0.113954$
 $x[48] - x[49] - x[51] + x[53] = 1.40618$
 $x[45] - x[46] - x[68] + x[70] = 2.14215$

b2) Asociado a F_{Pr2} :

$$x[9] - x[7] = 0.73051$$

$$x[1] - x[3] = 2.06088$$

$$x[4] - x[6] = 2.31714$$

$$x[1] - x[3] + x[4] - x[6] = 4.37802$$

$$x[2] + x[5] - 2x[8] = 0.433173$$

$$x[1] + x[4] - 2x[9] = 3.91251$$

$$x[3] + x[6] - 2x[9] = -0.465507$$

$$x[38] - x[40] = 0.170609$$

$$x[42] - x[44] = 0.051796$$

$$x[48] - x[49] - x[51] + x[53] = 1.54737$$

$$x[45] - x[46] - x[68] + x[70] = 2.14113$$

b3) Asociado a F_{Pr3} :

$$\begin{aligned} x[9] - x[7] &= 0.91096 \\ x[1] - x[3] &= 2.01968 \\ x[4] - x[6] &= 2.61496 \\ x[1] - x[3] + x[4] - x[6] &= 4.63464 \\ x[2] + x[5] - 2x[8] &= 0.433173 \\ x[1] + x[4] - 2x[9] &= 3.86037 \\ x[3] + x[6] - 2x[9] &= -0.774267 \\ x[38] - x[40] &= 0.0162607 \\ x[42] - x[44] &= 0.00616269 \\ x[48] - x[49] - x[51] + x[53] &= 1.20537 \\ x[45] - x[46] - x[68] + x[70] &= 2.20219 \end{aligned}$$

c) Europio.

c1) Asociado a
$$F_{Eu1}$$
:
 $x[9] - x[7] = 1.37357$
 $x[1] - x[3] = 2.34904$
 $x[4] - x[6] = 2.8499$
 $x[1] - x[3] + x[4] - x[6] = 5.19894$
 $x[2] + x[5] - 2x[8] = 0.44698$
 $x[1] + x[4] - 2x[9] = 3.84336$
 $x[3] + x[6] - 2x[9] = -1.35558$
 $x[3] - x[40] = -0.0882549$
 $x[42] - x[44] = -0.0792312$
 $x[48] - x[49] - x[51] + x[53] = 2.34575$
 $x[45] - x[46] - x[68] + x[70] = 2.65790$

c2) Asociado a F_{Eu2} :

$$x[9] - x[7] = 0.79987$$

$$x[1] - x[3] = 2.26506$$

$$x[4] - x[6] = 2.33312$$

$$x[1] - x[3] + x[4] - x[6] = 4.59818$$

$$x[2] + x[5] - 2x[8] = 0.44698$$

$$x[1] + x[4] - 2x[9] = 4.11668$$

$$x[3] + x[6] - 2x[9] = -0.4815$$

$$x[38] - x[40] = 0.0857253$$

$$x[42] - x[44] = -0.111433$$

$$x[48] - x[49] - x[51] + x[53] = 1.14692$$

$$x[45] - x[46] - x[68] + x[70] = 2.2768$$

c3) Asociado a F_{Eu3} :

$$x[9] - x[7] = 1.06939$$

$$x[1] - x[3] = 2.15031$$

$$x[4] - x[6] = 2.58323$$

$$x[1] - x[3] + x[4] - x[6] = 4.73354$$

$$x[2] + x[5] - 2x[8] = 0.44698$$

$$x[1] + x[4] - 2x[9] = 3.91484$$

$$x[3] + x[6] - 2x[9] = -0.8187$$

$$x[38] - x[40] = 0.13886$$

$$x[42] - x[44] = 0.223388$$

$$x[48] - x[49] - x[51] + x[53] = 1.56354$$

$$x[45] - x[46] - x[68] + x[70] = 2.43209$$

d) Terbio.

d1) Asociado a F_{Tb1} :

x[9] - x[7] = 1.2117 x[1] - x[3] = 2.44301 x[4] - x[6] = 2.90863 x[1] - x[3] + x[4] - x[6] = 5.35164 x[2] + x[5] - 2x[8] = 0.4311 x[1] + x[4] - 2x[9] = 4.16194 x[3] + x[6] - 2x[9] = -1.1897 x[38] - x[40] = -0.101515 x[42] - x[44] = -0.0346796 x[48] - x[49] - x[51] + x[53] = 1.71002x[45] - x[46] - x[68] + x[70] = 2.64981

d2) Asociado a F_{Tb2} :

$$x[9] - x[7] = 1.93975$$

$$x[1] - x[3] = 3.183$$

$$x[4] - x[6] = 3.27334$$

$$x[1] - x[3] + x[4] - x[6] = 6.45634$$

$$x[2] + x[5] - 2x[8] = 0.4311$$

$$x[1] + x[4] - 2x[9] = 3.98624$$

$$x[3] + x[6] - 2x[9] = -2.4701$$

$$x[38] - x[40] = -0.0435515$$

$$x[42] - x[44] = -0.088237$$

$$x[48] - x[49] - x[51] + x[53] = 2.69607$$

$$x[45] - x[46] - x[68] + x[70] = 2.99446$$

d3) Asociado a F_{Tb3} :

$$\begin{aligned} x[9] - x[7] &= 1.23771 \\ x[1] - x[3] &= 2.68629 \\ x[4] - x[6] &= 2.73301 \\ x[1] - x[3] + x[4] - x[6] &= 5.4193 \\ x[2] + x[5] - 2x[8] &= 0.4311 \\ x[1] + x[4] - 2x[9] &= 4.16976 \\ x[3] + x[6] - 2x[9] &= -1.24954 \\ x[38] - x[40] &= -0.0360637 \\ x[42] - x[44] &= -0.00686923 \\ x[48] - x[49] - x[51] + x[53] &= 1.85104 \\ x[45] - x[46] - x[68] + x[70] &= 2.76148 \end{aligned}$$

e) Disprosio.

e1) Asociado a
$$F_{Dy1}$$
:
 $x[9] - x[7] = 1.27477$
 $x[1] - x[3] = 2.61131$
 $x[4] - x[6] = 2.95259$
 $x[1] - x[3] + x[4] - x[6] = 5.5639$
 $x[2] + x[5] - 2x[8] = 0.44258$
 $x[1] + x[4] - 2x[9] = 4.25556$
 $x[3] + x[6] - 2x[9] = -1.30834$
 $x[38] - x[40] = -0.0540003$
 $x[42] - x[44] = -0.0755397$
 $x[48] - x[49] - x[51] + x[53] = 2.00308$
 $x[45] - x[46] - x[68] + x[70] = 2.65248$

e2) Asociado a F_{Dy2} :

$$x[9] - x[7] = 1.29494$$

$$x[1] - x[3] = 2.87228$$

$$x[4] - x[6] = 2.92704$$

$$x[1] - x[3] + x[4] - x[6] = 5.79932$$

$$x[2] + x[5] - 2x[8] = 0.44258$$

$$x[1] + x[4] - 2x[9] = 4.3531$$

$$x[3] + x[6] - 2x[9] = -1.44622$$

$$x[38] - x[40] = 0.0510425$$

$$x[42] - x[44] = -0.0413466$$

$$x[48] - x[49] - x[51] + x[53] = 2.17755$$

$$x[45] - x[46] - x[68] + x[70] = 2.69243$$

e3) Asociado a F_{Dy3} :

$$x[9] - x[7] = 1.16446$$

$$x[1] - x[3] = 2.5376$$

$$x[4] - x[6] = 2.8666$$

$$x[1] - x[3] + x[4] - x[6] = 5.4042$$

$$x[2] + x[5] - 2x[8] = 0.44258$$

$$x[1] + x[4] - 2x[9] = 4.28602$$

$$x[3] + x[6] - 2x[9] = -1.11818$$

$$x[38] - x[40] = 0.206559$$

$$x[42] - x[44] = 0.259351$$

$$x[48] - x[49] - x[51] + x[53] = 2.15833$$

$$x[45] - x[46] - x[68] + x[70] = 2.51213$$

f) Holmio.

f1) Asociado a F_{Ho1} : x[9] - x[7] = 1.24431 x[1] - x[3] = 2.63324 x[4] - x[6] = 2.95326 x[1] - x[3] + x[4] - x[6] = 5.5865 x[2] + x[5] - 2x[8] = 0.432667 x[1] + x[4] - 2x[9] = 4.3666 x[3] + x[6] - 2x[9] = -1.21989 x[38] - x[40] = -0.0835648 x[42] - x[44] = -0.0818516 x[48] - x[49] - x[51] + x[53] = 2.11753x[45] - x[46] - x[68] + x[70] = 2.68282

f2) Asociado a F_{Ho2} :

$$x[9] - x[7] = 1.26145$$

$$x[1] - x[3] = 2.8971$$

$$x[4] - x[6] = 2.9272$$

$$x[1] - x[3] + x[4] - x[6] = 5.8243$$

$$x[2] + x[5] - 2x[8] = 0.432673$$

$$x[1] + x[4] - 2x[9] = 4.46833$$

$$x[3] + x[6] - 2x[9] = -1.35597$$

$$x[38] - x[40] = 0.0198215$$

$$x[42] - x[44] = -0.0494492$$

$$x[48] - x[49] - x[51] + x[53] = 2.30065$$

$$x[45] - x[46] - x[68] + x[70] = 2.71987$$

f3) Asociado a F_{Ho3} :

$$\begin{aligned} x[9] - x[7] &= 1.47702 \\ x[1] - x[3] &= 2.65714 \\ x[4] - x[6] &= 3.25162 \\ x[1] - x[3] + x[4] - x[6] &= 5.90876 \\ x[2] + x[5] - 2x[8] &= 0.432673 \\ x[1] + x[4] - 2x[9] &= 4.29499 \\ x[3] + x[6] - 2x[9] &= -1.61377 \\ x[38] - x[40] &= 0.0532736 \\ x[42] - x[44] &= 0.07449323 \\ x[48] - x[49] - x[51] + x[53] &= 2.14151 \\ x[45] - x[46] - x[68] + x[70] &= 2.48762 \end{aligned}$$

g) Erbio.

g1) Asociado a
$$F_{Er1}$$
:
 $x[9] - x[7] = 1.20048$
 $x[1] - x[3] = 2.73767$
 $x[4] - x[6] = 2.84113$
 $x[1] - x[3] + x[4] - x[6] = 5.5788$
 $x[2] + x[5] - 2x[8] = 0.4525$
 $x[1] + x[4] - 2x[9] = 4.3669$
 $x[3] + x[6] - 2x[9] = -1.2119$
 $x[38] - x[40] = 0.0320556$
 $x[42] - x[44] = 0.0681642$
 $x[48] - x[49] - x[51] + x[53] = 1.72406$
 $x[45] - x[46] - x[68] + x[70] = 2.65419$

g2) Asociado a F_{Er2} :

$$x[9] - x[7] = 1.25375$$

$$x[1] - x[3] = 2.46393$$

$$x[4] - x[6] = 2.72833$$

$$x[1] - x[3] + x[4] - x[6] = 5.19226$$

$$x[2] + x[5] - 2x[8] = 0.4525$$

$$x[1] + x[4] - 2x[9] = 4.12036$$

$$x[3] + x[6] - 2x[9] = -1.0719$$

$$x[38] - x[40] = -0.1285$$

$$x[42] - x[44] = 0.0523798$$

$$x[48] - x[49] - x[51] + x[53] = 1.90097$$

$$x[45] - x[46] - x[68] + x[70] = 2.72485$$

g3) Asociado a F_{Er3} :

$$x[9] - x[7] = 1.66784$$

$$x[1] - x[3] = 2.99253$$

$$x[4] - x[6] = 3.27419$$

$$x[1] - x[3] + x[4] - x[6] = 6.26672$$

$$x[2] + x[5] - 2x[8] = 0.4525$$

$$x[1] + x[4] - 2x[9] = 4.2435$$

$$x[3] + x[6] - 2x[9] = -2.02322$$

$$x[38] - x[40] = -0.00181855$$

$$x[42] - x[44] = 0.041222$$

$$x[48] - x[49] - x[51] + x[53] = 2.26708$$

$$x[45] - x[46] - x[68] + x[70] = 2.69225$$

h) Tulio.

h1) Asociado a F_{Tm1} :

x[9] - x[7] = 1.0945 x[1] - x[3] = 2.23734 x[4] - x[6] = 2.87182 x[1] - x[3] + x[4] - x[6] = 5.10916 x[2] + x[5] - 2x[8] = 0.44592 x[1] + x[4] - 2x[9] = 4.25122 x[3] + x[6] - 2x[9] = -0.85794 x[38] - x[40] = -0.0331783 x[42] - x[44] = 0.169166 x[48] - x[49] - x[51] + x[53] = 1.47332x[45] - x[46] - x[68] + x[70] = 2.43794

h2) Asociado a F_{Tm2} :

$$x[9] - x[7] = 1.02041$$

$$x[1] - x[3] = 2.33542$$

$$x[4] - x[6] = 2.48696$$

$$x[1] - x[3] + x[4] - x[6] = 4.82238$$

$$x[2] + x[5] - 2x[8] = 0.44592$$

$$x[1] + x[4] - 2x[9] = 4.18192$$

$$x[3] + x[6] - 2x[9] = -0.64046$$

$$x[38] - x[40] = -0.0980875$$

$$x[42] - x[44] = -0.0144021$$

$$x[48] - x[49] - x[51] + x[53] = 1.26642$$

$$x[45] - x[46] - x[68] + x[70] = 2.54065$$

h3) Asociado a F_{Tm3} :

$$x[9] - x[7] = 1.26702$$

$$x[1] - x[3] = 2.75222$$

$$x[4] - x[6] = 2.82734$$

$$x[1] - x[3] + x[4] - x[6] = 5.57956$$

$$x[2] + x[5] - 2x[8] = 0.44592$$

$$x[1] + x[4] - 2x[9] = 4.3139$$

$$x[3] + x[6] - 2x[9] = -1.26566$$

$$x[38] - x[40] = -0.0423096$$

$$x[42] - x[44] = 0.100542$$

$$x[48] - x[49] - x[51] + x[53] = 1.6741$$

$$x[45] - x[46] - x[68] + x[70] = 2.69868$$

ANEXO III

ÁLGEBRA TENSORIAL PARA ATOMOS E IONES LIBRES

Palabras Preliminares.

Este Anexo entrega las herramientas matemáticas, utilizadas en la presente tesis para tratar la evaluación de momento de transición dipolar eléctrico en iones complejos de los actínidos. Se estudian las propiedades de transformación de operadores y funciones propias, frente a operaciones del grupo de rotación inversión G_3 . Se estudian las cadenas de grupos subgrupos, y se derivan generalizaciones de las ecuaciones derivadas pioneramente por Racah, para la evaluación de elementos matriciales en grupos dobles. Se estudian en detalle operadores independientes y dependientes del spin electrónico, y el álgebra se desarrolla en función de la construcción de invariantes (coeficientes de acoplamiento), tanto en física atómica como molecular.

Anexo III.1- Introducción.

Las propiedades de transformación de operadores y funciones bases frente a operadores de transformación resultan ser de gran interés, cuando se desean abordar aspectos formales en física atómica. Los estados del sistema son descritos por funciones de ondas, bases del espacio funcional, no pueden ser descritas en forma analítica exacta en el problema de N cuerpos. Sin embargo e independientemente de su calidad, presentan ciertas propiedades de transformación frente a operadores, por ejemplo de rotación en el espacio tridimensional de las rotaciones SO(3), las cuales son utilizadas intensivamente en el álgebra de tensores irreductibles **[1]**.

Para sistemas de simetría esférica se utiliza la cadena SO(2) \subset SO(3) siendo SO(2) un subgrupo de SO(3) correspondientes al conjunto completo de rotaciones en torno del eje Z. Por cierto, las funciones base de SO(3) pueden ser escogidas como las funciones propias de los operadores de momentum angular $\langle J^2, J_z \rangle$ a saber el conjunto de kets $\{ jm \rangle \}$, satisfaciéndose las ecuaciones de valores propios:

$$J^{2} | jm \rangle = j(j+1) | jm \rangle_{y} J_{z} | jm \rangle = m | jm \rangle$$
⁽¹⁾

Por cierto, estas funciones base presentan propiedades interesantes frente a los operadores de rotación $D(\alpha, \beta, \gamma)$ [2 - 4], las cuales serán tratadas en el presente anexo. Adicionalmente, se discute la forma de dichos operadores y su uso en la evaluación de elementos matriciales, en la teoría de tensores irreductibles [5, 6], involucrados en la diagonalización de la matriz de energía.

Anexo III.2.- Operadores de Rotación y Spinores.

Anexo III.2.1- Operadores de Rotación.

Un operador de rotación, denotado por $D(\alpha,\beta,\gamma)$, satisface [2]:

$$D(\alpha,\beta,\gamma)|jm'\rangle = \sum_{m} D^{j}_{mm'}(\alpha,\beta,\gamma)|jm\rangle \qquad (2)$$

donde la tríada corresponde a los ángulos de Euler. La identidad anterior indica que frente a una rotación arbitraria en torno a un eje dado, las funciones resultantes son estados mezclas de las (2j+1) funciones base. En SO(3) los elementos corresponden a rotaciones y en consecuencia, en la base de los kets $\{jm\}$, se encuentra para cada uno de los valores de j, un conjunto de [j]=(2j+1) matrices de representación D^j, las cuales son unitarias, es decir satisfacen la identidad:

$$\left[D^{j}\right]^{-1} = \left[D^{j}\right]^{+}$$
 (3)

donde el supraíndice (+) se lee "daga" y corresponde al transpuesto y conjugado.

Con respecto del operador de rotación $D(\alpha, \beta, \gamma)$ es preciso hacer notar que algunos autores lo definen para operar sobre coordenadas, en cambio otros lo definen de modo de operar sobre contornos de funciones. Aún más, algunos lo utilizan para operar sobre funciones definidas en un sistema de coordenadas inicial fijo y otros para operar sobre funciones definidas en el sistema de coordenadas final. Resulta por lo tanto crucial, adoptar uno u otro criterio si se desean efectuar cálculos consistentes y en consecuencia eliminar el problema de fases en la definición de operadores y funciones bases.

Una rotación en un ángulo dado en torno de un eje, digamos n, se dice positiva cuando al ser realizada en torno a dicho eje, el ángulo se mide en sentido anti horario. Sean tres rotaciones sucesivas de la forma **[2, 3]**:

- (a) Rotación de los ejes, en un ángulo α positivo en torno del eje Z.
- (b) Rotación del sistema de coordenadas resultante (x',y',z') en un ángulo positivo β en torno del eje y' (z = z').

(c) Rotación del sistema de coordenadas resultante (x",y",z") en torno del eje z" en un ángulo positivo γ, resultando el sistema de coordenadas (x"',y"',z"') con z" = z"'.

La secuencia de estas tres rotaciones $R_{Z''}(\gamma)R_{Y'}(\beta)R_Z(\alpha)$, es equivalente a tres rotaciones del sistema de coordenadas en torno de los ejes del sistema de coordenadas inicial (de referencia), a saber (x, y, z), resultando la expresión:

$$R_{Z''}(\gamma)R_{Y'}(\beta)R_{Z}(\alpha) \to R_{Z}(\alpha)R_{Y}(\beta)R_{Z}(\gamma) \quad (4)$$

La identidad anterior es útil por cuanto en diversas aplicaciones es generalmente más fácil considerar una transformación de coordenadas como una secuencia de tres rotaciones relativo a un sistema fijo de coordenadas.

Considérese a continuación la transformación de funciones por efecto de los operadores de rotación $D(\alpha, \beta, \gamma)$. Existe en la literatura confusión en relación al mecanismo por medio del cual se transforman funciones de un sistema de coordenadas a otro (sistema original al sistema final, una vez realizada la rotación) **[2].** Para clarificar este punto, sean f y F las funciones referidas a los sistemas de coordenadas (x,y,z) y al rotado final (x',y',z') respectivamente. De igual forma sean r y r' las coordenadas del mismo punto en el espacio físico, pero referidas a éstos distintos sistemas de coordenadas por lo que tienen asociados diferentes tríos de números.

Escribamos la identidad:

$$F(r') = Rf(r')$$

donde R es un operador que corresponde a una transformación de coordenadas arbitrarias. Esto es, R opera sobre f(r') y no así sobre f(r), de modo que:

"Para obtener la función transformada F(r'), debemos operar con R(r') sobre la función f(r'), es decir sobre la función original referida al sistema de coordenadas primado"

Así la secuencia de rotaciones conduce a:

$$f_1(r') = \exp(i\alpha J_{Z'})f(r')$$

$$f_2(r'') = \exp(i\beta J_{Y''})f_1(r'') = \exp(i\beta J_{Y''})\exp(i\alpha J_{Z''})f(r'')$$

para finalmente obtener la función transformada:

$$f_3(r^{\prime\prime\prime}) = \exp(i\gamma J_{Z^{\prime\prime\prime}}) f_2(r^{\prime\prime\prime}) = \exp(i\gamma J_{Z^{\prime\prime\prime}}) \exp(i\beta J_{Y^{\prime\prime\prime}}) \exp(i\alpha J_{Z^{\prime\prime\prime}}) f(r^{\prime\prime\prime})$$

En la identidad anterior, tanto las coordenadas como los operadores están referidos al sistema de coordenadas final.

En consecuencia, al eliminar las primas obtenemos el operador de transformación definido para actuar sobre funciones definidas en el sistema de coordenadas final:

$$D(\alpha, \beta, \gamma) = \exp(i\gamma J_Z) \exp(i\beta J_Y) \exp(i\alpha J_Z)$$
(5)

Un error común en la literatura **[2]**, dice relación con la utilización del operador en la forma $\exp(i\alpha J_z)\exp(i\beta J_y)\exp(i\gamma J_z)$ y utilizarlo de esta forma para obtener las funciones transformadas. Este procedimiento, por cierto es incorrecto ya que, como se ha visto, es necesario que los operadores estén expresados en el mismo sistema de coordenadas que el correspondiente a las funciones. Autores tales como Rose, Messiah y Tinkham **[7]** escriben el operador de la forma $\exp(-i\gamma J_z)\exp(-i\beta J_y)\exp(-i\alpha J_z)$ y lo utilizan para rotar funciones en ángulos positivos γ , β y α con respecto de un sistema de coordenadas fijo en el espacio.

Para algunos propósitos es conveniente utilizar un sistema de coordenadas fijo en el espacio y rotar los contornos de la función. En estas situaciones se introduce el operador [2]:

$$D_{f}(\alpha,\beta,\gamma) = \exp(-i\gamma J_{Z})\exp(-i\beta J_{Y})\exp(-i\alpha J_{Z})$$
(6)

el cual se expresa en términos de un sistema de coordenadas fijo inicial. De esta manera, tanto la función sobre la cual se actúa como la función originada por la acción del operador, están referidas a este sistema de coordenadas inicial fijo.

Los operadores presentan algunas propiedades de transformación frente a las rotaciones, que son de interés. Al respecto, sea un operador A definido por su efecto sobre un vector general, digamos V, de modo que se cumple:

$$V' = AV$$

Por cierto, frente a un cambio del sistema de coordenadas, V se transforma en RV y V' en RV', de donde podemos escribir:

$$RV' = R(AV) = (RAR^{-1})(RV)$$

Es decir, el operador A frente a una transformación de coordenadas cambia de acuerdo a $A \rightarrow RAR^{-1}$. Para nuestros propósitos las transformaciones más importantes son las rotaciones del sistema de coordenadas. En realidad, el método de tensores irreductibles se fundamenta

en las propiedades de transformación de funciones y operadores frente a rotaciones de coordenadas.

El grupo de rotación es designado en la literatura como SO(3) = R₃ y las representaciones irreductibles de este grupo D^j son infinitas en número con dimensiones [j], donde j = 0, 1/2, 1, 3/2, 2, ... Las representaciones D^j, para j fraccionario, se conocen como representaciones bi valuadas de SO(3) = R₃ y no obstante que en rigor son representaciones de un grupo mayor designado como U₂ donde S0(3) \subset U₂ [1].

Para los objetivos del presente trabajo resulta conveniente realizar algunos comentarios sobre los llamados grupos de Lie. Al respecto, SO(3) es un ejemplo, de grupo continuo puesto que sus elementos, es decir, los operadores $D(\alpha, \beta, \gamma)$ son funciones de parámetros que varían continuamente a partir de una elección dada de los ángulos de Euler (α, β, γ) podemos llegar a otra elección dada variando continuamente estos ángulos.

Además, SO(3) es un grupo infinito, puesto que los ángulos de Euler pueden ser escogidos en infinitas formas distintas. Como SO(3) es un grupo continuo, es posible trabajar con transformaciones infinitesimales, las cuales no tienen sentido en el caso de grupos finitos. En general, un conjunto de transformaciones infinitesimales O_i derivadas de un grupo continuo pueden ser escritas de la forma **[2]**:

$$O_i = 1 + \sum_j \delta a_j P_j \qquad (7)$$

donde δa_j corresponde a una variación infinitesimal de la variable a_j y P_j son operadores conocidos como generadores. Lie **[2]** demostró que el conjunto de las transformaciones infinitesimales O_i forman un grupo y que los operadores P_j de este grupo obedecen relaciones de conmutación de la forma:

$$\left[P_{j}, P_{k}\right] = \sum_{l} c(j, k, l) P_{l} \quad (8)$$

Es decir, los conmutadores $[P_j, P_k]$ resultan ser combinaciones lineales de los operadores P₁. Los elementos P_j de un grupo de Lie y sus relaciones de conmutación definen lo que se denomina un álgebra de Lie. Las relaciones de conmutación determinan las propiedades del grupo de Lie y las correspondientes propiedades del grupo finito de operaciones. Al respecto, las componentes J_X, J_Y y J_Z de los operadores de rotación infinitesimales $1 + \delta a_i J_i$, satisfacen las relaciones de conmutación anteriores y en consecuencia definen un álgebra de Lie, a partir de la cual se puede por una parte estructurar la teoría del momentum angular y por otra, todas las propiedades del grupo SO(3).

Anexo III.2.2 Spinores.

Un aspecto interesante dice relación con la rotación de spinores, es decir, funciones propias de spin. Los spinores no son funciones de las coordenadas (x, y, z) y es precisamente por esta razón que no es posible derivar operadores para rotaciones (ya sean infinitesimales o finitas), como se hizo para el caso de funciones escalares arbitrarias. Una complicación adicional aparece cuando se consideran spin orbítales a asociados a cada uno de los electrones del sistema.

Si se consideran exclusivamente spinores, el operador correcto es de la forma [2]:

$$\exp(i\gamma S_Z)\exp(i\beta S_Y)\exp(i\alpha S_Z) \qquad (9)$$

para el caso de rotaciones finitas de funciones de spin. Por cierto, para operar sobre spin orbítales se deben utilizar los operadores de momentum angular total J =L+S.

En términos generales, un típico elemento de matriz involucrando al operador de rotación es de la forma [2 - 4]:

$$D_{m'm}^{j}(\alpha,\beta,\gamma) = \exp(im'\gamma)d_{m'm}^{j}(\beta)\exp(im\alpha)$$
(10)

donde

$$d^{\frac{1}{2}}(\beta) = \begin{bmatrix} \cos(\beta/2) & sen(\beta/2) \\ -sen(\beta/2) & \cos(\beta/2) \end{bmatrix}$$
(11)

al que

$$D^{\frac{1}{2}}(\alpha,\beta,\gamma) = \begin{bmatrix} \exp i[(\alpha+\gamma)/2]\cos(\beta/2) & \exp i[(\alpha-\gamma)/2]\sin(\beta/2) \\ -\exp i[(\alpha-\gamma)/2]\sin(\beta/2) & \exp -i[(\alpha+\gamma)/2]\cos(\beta/2) \end{bmatrix}$$
(12)

La matriz $D^{\frac{1}{2}}$ es posible describirla en dos formas distintas.

Sean
$$a = \exp i[(\alpha + \gamma)/2]\cos(\beta/2)$$
 y $b = \exp -i[(\alpha - \gamma)/2]sen(\beta/2)$, con lo

cual adopta la forma [2]:

$$D^{\frac{1}{2}} = \begin{bmatrix} a & b \\ -b^* & a^* \end{bmatrix}$$
(13)

donde a y b son denominados parámetros de Cayley - Klein correspondientes a la rotación $D(\alpha, \beta, \gamma)$.

Alternativamente sí se expresa $D(\alpha, \beta, \gamma)$ en la forma $\exp(i\theta \,\vec{n} \cdot \vec{J})$ y se definen $a_0 = \cos(\theta/2)$ y $\vec{a} = sen(\theta/2)\vec{n}$ como los parámetros homogéneos de Euler, la identidad anterior es expresable:

$$D^{\frac{1}{2}} = \begin{bmatrix} a_0 + ia_3 & -ia_1 + a_2 \\ -ia_1 - a_2 & a_0 - ia_3 \end{bmatrix}$$

Para una rotación en torno del eje Z en un ángulo positivo θ y dado que $\vec{n} = n(0,0,1)$, el operador de rotación es expresable:

$$\exp(i\theta\,\vec{n}\cdot\vec{J}) = \exp(i\,\theta J_z)$$

con $\vec{a} = sen(\theta/2)\vec{n} = a(0,0,sen(\theta/2))$

En consecuencia los elementos de la matriz $D^{1/2}$ adoptan la forma:

$$a_0 + ia_3 = \cos(\theta/2) + isen(\theta/2) = \exp(i\theta/2)$$
$$-ia_1 + a_2 = 0 = -ia_1 - a_2$$
$$a_0 - ia_3 = \exp(-i\theta/2)$$

Es decir, para una rotación en torno del eje Z, en un ángulo positivo θ , se obtiene:

$$D^{\frac{1}{2}}(\theta) = \begin{bmatrix} \exp(i\theta/2) & 0\\ 0 & \exp(-i\theta/2) \end{bmatrix}$$
(14)

487

En ambos casos la matriz $D^{1/2}(\alpha, \beta, \gamma)$ es unitaria y su determinante es igual a la unidad. Como consecuencia de las propiedades de multiplicación matricial se observa que el conjunto de todas las matrices unitarias unimodulares (es decir que su inverso sea su transpuesto y conjugado con determinante igual a la unidad) de dimensión n, forman un grupo. En particular, el conjunto infinito de matrices de dimensión 2, unitarias y unimodulares forman un grupo denotado por U₂ [1].

Cualquier rotación física puedo ser caracterizada por sus respectivos ángulos de Euler, los cuales pueden ser utilizados ya sea usando los parámetros de Cayley - Klein o en su defecto los parámetros a_0 y a (parámetros homogéneos de Euler) para construir la correspondiente matriz de 2x2, perteneciente a $D^{\frac{1}{2}}$, es decir a U₂. De esta forma, cada una de las rotaciones físicas $D(\alpha, \beta, \gamma)$ aparece asociada con una única matriz de U₂.

De la identidad (14) se observa que al rotar en torno del eje Z en ángulos ϕ y (ϕ + 2 π), las cuales son rotaciones físicamente indistinguibles, se tiene que:

$$D^{\frac{1}{2}}(\phi + 2\pi, 0, 0) = -D^{\frac{1}{2}}(\phi, 0, 0)$$
 (15)

Al generalizar este resultado se establece que para cada una de las rotaciones $D(\alpha, \beta, \gamma) = D(\vec{n}, \phi)$, usando los ángulos de Euler standard y la matriz generada $D^{\frac{1}{2}}(\alpha, \beta, \gamma)$ o $U_2(a, b)$, existe una rotación físicamente equivalente $D(\vec{n}, \phi + 2\pi)$ la cual origina una matriz $-D^{\frac{1}{2}}(\alpha, \beta, \gamma)$ o $-U_2(a, b)$.

Para cada uno de los elementos de SO(3), existen dos matrices asociadas del grupo U₂, es decir, existe una correspondencia del tipo homomorfismo dos a uno. Se puede cambiar esta relación a un homomorfismo uno a uno, si se introduce un truco matemático en el sentido de definir $D(\vec{n}, \phi)$ y $D(\vec{n}, \phi + 2\pi)$ como operaciones físicas distintas del grupo doble, el cual incluye el doble de las operaciones de SO(3).

Las matrices $D^{\frac{1}{2}}$ o U₂ correspondientes a los ángulos de Euler standard no forman un grupo y en consecuencia no constituyen representaciones de SO(3). La misma dificultad aparece para todas las representaciones D^j, siendo j fraccionario por cuanto las rotaciones $D(n,\phi)$ y $D(n,\phi+2\pi)$ generan matrices de rotación distintas. Para el caso de j entero las matrices D^j son tales que las rotaciones $D(n,\phi)$ y $D(n,\phi+2\pi)$ dan origen a la misma matriz de rotación. En este caso los ángulos standard de Euler generan una matriz característica para cada una de las rotaciones y en consecuencia las matrices D^j corresponden a representaciones verdaderas para el grupo
SO(3). De la misma forma como las componentes de un vector forman de acuerdo a las representaciones de D^{i} en el grupo SO(3), un spinor es posible definirlo como un conjunto de dos cantidades que se transforman de acuerdo a U₂, el llamado grupo spinor.

Anexo III.3.- Tensores Irreductibles y evaluación de elementos matriciales.

En SO(3), las funciones propias de los operadores de momentum angular J^2 y J_z , satisfacen las propiedades de transformación frente a operadores de rotación dadas en la ecuación (2) **[2]**:

$$D(\alpha, \beta, \gamma) | jm' \rangle = \sum_{m} D_{mm'}^{j}(\alpha, \beta, \gamma) | jm \rangle$$

donde las matrices D^j constituyen las representaciones irreductibles de SO(3) = R₃. Adicionalmente, se introducen los operadores T_q^k donde para un valor de k dado, existen [k] = (2k+1) componentes del tensor T^k . Estos operadores tensoriales se transforman de acuerdo a la expresión:

$$D(\alpha,\beta,\gamma)T_{q}^{k}D^{-1}(\alpha,\beta,\gamma) = \sum_{p}T_{p}^{k}D_{pq}^{k}(\alpha,\beta,\gamma) \quad (16)$$

490

Los operadores T^k son irreductibles si y sólo si las matrices asociadas D^k lo son. Una definición alternativa de tensores irreductibles, fue propuesta por Racah en base a los conmutadores:

$$\begin{bmatrix} J_{+}, T_{q}^{k} \end{bmatrix} = \sqrt{(k-q)(k+q+1)}T_{q+1}^{k}$$
(17a)
$$\begin{bmatrix} J_{-}, T_{q}^{k} \end{bmatrix} = \sqrt{(k+q)(k-q+1)}T_{q-1}^{k}$$
(17b)
$$\begin{bmatrix} J_{0}, T_{q}^{k} \end{bmatrix} = qT_{q}^{k}$$
(17c)

donde: $J_{+} = J_{x} + iJ_{y}$, $J_{-} = J_{x} - iJ_{y}$ y $J_{0} = J_{z}$.

En base a estas definiciones se introducen los operadores J_{+1} , J_{-1} y J_{0} , dados por las relaciones:

$$J_{+1} = -(1/\sqrt{2})J_{+}$$
 $J_{-1} = +(1/\sqrt{2})J_{-}$ $J_{0} = J_{Z}$.

En estos términos, el vector \vec{J} es un operador tensorial de orden uno con componentes J_{+1} , J_{-1} y J_0 . Por analogía, las armónicas esféricas pueden ser también consideradas como operadores tensoriales, por cuanto presentan propiedades similares de transformación a los operadores T_q^k . Para los objetivos del presente trabajo, resulta conveniente introducir los operadores tensoriales de Racah, $C_q^k = (\sqrt{4\pi/2k+1})Y_{kq}$, siendo las Y_{kq} las armónicas esféricas standard **[8].** Estos operadores de Racah resultan ser de utilidad para escribir en forma tensorial compacta el teorema de adición de las armónicas esféricas. En efecto, dado que:

$$P_{k}(\cos w) = \frac{4\pi}{2k+1} \sum_{q} Y_{kq}^{*}(\theta_{i}\phi_{i})Y_{kq}(\theta_{j}\phi_{j}) = \sum_{q} (-1)^{q} C_{-q}^{k}(i)C_{q}^{k}(j) \quad (18)$$

donde w es el ángulo formado entre los radios vectores \vec{r}_i y \vec{r}_j asociados a las partículas i-ésima y j-ésíma respectivamente, al definir el producto escalar $C^k(i) \cdot C^k(j)$, por la identidad:

$$C^{k}(i) \cdot C^{k}(j) = \sum_{q} (-1)^{q} C^{k}_{-q}(i) C^{k}_{q}(j)$$
(19)

el teorema de adición adopta la forma:

$$P_k(\cos w) = C^k(i) \cdot C^k(j) \qquad (20)$$

En términos generales, el producto escalar es posible expresarlo:

$$T^{k} \cdot U^{k} = \sum_{q} (-1)^{q} T^{k}_{q} U^{k}_{-q}$$
(21)

Al investigar elementos típicos de matriz de la forma $\langle \alpha jm | T_q^k | \alpha' j'm' \rangle$, donde α y α' son independientes de las propiedades de transformación de los kets bases $\{ jm \rangle \}$ del grupo de rotación SO(3), se tiene que este elemento de matriz es posible descomponerlo en dos partes: una que está exclusivamente determinada por las propiedades de transformación de las funciones bases y operadores, y la otra que contiene toda la información física del sistema.

Esta factorización corresponde al llamado Teorema de Wigner - Eckart y se expresa por la conocida identidad [6]:

$$\left\langle \alpha jm \left| T_{q}^{k} \right| \alpha' j'm' \right\rangle = (-1)^{j-m} \left\langle \alpha j \left| T^{k} \right| \alpha' j' \right\rangle \begin{bmatrix} j & k & j' \\ -m & q & m' \end{bmatrix}$$
(22)

Los símbolos 3 is relacionan con los símbolos de Wígner por medio de la expresión [9]:

$$\begin{bmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{bmatrix} = (-1)^{j_1 - j_2 - m_3} \begin{bmatrix} j_3 \end{bmatrix}^{-1/2} \langle j_3 - m_3 \| j_1 m_1 j_2 m_2 \rangle$$
(23)

Los símbolos 3j son invariantes frente a permutaciones pares de sus columnas, en cambio frente a permutaciones impares de sus columnas deben ser multiplicados por el factor de fase $(-1)^{j_1+j_2+j_3}$ [10].

Adicionalmente, deben satisfacer la relación triangular $\Delta(j_1 j_2 j_3)$, es decir: $j_1 + j_2 - j_3$, $j_1 - j_2 + j_3$ $y - j_1 + j_2 + j_3$ deben ser mayor o a lo sumo igual a cero. También debe cumplirse en forma simultánea la condición:

$$m_1 + m_2 + m_3 = 0$$

Así, para la no nulidad del elemento de matriz $\langle \alpha jm | T_q^k | \alpha' j'm' \rangle$, una condición necesaria implica que: $|j + j'|, \dots, |j - j'|$ y q = m - m'.

Sea T^{k+} el operador adjunto de T^k . Bajo estas condiciones se satisfacen las identidades [2, 11]:

$$\langle \alpha j \| T^{k+} \| \alpha' j' \rangle = (-1)^{j-j'} \langle \alpha' j' \| T^{k} \| \alpha j \rangle^{*}$$

$$\langle \alpha j \| T^{k+} \| \alpha' j' \rangle = \langle \alpha j \| T^{k} \| \alpha' j' \rangle = (-1)^{j-j'} \langle \alpha' j' \| T^{k} \| \alpha j \rangle$$

cuando $T^k = T^{k+}$.

Es decir, cuando T^{k} es un operador hermítico, para sus componentes se satisface:

$$T_q^{k+} = (-1)^q T_{-q}^k$$

Una situación de interés es la que dice relación con la evaluación del elemento matricial $\langle \alpha jm \| J_0 \| \alpha' j'm' \rangle$, donde $J_0 = J_Z$. Es evidente que en este caso se satisface:

$$\langle \alpha jm \| J_0 \| \alpha' j'm' \rangle = m' \delta(\alpha, \alpha') \delta(j, j') \delta(m, m')$$
 (24a)

aplicando el teorema do Wigner - Eckart, se obtiene alternativamente:

$$\left\langle \alpha j m \left\| J_0 \right\| \alpha' j' m' \right\rangle = (-1)^{j-m} \begin{bmatrix} j & 1 & j' \\ -m & 0 & m' \end{bmatrix} \left\langle \alpha j \left\| J \right\| \alpha' j' \right\rangle \quad (24b)$$

Adicionalmente, dado que:

$$\begin{bmatrix} j & 1 & j \\ -m & 0 & m \end{bmatrix} = (-1)^{j-m} \left\{ m / \sqrt{j(j+1)(2j+1)} \right\}$$

resulta de inmediato demostrar que:

$$\langle \alpha j \| J \| \alpha' j' \rangle = \sqrt{j(j+1)(2j+1)} \delta(\alpha, \alpha') \delta(j, j')$$
(25a)
$$\langle l \| L \| l' \rangle = \sqrt{l(l+1)(2l+1)} \delta(l, l')$$
(25b)

$$\langle s \| S \| s' \rangle = \sqrt{3/2} \delta(s, s')$$
 (25c)

Otras identidades útiles para nuestros efectos son las indicadas a continuación [7, 10]:

$$\langle Y_{lm} | Y_{kp} | Y_{l'm'} \rangle = (-1)^m \left\{ \frac{(2l+1)(2k+1)(2l'+1)}{4\pi} \right\}^{1/2} \times \begin{bmatrix} l & k & l' \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} l & k & l' \\ -m & p & m' \end{bmatrix}$$
(26a)

$$\langle l \| Y^k \| l' \rangle = (-1)^l \left\{ \frac{(2l+1)(2k+1)(2l'+1)}{4\pi} \right\}^{1/2} \times \begin{bmatrix} l & k & l' \\ 0 & 0 & 0 \end{bmatrix}$$
(26b)

$$\langle l \| C^k \| l' \rangle = (-1)^l \sqrt{(2l+1)(2l'+1)} \begin{bmatrix} l & k & l' \\ 0 & 0 & 0 \end{bmatrix}$$
(26c)

con l + k + l' número par.

Anexo III.3.1 - Operadores Tensoriales unitarios de Racah u^k.

De interés especial para nuestros objetivos son los operadores tensoriales unitarios de Racah, que se designarán por u^k. Estos operadores se definen por medio de las relaciones **[11, 12]**:

$$\langle \alpha j \| u^k \| \alpha' j' \rangle = \delta(\alpha, \alpha') \delta(j, j')$$
 (27)

con lo cual el elemento de matriz $\langle \alpha jm \| u^k \| \alpha' j'm' \rangle$ se expresa, con la ayuda del teorema de Wígner - Eckart, en la forma:

$$\langle \alpha j m \| u^{k} \| \alpha' j' m' \rangle = (-1)^{j-m} \begin{bmatrix} j & k & j' \\ -m & q & m' \end{bmatrix} \langle \alpha j \| u^{k} \| \alpha' j' \rangle =$$
$$= (-1)^{j-m} \begin{bmatrix} j & k & j' \\ -m & q & m' \end{bmatrix} \delta(\alpha, \alpha') \delta(j, j')$$
(28)

Así, de las ecuaciones (22) y (28), para $\alpha = \alpha'$ y j = j' se tiene:

$$\left\langle \alpha jm \left| T_{q}^{k} \right| \alpha jm' \right\rangle = \left\langle \alpha j \left\| T^{k} \right\| \alpha j \right\rangle \left\langle \alpha jm \left| u_{q}^{k} \right| \alpha jm' \right\rangle$$
⁽²⁹⁾

De acuerdo al resultado anterior, en la base de las funciones $\{\langle jm | \}$, los elementos de matriz que involucran al operador T_q^k son proporcionales a los elementos de matriz del operador tensorial unitario u_q^k , siendo la constante de proporcionalidad el elemento de matriz reducido $\langle \alpha j || T^k || \alpha j \rangle$. De la identidad (28) se observa que para j = j' los valores de k se mueven entre 0 y 2j, de modo que para k > 2j, los operadores tensoriales unitarios u_q^k son nulos, por cuanto los coeficientes 3j asociados se anulan idénticamente **[10].**

Adicionalmente, los operadores tensoriales unitarios son expresables en términos de los operadores de momentum angular J_+, J_-, J_0, J^2 . Así, por

ejemplo para k = l las tres componentes son las que se indican a continuación [4, 11]:

$$u_{+1}^{l} = -\left(\frac{1}{\sqrt{2}}\right) \frac{L_{+}}{\sqrt{l(l+1)(2l+1)}}$$
(30a)

$$u_0^l = -\left(\frac{1}{\sqrt{2}}\right) \frac{L_0}{\sqrt{l(l+1)(2l+1)}}$$
(30b)

$$u_{-1}^{l} = + \left(\frac{1}{\sqrt{2}}\right) \frac{L_{-}}{\sqrt{l(l+1)(2l+1)}}$$
(30c)

Si J se utiliza simbólicamente para denotar a J_+, J_-, J_0 , la generalización de los operadores anteriores para k > l, conduce a las expresiones generales [11, 12]:

(A) $q \ge 0$

$$u_{q}^{k}(J) = \left\{ \frac{(k-q)!}{(k+q)!(2j-k)!(2j+k+1)!} \right\}^{\frac{1}{2}} (-1)^{k+q} J_{+}^{q} + \left[(-1)^{q} \frac{(2j-q)!(k+q)!}{q!(k-q)!} + \left[1 - \delta(k+q) \right] \sum_{z=q+1}^{k} (-1)^{z} \frac{(2j-z)!(k+z)!}{z!(k-z)!(z-q)!} \prod_{t=1}^{z-q} (j+J_{z}+q-z+t) \right]$$
(31)

(B) $q \leq 0$

$$u_{q}^{k}(J) = \left\{ \frac{(k+q)!}{(k-q)!(2j-k)!(2j+k+1)!} \right\}^{\frac{1}{2}} (-1)^{q} J_{-}^{-q} + \left[(-1)^{q} \frac{(2j+q)!(k-q)!}{-q!(k+q)!} + \left[1 - \delta(k-q) \right] \sum_{z=-q+1}^{k} (-1)^{z} \frac{(2j-z)!(k+z)!}{z!(k-z)!(z+q)!} \prod_{t=1}^{z-q} (j-J_{z}-q-z+t) \right]$$
(32)

Como ya se ha hecho notar, de la ecuación (29) se observa que los elementos matriciales del tipo $\langle \alpha jm | T_q^k | \alpha jm' \rangle$ son proporcionales a los bra - kets $\langle \alpha jm | u_q^k | \alpha jm' \rangle$ siendo la constante de proporcionalidad el elemento de matriz reducido $\langle \alpha j | T^k | | \alpha j \rangle$.

Por otra parte de la ecuación (26b) observamos que los elementos de matriz reducidos del tipo $\langle l || Y^k || l' \rangle$ son distintos de cero, si y sólo si l+k+l' es par y |l+l'|,...|l-l'|, es decir existen elementos de matriz reducidos no diagonales para l distinto de l', bajo las condiciones señaladas anteriormente. Sin embargo, los elementos de matriz que involucran el operador tensorial unitario u^k son diagonales, en consecuencia la representación $Y^k = u^k \langle j || Y^k || j \rangle$ es válida sólo en una representación diagonal, para la cual j = j', de modo que bajo estas condiciones 2l+k debe ser par y k = 0,...,2l. Adicionalmente sí j es entero entonces k debe ser par o en su defecto los elementos de matriz

reducidos $\langle j \| Y^k \| j \rangle$ serán necesariamente nulos. De la discusión anterior resulta entonces la siguiente conclusión:

"Los operadores u^k no pueden ser siempre expresados en términos de los operadores Y^k"

Anexo III.3.2.- Coeficientes de parentesco fraccionario y número de señoridad.

Los operadores tensoriales unitarios polielectrónicos U^k son introducidos por medio de la relación **[12]:**

$$U^{k} = \sum_{i=1}^{N} u^{k}(i)$$
 (33)

con lo cual los elementos matriciales polielectrónicos adoptan la forma:

$$\left\langle \alpha JM \left| U_{q}^{k} \right| \alpha' J'M' \right\rangle = (-1)^{J-M} \left\langle \alpha J \left| U^{k} \right| \alpha' J' \right\rangle \begin{bmatrix} J & k & J' \\ -M & q & M' \end{bmatrix}$$
(34)

La evaluación de los elementos de matriz polielectrónicos reducidos requiere de la introducción de los coeficientes de parentesco fraccionario. Se hace necesario, entonces, mencionar algunas ideas preliminares con respecto de estos coeficientes, los cuales presentan una gran utilidad en problemas de N cuerpos. Al respecto, se debe recordar que para el caso de fermiones, la función de ondas polielectrónica debe satisfacer el Principio de Antisimetría, es decir debe ser antisimétrica con respecto del intercambio de las coordenadas (spines orbitales) de dos electrones cualesquiera. Para tres o más electrones equivalentes, la construcción de la función de ondas polielectrónica puede ser realizada utilizando los coeficientes de parentesco fraccionario de acuerdo a: [12, 13]

$$\left| j^{N} \alpha JM \right\rangle = \sum_{\left(\overline{\alpha}\overline{J}\right)} \left| j^{N-1} \left(\overline{\alpha}\overline{J}\right) j, JM \right\rangle \left\langle j^{N-1} \left(\overline{\alpha}\overline{J}\right), j \left| j^{N} \alpha J \right\rangle$$
(35)

En la identidad anterior, la sumatoria se extiende sobre todos los estados $\langle j^{N-1}(\overline{\alpha}\overline{J})\rangle$ de la configuración j^{N-1} . Por cierto estos estados intermedios constituyen un conjunto completo en el espacio funcional. De igual forma, los coeficientes de parentesco fraccionario son indicados por los bra - kets $\langle j^{N-1}(\overline{\alpha}\overline{J}), j | j^N \alpha J \rangle$. Los estados $\langle j^{N-1}(\overline{\alpha}\overline{J}) \rangle$ de la configuración j^{N-1} constituyen una base bi - ortonormal completa y por cierto son antisimétricos con respecto de las coordenadas de los (N-1) electrones y se conocen en la literatura como "estados padres" del estado αJ correspondiente a la configuración j^N.

Los coeficientes de parentesco fraccionario están normalizados a la unidad satisfaciéndose la identidad [12, 13]:

$$\sum_{(\overline{\alpha}\overline{J})} \left\langle j^{N} \alpha J \left\{ j^{N-1} \left(\overline{\alpha}\overline{J} \right), j \right\rangle \left\langle j^{N-1} \left(\overline{\alpha}\overline{J} \right), j \right| \right\} j^{N} \alpha' J' \right\rangle = \delta(\alpha, \alpha') \delta(J, J') \quad (2.36)$$

Estos coeficientes (fpc) se escogen de forma tal que produzcan las funciones de ondas antisimétricas para la configuración j^N, de modo tal que son necesariamente nulos para todos aquellos estados de la configuración j^{N-1} prohibidos por el Principio de Antisimetría.

Adicionalmente, estos coeficientes satisfacen el sistema de ecuaciones:

$$\sum_{(\alpha'J')} \langle J'' j^{2} (J''') : J \| J'' j (J') j : J \rangle \langle j^{N-2} (\alpha''J''), j \| j^{N-1} \alpha' J' \rangle \times \langle j^{N-1} (\alpha' J'), j \| j^{N} \alpha J \rangle = 0$$
(36b)

para (J'''-2j) par.

De forma tal que si los coeficientes de parentesco fraccionario son conocidos para la configuración j^{N-1}, entonces las ecuaciones anteriores (36b) pueden ser utilizadas para determinar los respectivos coeficientes correspondientes a la configuración j^N. Nielson y Koster tabularon estos coeficientes de parentesco fraccionario (fpc) para las configuraciones p^N, d^N y

 f^{N} , hasta llegar a la semicapa completa. Para configuraciones electrónicas con un número de electrones superior a la de una semicapa completa, estos coeficientes son raramente precisados, por cuanto los elementos de matriz para configuraciones del tipo $I^{4l+2\cdot N}$ pueden ser obtenidos a partir de los elementos de matriz correspondientes a configuraciones electrónicas del tipo I^{N} . Es necesario enfatizar que el sistema de ecuaciones (36b) no fija las fases de las distintas funciones propias correspondientes a los diversos estados espectroscópicos permitidos de acuerdo al Principio de Antisimetría. Así, para las configuraciones del tipo f^{N} , en el esquema de acoplamiento de Russell -Saunders $\{LM_{L}SM_{s}\rangle\}$, los coeficientes de parentesco fraccionario pueden ser factorizados en tres componentes, caracterizadas por los números cuánticos W, U y vLS [11, 13].

La partición de N en tres y dos números enteros sigue el criterio que se enuncia a continuación:

$$W = (w_1, w_2, w_3)$$
 donde $0 \le w_3 \le w_2 \le w_1 \le 2$ (36c)

$$U = (u_1, u_2)$$
 donde $0 \le u_2 \le u_1 \le 2$ (36d)

correspondientes a las representaciones irreductibles de los grupos R_7 y G_2 respectivamente.

En la presente notación $R_7 = SO(7)$ y corresponde al grupo expandido por las 7 funciones de tipo f y U₂ es conocido como el grupo excepcional. Obsérvese que la cadena: $R_7 \supset U_2 \supset SO(3)$ es operativa en este caso.

Adicionalmente, los estados vLS tienen la significación standard en SO(3) y v es un índice adicional que permite distinguir entre estados de multiplete de igual valor de L y S y que son ortogonales entre sí. En términos de la clasificación anterior, las bases sólo se fijan parcialmente, siendo aún necesario introducir elecciones arbitrarias. Los trabajos de B. Judd son relevantes al respecto **[14].**

La situación es inmensamente más simple en el caso de configuraciones electrónicas del tipo d^N para las cuales los términos espectroscópicos con igual valor de L y S pueden ser distinguidos entre sí, clasificándolos de acuerdo a las representaciones irreductibles del grupo $R_5 =$ SO(5) que corresponde al grupo de rotaciones en el espacio generado por las cinco funciones del tipo d. Acá el número N se particiona en dos enteros de acuerdo a:

$$W = (w_1, w_2)$$
 donde $0 \le w_2 \le w_1 \le 2$ (36e)

Un esquema alternativo consistente con el anterior, para el caso de configuraciones del tipo d^N corresponde al uso de los números de señoridad que se designan por la letra v **[15].** En este formalismo, los estados se

clasifican de acuerdo a los valores propios del operador Q definido por la relación:

$$Q=\sum_{i< j}^{N} q_{ij}$$
 (37a)

donde q_{ij} es un operador escalar definido de acuerdo a:

$$\left\langle l^{2}LM\left|q_{ij}\right|l^{2}LM\right\rangle = (2l+1)\delta(L,0)$$
 (37b)

Adicionalmente los valores propios de Q para la configuración I^N están relacionados con los correspondientes a la configuración I^{N-2} por medio de la identidad:

$$Q(l^N \alpha SL) = Q(l^{N-2} \alpha SL) + 2l + 3 - N$$
 (37c)

El concepto de número de señoridad fue introducido por Racah, haciendo uso de argumentos bastante complicados y es en particular útil para configuraciones del tipo d^N. Racah demostró la existencia de un cierto operador, el cual puede ser diagonalizado a la misma vez que los operadores L² y S², haciendo elecciones adecuadas de combinaciones lineales de las funciones determinantales de Slater. El valor propio de este operador es designado por Q y está en íntima relación con el concepto de número de señoridad, donde este último puede ser interpretado en forma simple en

términos de los estados espectroscópicos permitidos para la configuración I^N. Para configuraciones del tipo d^N, el número de señoridad v puede ser definido por medio de la relación:

$$v = 6 - \sqrt{(6 - N)^2 + 4Q}$$
 (37d)

Para el caso de electrones del tipo d, los términos de repulsión bielectrónicos dan origen a integrales radiales del tipo F^0 , F^2 y F^4 y es posible definir los parámetros $F_0 = F^0$, $F_2 = (1/49)F^2$ y $F_4 = (1/441)F^4$.

Para este tipo de configuraciones, Racah definió los parámetros A, B y C por medio de las relaciones siguientes: $A = F_0 - 49F_4$, $B = F_2 - 5F_4$ y $C = 35F_4$. Para el caso de electrones d equivalentes, se introducirá una energía promedio establecida según:

$$E_{av} = \left(\frac{1}{2}\right) N(N-1) \left\{ F^{0} - \left(\frac{2}{63} \left(F^{2} + F^{4}\right)\right) \right\}$$
(37e)

De este modo los términos diagonales de la matriz de energías adoptan la forma:

$$E(^{2S+1}L) = E_{av} + f^2 F^2 + f^4 F^4$$
 (37f)

donde los coeficientes f^2 y f^4 han sido tabulados para configuraciones del tipo d^N (n = 2,3,4,5) por Slater **[15]**. Las energías de los multiplotes ${}^{2S+1}L$ correspondientes a las distintas configuraciones del tipo d^N , son combinaciones lineales de los parámetros de Racah A, B y C. Racah demostró que al igualar B = 0, entonces las energías son expresables de acuerdo a:

$$E = \left(\frac{1}{2}\right)N(N-1)A + \left[\left(\frac{1}{4}\right)N(N+2) - S(S+1) + Q\right]C \quad (37g)$$

De igual manera se cumple la relación:

$$Q = \left(\frac{1}{4}\right)(N-v)(4l+4-N-v)$$
 (37h)

corresponde al número cuántico azimutal o secundario.

Las energías correspondientes a los multipletes permitidos adoptan la forma:

$$E = \left(\frac{1}{2}\right)N(N-1)A + \left[-\left(\frac{7}{9}\right)N(N+1) + 49f^2\right]B + \left[\left(\frac{7}{18}\right)N(N+1) + 7f^2 + \left(\frac{63}{5}\right)f^4\right]C$$
(37i)

Igualando los coeficientes correspondientes a C, en las ecuaciones (37g) y (37i), se encuentra una expresión para Q:

$$Q = \left(\frac{5}{36}\right)N^2 - \left(\frac{8}{9}\right)N + S(S+1) + 7f^2 + \left(\frac{63}{5}\right)f^4$$
(37j)

de modo que una vez conocido el valor de Q, es inmediato obtener el valor del número de señoridad asociado al multiplete, utilizando la ec. (37d). Sin embargo, la situación se complica bastante en el caso de las configuraciones del tipo f^N y por cierto para abordar adecuadamente esta discusión se precisa de elementos adicionales.

Anexo III.3.3 – Operadores y productos tensoriales.

Al considerar productos tensoriales (productos de Kronecker), sea X_Q^{κ} un operador tensorial que satisface las relaciones de conmutación de Racah definido como el producto de Kronecker de los tensores T^{k_1} y U^{k_2} por medio de la relación **[2]**:

$$X_{Q}^{K} = \{T^{k_{1}} \times U^{k_{2}}\}_{Q}^{K}$$
 (38)

donde $K = |k_1 + k_2|, ..., |k_1 - k_2|$ Esta relación conduce a escribir la identidad:

$$|KQ\rangle = \sum_{q_1q_2} |k_1q_1\rangle |k_2q_2\rangle \langle k_1q_1k_2q_2 | (k_1k_2)KQ\rangle = \sum_{q_1q_2} T_{q_1}^{k_1} U_{q_2}^{k_2} \langle k_1q_1k_2q_2 | KQ\rangle$$
(39)

Adicionalmente, sí ambos operadores T^{k_1} y U^{k_2} actúan sobre las mismas coordenadas se obtiene que:

$$\langle \alpha jm \left| X_{Q}^{K} \right| \alpha' j'm' \rangle = \sum_{q_{1}q_{2}} \langle \alpha jm \left| T_{q_{1}}^{k_{1}} U_{q_{2}}^{k_{2}} \right| \alpha' j'm' \rangle \langle k_{1}q_{1}k_{2}q_{2} \left| KQ \right\rangle =$$

$$= \sum_{q_{1}q_{2}} \sum_{\alpha''j''m''} \langle \alpha jm \left| T_{q_{1}}^{k_{1}} \right| \alpha'' j''m'' \rangle \langle \alpha'' j''m'' \left| U_{q_{2}}^{k_{2}} \right| \alpha' j'm' \rangle \langle k_{1}q_{1}k_{2}q_{2} \left| KQ \right\rangle$$

$$(40)$$

Aplicando el teorema de Wigner - Eckart en ambos miembros, se establece directamente una expresión general para el elemento de matriz reducido $\langle \alpha j \| X^{\kappa} \| \alpha' j' \rangle$ el cual adopta la forma:

$$\langle \alpha j \| X^{\kappa} \| \alpha' j' \rangle = (-1)^{j+\kappa+j'} [\kappa]^{\frac{j}{2}} \sum_{\alpha'' j''} \langle \alpha j \| T^{k_1} \| \alpha'' j'' \rangle \langle \alpha'' j'' \| U^{k_2} \| \alpha' j' \rangle \times \begin{cases} j & \kappa & j' \\ k_2 & j'' & k_1 \end{cases}$$

$$(41)$$

Es necesario recordar que los símbolos 6j están relacionados con el acoplamiento de 3 momenta angulares, a saber j_1 , j_2 y j_3 [10]. En efecto, se pueden seguir dos caminos para llevar a cabo este acoplamiento: (A) Se acopla j_1 y j_2 para dar la resultante j_{12} y luego se procede a acoplar j_{12} para obtener el momento angular total J, o en su defecto, (B) se acopla j_1 con

 $j_{23} = j_2 + j_3$ para dar la resultante J. Estos dos conjuntos de funciones, producto de los esquemas de acoplamiento (A) y (B), están relacionados entre sí por medio de la transformación:

$$|j_{1},(j_{2}j_{3})j_{23};J\rangle = \sum_{j_{12}} \langle (j_{1}j_{2})j_{12},j_{3};J || j_{1},(j_{2}j_{3})j_{23};J \rangle |(j_{1}j_{2})j_{12},j_{3};J \rangle$$
(42)

Los símbolos 6j están definidos por la identidad [10]:

$$\begin{cases} j_{1} & j_{2} & j_{12} \\ j_{3} & J & j_{23} \end{cases} = (-1)^{j_{1}+j_{2}+j_{3}+J} \{ [j_{12}] [j_{23}] \}^{1/2} \times \\ \times \langle (j_{1}j_{2})j_{12}, j_{3}; J || j_{1}, (j_{2}j_{3})j_{23}; J \rangle \end{cases}$$
(43)

De igual manera los símbolos 9j se relacionan con el acoplamiento de 4 momenta angulares, j_1 , j_2 , j_3 , j_4 , respectivamente. Estos símbolos se definen de acuerdo a **[9]**:

$$\begin{cases} j_{1} & j_{2} & j_{12} \\ j_{3} & j_{4} & j_{34} \\ j_{13} & j_{24} & J \end{cases} = \{ [j_{12}] [j_{34}] [j_{13}] [j_{24}] \}^{1/2} \times \\ & \times \langle (j_{1}j_{2})j_{12}, (j_{3}j_{4})j_{34}; J \| (j_{1}j_{3})j_{13}, (j_{2}j_{4})j_{24}; J \rangle = \\ & \times \langle (j_{1}j_{2})j_{12}, (j_{3}j_{4})j_{34}; J \| (j_{1}j_{3})j_{13}, (j_{2}j_{4})j_{24}; J \rangle = \\ & = \sum_{t} (-1)^{2t} [t] \begin{cases} j_{1} & j_{2} & j_{12} \\ j_{34} & J & t \end{cases} \begin{cases} j_{3} & j_{4} & j_{34} \\ j_{2} & t & j_{24} \end{cases} \begin{cases} j_{13} & j_{24} & J \\ t & j_{1} & j_{3} \end{cases} \end{cases}$$
(44)

Los símbolos 6j son invariantes frente a permutaciones de pares de columnas cualesquiera, como también frente al intercambio de dos filas

(tomándolas como parejas). También los símbolos 9j son invariantes frente a permutaciones pares de sus columnas y filas, como también frente a una transposición. Sin embargo, estos últimos deben ser multiplicados por el factor de fase $(-1)^{\sum j_i}$, cuando se realizan permutaciones impares de sus columnas y filas.

Al observar la ec. (39), correspondiente al acoplamiento: $X_Q^K = \{T^{k_1} \times U^{k_2}\}_Q^K$, una situación interesante ocurre cuando los operadores T^{k_1} y U^{k_2} actúan sobre las coordenadas de las partículas 1 y 2, respectivamente.

Considérese el elemento de matriz $\langle \alpha_1 j_1 \alpha_2 j_2 jm | T_{q_1}^{k_1} U_{q_2}^{k_2} | \alpha_1' j_1' \alpha_2' j_2' j'm' \rangle$ y las expansiones:

$$\langle jm | = \langle \alpha_1 j_1 \alpha_2 j_2 jm | = \sum_{m_1 m_2} \langle \alpha_1 j_1 m_1 \alpha_2 j_2 m_2 | \langle \alpha_1 j_1 \alpha_2 j_2 jm | \alpha_1 j_1 m_1 \alpha_2 j_2 m_2 \rangle$$
(45a)

$$|j'm'\rangle = \sum_{m_1'm_2'} |\alpha_1'j_1'm_1'\alpha_2'j_2'm_2'\rangle \langle \alpha_1'j_1'm_1'\alpha_2'j_2'm_2'|\alpha_1'j_1'\alpha_2'j_2'j'm'\rangle \quad (45b)$$

Es importante recordar que los coeficientes de acoplamiento son independientes de $\alpha_1, \alpha_2, \alpha_1' y \alpha_2'$ en consecuencia haciendo uso de las ecuaciones (39), (45a) y (45b), se puede escribir la identidad:

$$\langle \alpha_{1} j_{1} \alpha_{2} j_{2} jm | X_{Q}^{\kappa} | \alpha_{1} ' j_{1} ' \alpha_{2} ' j_{2} ' j'm' \rangle = \sum_{q_{1}q_{2}} \sum_{m_{1}m_{2}} \sum_{m_{1}'m_{2}'} \langle k_{1}q_{1}k_{2}q_{2} | KQ \rangle \times \\ \times \langle jm | j_{1}m_{1}j_{2}m_{2} \rangle \langle j_{1} 'm_{1} ' j_{2} 'm_{2} ' | j'm' \rangle \langle \alpha_{1}j_{1}m_{1} | T_{q_{1}}^{k_{1}} | \alpha_{1} ' j_{1} 'm_{1} ' \rangle \langle \alpha_{2}j_{2}m_{2} | U_{q_{2}}^{k_{2}} | \alpha_{2} ' j_{2} 'm_{2} ' \rangle$$

Por aplicación directa del Teorema de Wígner - Eckart, en ambos miembros de la ecuación anterior, se encuentra que [13]:

$$\langle \alpha_{1} j_{1} \alpha_{2} j_{2} j | X^{K} | \alpha_{1}' j_{1}' \alpha_{2}' j_{2}' j' \rangle = \{ [K] [j] [j'] \}^{\frac{1}{2}} \langle \alpha_{1} j_{1} | T^{k_{1}} | \alpha_{1}' j_{1}' \rangle \times \\ \times \langle \alpha_{2} j_{2} | U^{k_{2}} | \alpha_{2}' j_{2}' \rangle \begin{cases} j_{1} & j_{1}' & k_{1} \\ j_{2} & j_{2}' & k_{2} \\ j & j' & K \end{cases}$$

$$(47)$$

De dicha ecuación se deducen dos identidades de gran importancia, a saber: (A) El operador T^{k_1} actúa sobre la base de funciones $\{\alpha_1 j_1 m_1\}$ y para estos efectos se coloca $k_2 = q_2 = 0$ con lo cual el segundo operador U_0^0 corresponde a la identidad y (B) El operador T se toma como el operador identidad (es decir, $k_1 = q_1 = 0$) y el operador U^{k_2} actúa sobre la base funcional $\{\alpha_2 j_2 m_2\}$. En efecto, es inmediato demostrar que en el caso (A), la ecuación (47) se reduce a:

$$\langle \alpha_{1} j_{1} j_{2} j \| T^{k} \| \alpha_{1} ' j_{1} ' j_{2} ' j' \rangle = (-1)^{j_{1}+j_{2}+j'+k} \{ [j] [j'] \}^{\frac{1}{2}} \delta(j_{2}, j_{2}') \times \\ \times \langle \alpha_{1} j_{1} \| T^{k} \| \alpha_{1} ' j_{1} ' \rangle \begin{cases} j & j' & k \\ j_{1} ' & j_{1} & j_{2} \end{cases}$$
(48a)

en el caso (B), se obtiene la identidad:

$$\langle j_{1}\alpha_{2} j_{2} j | U^{k} | j_{1}'\alpha_{2}' j_{2}' j' \rangle = (-1)^{j_{1}+j_{2}'+j+k} \{ [j] [j'] \}^{\frac{1}{2}} \delta(j_{1}, j_{1}') \times \\ \langle \alpha_{2} j_{2} | U^{k} | \alpha_{2}' j_{2}' \rangle \{ \begin{array}{c} j & j' & k \\ j_{2}' & j_{2} & j_{1} \end{array} \}$$
(48b)

Retomando el producto escalar $X_0^0 = \{T^k \times U^k\}_0^0$, el cual es expresable por medio de:

$$X_{0}^{0} = \left\{ T^{k} \times U^{k} \right\}_{0}^{0} = \sum_{q_{1}q_{2}} \left| kq_{1} \right\rangle \left| kq_{2} \right\rangle \left\langle kq_{1}kq_{2} \left| 00 \right\rangle$$
(49)

donde es inmediato obtener de tablas la identidad:

$$\langle 00|k_1q_1k_2q_2\rangle = (-1)^{-k_1+k_2} \begin{bmatrix} k_1 & k_2 & 0\\ q_1 & q_2 & 0 \end{bmatrix}$$

Sin embargo, se cumple adicionalmente:

$$\begin{bmatrix} k_1 & k_2 & 0 \\ q_1 & -q_1 & 0 \end{bmatrix} = (-1)^{k_1 - q_1} \begin{bmatrix} k_1 \end{bmatrix}^{-\frac{1}{2}} \delta(k_1, k_2)$$

con lo cual la expresión (49) adopta la forma:

$$X_{0}^{0} = (-1)^{k} [k]^{-\frac{1}{2}} \sum_{q} (-1)^{q} T_{q}^{k} U_{-q}^{k} = (-1)^{k} [k]^{-\frac{1}{2}} (T^{k} \cdot U^{k})$$
(50)

deduciéndose la identidad:

$$(T^{k} \cdot U^{k}) = \sum_{q} (-1)^{q} T^{k}_{q} U^{k}_{-q}$$
 (51)

que corresponde al producto escalar de dos tensores del mismo orden. Por cierto es evidente de la ec. (49), que este producto escalar es expresable a través de:

$$(T^{k} \cdot U^{k}) = (-1)^{-k} [k]^{\frac{1}{2}} \{T^{k} \times U^{k}\}_{0}^{0}$$
 (52)

De las ecuaciones anteriores, es inmediato encontrar identidades generales para el producto escalar $(T^k \cdot U^k)$ en los esquemas $\{\alpha jm\}$ y $\{\alpha_1 j_1 \alpha_2 j_2 jm\}$. Por razones de espacio, solamente se indicaran las ecuaciones resultantes:

$$\langle \alpha j m | (T^{k} \cdot U^{k}) | \alpha' j' m' \rangle = \delta(j, j') \delta(m, m') [j]^{-\frac{1}{2}} \times \sum_{\alpha'' j''} (-1)^{j-j''} \langle \alpha j | T^{k} | \alpha'' j'' \rangle \langle \alpha'' j'' | U^{k} | \alpha' j' \rangle$$
(53a)

y también:

$$\langle \alpha_{1} j_{1} \alpha_{2} j_{2} jm | (T^{k} \cdot U^{k}) \alpha_{1}' j_{1}' \alpha_{2}' j_{2}' j'm' \rangle =$$

$$= (-1)^{j_{1}'+j_{2}+j} \delta(j,j') \delta(m,m') \begin{cases} j_{1} & j_{1}' & k \\ j_{2}' & j_{2} & j \end{cases} \langle \alpha_{1} j_{1} | |T^{k}| | \alpha_{1}' j_{1}' \rangle \langle \alpha_{2} j_{2} | |U^{k}| | \alpha_{2}' j_{2}' \rangle$$

$$(53.b)$$

Anexo III.4.- Diagonalización de la matriz de Energía.

Anexo III.4.1.- Hamiltoniano no relativista.

En sistemas con más de dos electrones equivalentes, el concepto de coeficientes de parentesco fraccionario es de gran utilidad. En efecto, se examinará la evaluación de elementos de matriz que son de ocurrencia en la diagonalización del Hamiltoniano polielectrónico. En principio, el Hamiltoniano no relativista $H_{nr} = \sum_{i} h_i^{eff} + \sum_{i < j} \frac{e^2}{r_{ij}}$ implica considerar operadores monoelectrónicos $F = \sum_{i} f_i$, y bi electrónicos $G = \sum_{i < j} \frac{e^2}{r_{ij}}$.

Anexo III.4.4.1 Operadores monoelectrónicos.

La evaluación de elementos de matriz para configuraciones de electrones equivalentes del tipo (j^N), en el caso de operadores monoelectrónicos, conduce a relaciones del tipo:

$$\left\langle l^{N}\psi\left|F\right|l^{N}\psi'\right\rangle = N\left\langle\psi\left|f_{N}\right|\psi'\right\rangle$$
 (54)

donde $|\psi\rangle$ y $|\psi'\rangle$ son estados electrónicos asociados a la misma configuración (j^N). Supóngase a continuación que F es un tensor de orden k, que se designará por F_k. En este caso, se precisa de la evaluación de elementos de

matriz de la forma: $\langle j^N v J || F_k || j^N v' J' \rangle$. En base a ecuación (35) se pueden escribir las expansiones:

$$\left\langle j^{N} v J M \right| = \sum_{\left(\overline{v}\overline{J}\right)} \left\langle j^{N-1} \left(\overline{v}\overline{J}\right) j : J M \left| \left\langle j^{N} v J \right| j^{N-1} \left(\overline{v}\overline{J}\right), j \right\rangle$$
(55a)

у

$$\left| j^{N}v'J'M' \right\rangle = \sum_{\left(\stackrel{=}{vJ} \right)} \left| j^{N-1}\left(\stackrel{=}{vJ} \right) j : JM \right\rangle \left\langle j^{N-1}\left(\stackrel{=}{vJ} \right), j \left| j^{N}v'J' \right\rangle$$
(55b)

Luego:

$$\left\langle j^{N} v J M \left| F_{k} \right| j^{N} v' J' M' \right\rangle = \sum_{\left(\overline{vJ}\right)} \sum_{\left(\overline{vJ}\right)} \left\langle j^{N} v J \right| j^{N-1} \left(\overline{vJ}\right), j \right\rangle \left\langle j^{N-1} \left(\overline{vJ}\right), j \right| j^{N} v' J' \right\rangle \times$$

$$\times \left\langle j^{N-1} \left(\overline{vJ}\right)j, J M \left| F_{k} \right| j^{N-1} \left(\overline{vJ}\right)j, J' M' \right\rangle$$

$$(56)$$

de donde, al aplicar el teorema de Wigner - Eckart, se obtiene la ecuación:

$$\left\langle j^{N} v J \left| F_{k} \right| j^{N} v' J' \right\rangle = \sum_{\left(\overline{vJ}\right)} \sum_{\left(\overline{vJ}\right)} \left\langle j^{N} v J \right| j^{N-1} \left(\overline{vJ}\right), j \right\rangle \left\langle j^{N-1} \left(\overline{\overline{vJ}}\right), j \right| j^{N} v' J' \right\rangle \times \times \left\langle j^{N-1} \left(\overline{vJ}\right)j, J \left| F_{k} \right| j^{N-1} \left(\overline{\overline{vJ}}\right)j, J' \right\rangle$$

$$(57)$$

Al aplicar la ecuación (48b) se llega a establecer que:

$$\left\langle j^{N-1}\left(\overline{vJ}\right)j, J \left\|F_{k}\right\| j^{N-1}\left(\overline{vJ}\right)j, J'\right\rangle = (-1)^{\overline{j}+j+J+k} \left\{ \begin{bmatrix}J \\ \end{bmatrix} J' \right\}^{\frac{1}{2}} \delta\left(\overline{J}, \overline{J}\right) \times \delta\left(\overline{v}, \overline{v}\right) N \left\langle j \|f_{k}\| j \right\rangle \left\{ \begin{matrix} J \\ j \end{matrix} \right\}^{\frac{1}{2}} \right\}$$
(58)

De esta forma se puede escribir la identidad general, para el caso de operadores monoelectrónicos, como se indica a continuación:

$$\langle j^{N} v J | F_{k} | j^{N} v' J' \rangle = N \{ \! [J] \! [J'] \}^{\frac{1}{2}} \langle j | f_{k}(N) \!] j \rangle \times$$

$$\times \sum_{(\overline{vJ})} (-1)^{\overline{j}+j+J+k} \begin{cases} J & J' & k \\ j & j & \overline{J} \end{cases} \langle j^{N} v J | j^{N-1}(\overline{vJ}), j \rangle \langle j^{N-1}(\overline{vJ}), j | j^{N} v' J' \rangle$$

$$(59)$$

De acuerdo a las reglas de Slater, los elementos matriciales que involucran operadores monoelectrónicos del tipo F_k serán nulos sí las funciones determinantales difieren en más de un spin orbital.

Adicionalmente el cuociente de elementos de matriz reducidos asociados a dos operadores monoelectrónicos del tipo F, digamos F_k y $T_{k'}$ es expresable por medio de la identidad:

$$\left\langle j^{N} v J \left\| F_{k} \right\| j^{N} v' J' \right\rangle = \frac{\left\langle j \left\| f_{k} \left(N \right) \right\| j \right\rangle}{\left\langle j \left\| t_{k} \left(N \right) \right\| j \right\rangle} \left\langle j^{N} v J \left\| T_{k} \right\| j^{N} v' J' \right\rangle$$
(60)

Anexo III.4.1.2.- Operadores bielectrónicos.

El cálculo de elementos matriciales con este tipo de operadores G, puede ser realizado utilizando coeficientes de parentesco fraccionario para dos partículas. Sin embargo, en la práctica se utiliza un método más conveniente para estos efectos, tal que de las (1/2)N(N-1) componentes g_{ij} de G, un total equivalente a (1/2)(N-1)(N-2) no involucran las coordenadas del electrón N - ésimo de modo que es posible escribir:

$$\left\langle \psi \left| G \right| \psi \right\rangle = \frac{N}{N-2} \left\langle \psi \left| \sum_{j < j \neq N} g_{ij} \right| \psi' \right\rangle \quad (61)$$

Al expandir los estados electrónicos $|j^N v J M\rangle$ en términos de los estados $|j^{N-1}(\overline{vJ})j; J M\rangle$ se establece que:

$$\left\langle j^{N} v J \left\| F_{k} \right\| j^{N} v' J' \right\rangle = \delta(J, J') \frac{N}{N-2} \sum_{\overline{vJv'}} \left\langle j^{N} v J \right\| j^{N-1} \left(\overline{vJ}\right), j \right\rangle \times \\ \times \left\langle j^{N-1} \overline{vJ} \right| \sum_{j < i \neq N} g_{ij} \left| j^{N-1} \overline{v'} \overline{J} \right\rangle \left\langle j^{N-1} \left(\overline{v'} \overline{J}\right), j \right| j^{N} v' J \right\rangle$$

$$(62)$$

De la ecuación anterior se observa que los elementos de matriz de G correspondientes a la configuración (j^N) están directamente relacionados con los correspondientes elementos de matriz asociados a la configuración electrónica (j^{N-1}). Por cierto este proceso puede continuarse y en consecuencia

expresar los elementos de matriz asociados a (j^{N-1}) en términos de los (j^{N-2}) y así sucesivamente hasta llegar a elementos de matriz de la forma $\langle j^2 v J | \sum g_{ij} | j^2 v' J' \rangle$, para dos electrones, los cuales como veremos son fácilmente evaluables.

Anexo III.4.2.- Interacción spin – órbita.

Para configuraciones electrónicas del tipo (j^N), los estados permitidos por el Principio de Exclusión de Paulí pueden ser clasificados sin ambigüedades utilizando el esquema (vJM), donde v es el número de señoridad y J corresponde al número cuántico asociado al momentum angular total. Por cierto, las configuraciones que satisfacen estos requisitos son del tipo p^N y d^N, en cambio en cambio en el caso de configuraciones del tipo f^N es preciso recurrir a índices adicionales.

Sea el Hamiltoniano polielectrónico de la forma siguiente:

$$H = \sum_{i} h_{i}^{eff} + \sum_{i < j} \frac{e^{2}}{r_{ij}} + \sum_{i} \xi(r_{i}) (\vec{l}_{i} \cdot \vec{s}_{i})$$
(63)

que corresponde al Hamiltoniano polielectrónico en la aproximación de campo central. En esta aproximación se supone que cada uno de los electrones se mueve en forma independiente en un campo generado por los núcleos y adicionalmente en un campo promedio creado por los (N-1) electrones restantes. En este sentido, se puede afirmar que cada uno de los electrones se mueve bajo la acción de un potencial del tipo $-U(r_i)/e$. En la ecuación (63), el hamiltoniano monoelectrónico efectivo adopta la forma:

$$h_i^{eff} = -(\hbar^2/2m)\nabla_i^2 - (Ze^2/r_i)$$
(64)

Soluciones aproximadas a la ecuación de valores propios $H\psi = E\psi$, pueden ser obtenidas resolviendo las ecuaciones de orden cero, donde el Hamiltoniano de orden cero se escribe:

$$H_{0} = \sum_{i} \left\{ -\left(\hbar^{2} / 2m \right) \nabla_{i}^{2} + U(r_{i}) \right\}$$
(65)

Si se define el Hamiltoniano $V = H - H_0$ correspondiente a una perturbación de los valores propios y funciones propias de H_0 , dicha perturbación adopta la forma:

$$V = \sum_{i} \left\{ -\left(Ze^{2}/r_{i} \right) - U(r_{i}) \right\} + \sum_{j < i} \left\{ e^{2}/r_{ij} \right\} + \sum_{i} \xi(r_{i}) \left(\vec{l}_{i} \cdot \vec{s}_{i} \right)$$
(66)

Resulta evidente de la discusión anterior que las soluciones de las ecuaciones de valores propios $H_0\psi_0 = E_0\psi_0$, para el caso polielectrónico pueden ser expresadas como productos de funciones monoelectrónicas. Estas

últimas se expresan como productos de una parte radial (que depende de la forma del potencial $U(r_i)$) y una parte angular del tipo $Y_{lm}(\theta, \phi)$.

De acuerdo a la ecuación (66), el primer término depende exclusivamente de las coordenadas radiales y en consecuencia su contribución será la misma para todos los niveles de energías. Por cierto, en espectroscopia sólo se conocen diferencias de energías entre dos niveles de tal manera que cuando se tomen tales diferencias, la contribución proveniente de este término se cancelará.

Una situación interesante es la que dice relación con el caso en que la ruptura debida a la repulsión electrón - electrón, es mayor que la correspondiente ruptura de la degeneración producto de la inclusión de la interacción spin órbita. Esta situación es frecuentemente ilustrada en la literatura para el caso de los iones complejos de la primera serie de transición (configuraciones del tipo 3d^N). En estas condiciones, es posible utilizar como bases las funciones de Russell - Saunders, que simbolizaremos por los kets $\{LM_LSM_S\}$.

En este esquema de acoplamiento de Russell - Saunders, los términos espectroscópicos son de la forma ${}^{2S+1}L$, siendo (2S+1) la multiplicidad de spin. Por cierto, la interacción spin órbita es considerada como una pequeña perturbación sobre las funciones propias y valores propios correspondientes a

la ecuación de ondas no relativista. Los elementos de matriz a evaluar en este formalismo son del tipo:

$$\langle \alpha LS \left| \sum_{i < j} e^2 / r_{ij} \right| \alpha' LS \rangle$$
 (67)

los cuales son diagonales con L y S y en consecuencia son independientes de J y M.

Además se puede escribir:

$$\sum_{i < j} e^2 / r_{ij} = \sum_{i < j} \sum_k \frac{e^2 r_<^k}{r_>^{k+1}} P_k(\cos w) = \sum_{i < j} \sum_k \frac{e^2 r_<^k}{r_>^{k+1}} \left(C_i^k \cdot C_j^k \right)$$
(68)

de modo que los elementos de matriz dados por la ecuación (67) son expresables según:

$$\left\langle \alpha LS \left| \sum_{i < j} e^2 / r_{ij} \right| \alpha' LS \right\rangle = \sum_k e^2 \left\langle \alpha LS \left| \sum_{i < j} \frac{e^2 r_{<}^k}{r_{>}^{k+1}} \left(C_i^k \cdot C_j^k \right) \alpha' LS \right\rangle$$
(69)

Adicionalmente se tiene que:

$$\langle \alpha_{1}l_{1}\alpha_{2}l_{2}JM | (T^{k} \cdot U^{k}) \alpha_{1}'l_{1}'\alpha_{2}'l_{2}'J'M' \rangle = = (-1)^{l_{1}'+l_{2}+J} \delta(J,J')\delta(M,M') \times \begin{cases} l_{1} & l_{1}' & k \\ l_{2}' & l_{2} & J \end{cases} \langle \alpha_{1}l_{1} | T^{k} | | \alpha_{1}'l_{1}' \rangle \langle \alpha_{2}l_{2} | | U^{k} | | | \alpha_{2}'l_{2}' \rangle$$

$$(70a)$$

---,

correspondiente a una aplicación directa de la ecuación (53b).

De la ecuación (68), para el caso de dos electrones, el operador de repulsión electrón - electrón adopta la forma simple:

$$e^{2}/r_{12} = \sum_{k} \frac{e^{2} r_{<}^{k}}{r_{>}^{k+1}} (C_{1}^{k} \cdot C_{2}^{k})$$
 (70b)

en consecuencia, en base a ecuaciones (70a-b), se puede escribir:

$$\langle \alpha_{1}l_{1}\alpha_{2}l_{2}; JM | {e^{2} / r_{12}} | \alpha_{1}'l_{1}'\alpha_{2}'l_{2}'; J'M' \rangle =$$

$$= \sum_{k} \langle \alpha_{1}l_{1}\alpha_{2}l_{2}JM | {e^{2}r_{<}^{k} / r_{>}^{k+1}} \left(C_{1}^{k} \cdot C_{2}^{k} \right) \alpha_{1}'l_{1}'\alpha_{2}'l_{2}'J'M' \rangle =$$

$$= (-1)^{l_{1}'+l_{2}+J} \delta(J,J')\delta(M,M') \sum_{k} R^{K} \begin{cases} l_{1} & l_{1}' & k \\ l_{2}' & l_{2} & J \end{cases} \langle \alpha_{1}l_{1} | | C_{1}^{k} | | \alpha_{1}'l_{1}' \rangle \langle \alpha_{2}l_{2} | | C_{2}^{k} | | \alpha_{2}'l_{2}' \rangle$$

$$(70c)$$

para el caso de dos electrones (configuraciones del tipo l²), la expresión anterior es expresable como:

$$\left\langle (nl)^2; LM_L \middle| e^2 \middle| (nl)^2; ML \right\rangle = (-1)^L \sum_k e^2 R^k \left\{ \begin{matrix} l & l & k \\ l & l & L \end{matrix} \right\} \middle| \left\langle l \middle\| C^k \middle\| l \right\rangle \middle|^2 \quad (71a)$$

y al definir: $f_k(l,l) = (-1)^L |\langle l || C^k || l \rangle|^2 \begin{cases} l & l & k \\ l & l & L \end{cases}$ y $F^k = e^2 R^k$, ésta adopta la forma:

$$\langle (nl)^2; LM_L | e^2 / r_{12} | (nl)^2; ML \rangle = \sum_k f_k (l, l) F^k (nl, nl)$$
 (71b)

523

Otra integral de interés es del tipo $\langle n_a l_a, n_b l_b | e^2 / r_{12} | n_b l_b, n_a l_a \rangle$, la cual se escribe:

escribe.

$$\langle n_{a}l_{a}, n_{b}l_{b} | e^{2} / r_{12} | n_{b}l_{b}, n_{a}l_{a} \rangle = (-1)^{l_{b}-l_{a}+L} \sum_{k} e^{2} R^{k} [n_{a}l_{a}n_{b}l_{b} | n_{b}l_{b}n_{a}l_{a}] \times \\ \times |\langle l_{a} | | C^{k} | | l_{b} \rangle|^{2}$$
(72a)

donde se ha utilizado la identidad:

$$\langle l_b \| C^k \| l_a \rangle = (-1)^l b^{-1} a \langle l_a \| C^k \| l_b \rangle$$
 (72b)

Sean las cantidades:

$$G^{k}(n_{a}l_{a}, n_{b}l_{b}) = e^{2}R^{k}[n_{a}l_{a}n_{b}l_{b}|n_{b}l_{b}n_{a}l_{a}]$$

$$g_{k}(l_{a}, l_{b}) = (-1)^{-l_{a}+l_{b}+L} \begin{cases} l_{a} & l_{b} & k \\ l_{a} & l_{b} & L \end{cases} |\langle l_{a} || C^{k} || l_{b} \rangle|^{2}$$

con lo cual la ecuación (72a) adopta la forma final:

$$\langle n_a l_a, n_b l_b | e^2 / r_{12} | n_b l_b, n_a l_a \rangle = \sum_k g_k (l_a, l_b) G^k (n_a l_a, n_b l_b)$$
 (72c)

Las integrales F^k y G^k son las conocidas integrales radiales de Slater -Condon, ambas son positivas y tanto F^k como $G^k/[k]$ son funciones decrecientes en k. Es corriente en la literatura definir los parámetros:

$$F_k = F^k / D_k$$
 $G_k = G^k / D_k$ (72d)

donde D_k son los denominadores que aparecen tabulados en las tablas de Condon y Shortley [16].

Así para electrones del tipo p, d y f se definen las siguientes integrales radiales:

(A) Electrones de tipo p: $F_0 = F^0$ y $F_2 = (F^2/25)$

(B) Electrones de tipo d: $F_0 = F^0$, $F_2 = (F^2/49)$ y $F_4 = (F^4/441)$

(C) Electrones de tipo f: $F_0 = F^0$, $F_2 = (F^2/225)$, $F_4 = (F^4/1089)$ y

$$F_6 = \left(F^6 / 736164 \right)$$

De igual forma, Racah introduce combinaciones lineales de estas integrales, de común ocurrencia en la literatura **[11].** En efecto, para electrones de tipo d: $A = F_0 - 49F_4$, $B = F_2 - 5F_4$ y $C = 35F_4$; en cambio, para electrones tipo f se introducen las siguientes combinaciones lineales:

$$A = F_0 - 21F_4 - 468F_6, \qquad B = (1/5)(5F_2 + 5F_4 - 91F_6), \qquad C = (7/5)(F_4 - 6F_6) \qquad \text{y}$$
$$D = 462F_6.$$
Como se ha señalado previamente los términos de repulsión electrón electrón son responsables de la ruptura de la degeneración de las funciones propias del Hamiltoniano de orden cero. Por cierto, la introducción de estos términos de repulsión, en el esquema de acoplamiento de Russell - Saunders, da origen a multipletes del tipo ${}^{(2S+1)}L$. Es interesante, en consecuencia, introducir la interacción spin - órbita, por cuanto y como veremos más adelante su efecto será el de rupturas adicionales de la degeneración de los términos de multiplete ${}^{(2S+1)}L$.

La corrección relativita más importante al Hamiltoniano no relativista es lejos la contribución proveniente de la interacción spin - órbita. De modo que escribamos:

$$H_{so} = \sum_{i} \xi(r_i) (\vec{l}_i \cdot \vec{s}_i) \quad (73)$$

donde $\xi(r_i) = (\hbar^2/2m^2c^2)(1/r_i) (\frac{\partial U(r_i)}{\partial r_i})$. Los elementos de matriz que involucran al operador de interacción spin - órbita son ciertamente diagonales en J e independientes de M, sin embargo como no son diagonales en L ni en S, pueden acoplar términos espectroscópicos que difieren en L y en S en a lo máximo una unidad.

En el esquema de acoplamiento (α *SLJM*), los elementos de matriz correspondientes a la interacción spin - órbita adoptan la forma siguiente:

$$\left\langle l^{N} \alpha SLJM \left| H_{so} \right| l^{N} \alpha' S'L'J'M' \right\rangle = \sum_{i} \left\langle \xi(r_{i}) \right\rangle \left\langle l^{N} \alpha SLJM \left| \left(\overline{l}_{i} \cdot \overline{s}_{i} \right) \right| l^{N} \alpha' S'L'J'M' \right\rangle$$
(74)

donde $\langle \xi(r_i) \rangle = \int R_{nl}^* \xi(r) R_{nl} r^2 dr$, corresponde a la constante de acoplamiento spin - órbita para configuraciones del tipo $(nl)^N$. La ecuación (74) fue re escrita por Racah en una forma más conveniente:

$$\langle l^{N} \alpha SLJM | H_{so} | l^{N} \alpha' S'L'J'M' \rangle = \langle \xi(r_{i}) \rangle (-1)^{J+L+S'} \sqrt{l(l+1)(2l+1)} \times \\ \times \begin{cases} L & L' & 1 \\ S & S' & J \end{cases} \langle l^{N} \alpha SL \| V^{(11)} \| l^{N} \alpha' S'L' \rangle$$

$$(75)$$

donde los elementos de matriz reducidos en el miembro de la derecha de la ecuación anterior han sido tabulados por Nelson y Koster para configuraciones electrónicas del tipo p^N, d^N y f^N [17].

Una situación especial ocurre cuando se utilizan operadores efectivos. En la práctica, para las componentes de un multiplete dado del tipo $^{(2S+1)}L_J$, se introduce un Hamiltoniano efectivo:

$$H_{so}^{eff} = \lambda \Big[{}^{(2S+1)}L \Big] \Big(\vec{L} \cdot \vec{S} \Big)$$
(76)

donde $\lambda = \pm (\xi_{nl}/2S)$, tal que para $n \ge (2l+1)$ se usa el signo positivo y para n < (2l+1) se usa el signo negativo.

A modo de resumen se puede decir que, las correcciones debidas a los términos de repulsión electrón - electrón y a la interacción spin - órbita, representan las contribuciones más significativas a las energías de los términos ${}^{(2S+1)}L_J$. No obstante, existen otras interacciones, las cuales son incluidas en formulaciones más precisas o bajo condiciones especiales. Se trata de efectos tales como interacciones spin - spin, órbita - órbita y spin - otras órbitas, correcciones menores en todo caso.

Generalmente, los elementos matriciales correspondientes a interacciones más complejas suelen ser expresados en términos de elementos de matriz reducidos correspondientes a los operadores U^k y V^(lk). Estos elementos de matriz reducidos están dados por **[11, 13]**:

$$\langle \psi_{l} \| U^{k} \| \psi_{l}' \rangle = N \left(\begin{bmatrix} L_{l} \end{bmatrix} L_{l}' \right)^{\frac{1}{2}} \sum_{\overline{\psi}} \langle \psi_{l} \{ \overline{\psi} \rangle \langle \overline{\psi} | \} \psi_{l}' \rangle (-1)^{\overline{L} + l_{l} + l + k} \times \left\{ \begin{array}{c} L_{1} & L_{1}' & k \\ l & l & \overline{L} \end{array} \right\}$$

$$(77)$$

donde U^k es un operador unitario para el caso de N electrones y

$$V^{(lk)} = \sum_{i} \left(\vec{s} \cdot u^{k} \right)_{i}$$
(78)

siendo *u^k* unitario. En estos términos se encuentra el elemento de matriz reducido:

$$\langle l^{N} \psi_{l} \| V^{(lk)} \| l^{N} \psi_{l}' \rangle = N \sqrt{s(s+1)(2s+1)} [S_{1}] [L_{1}] [S_{1}'] [L_{1}'] \times$$

$$\times \sum_{\overline{\psi}} \langle \psi_{l} \{ | \overline{\psi} \rangle \langle \overline{\psi} | \} \psi_{l}' \rangle (-1)^{\overline{s}+\overline{L}+S_{l}+L_{l}+l+s+k+1} \begin{cases} S_{1} & S_{1}' & 1 \\ s & s & \overline{S} \end{cases} \begin{cases} L_{1} & L_{1}' & k \\ l & l & \overline{L} \end{cases}$$
(79)

El orden k de los tensores U^k y V^(1k) se puede suponer entero par e impar. En efecto, para k par los elementos de matriz de U^k cambian de signo al conjugar, en cambio los de V^(1k) permanecen inalterados. Por el contrario para k impar, los elementos de U^k son invariantes al conjugar, en cambio los de V^(1k) cambian de signo al conjugar.

Anexo III.5.- Referencias.

- [1] P.H. Butler "Point group symmetry applications". Plenum Press (1981).
- [2] B.L.Sylver, "Irreducible tensor methods". Academic Press, New York (1976).
- [3] L.C. Biedenharn, J.D. Louck, "Angular momentum in quantum physics", Addison-Wesley Publishing Company (1981)
- [4] G. Arfken, "Mathematical methods for physicist". Academic Press, New York (1985).
- [5] U.Fano, G. Racah, "Irreducible tensorial sets". Academic Press, New York (1959).
- [6] J.S. Griffith, "The irreducible tensor method for molecular symmetry groups", Prentice may, Englewwod Cliffs, New Jersey (1962).
- [7] M. Tinkham, "Group theory and quantum mechanics", Mc Graw-Hill, New York (1964).
- [8] E.P. Wigner, "Group theory", Academic Press, New York (1959).
- [9] M. Rotenberg, R. Bivis, N. Metropolis, J.K. Wooten Jr., "The 3j and 6j symbols", Tecnology Press, M.I.T., Cambridge, Mass (1959).

- [10] J.S. Griffith, "The theory of transition metal ion", Cambridge, University Press, New York (1961).
- [11] L.C. Biedenharn, H. Van Dam, "Quantum theory of angular momentum", Perspective in Physics, Academic Press, 1965.
- [12] M.R. Kibler, "Recent advances in group theory and its applications to spectroscopy", Ed. J.C. Donini, pag. 1-96.
- [13] E.Konig y S.Kremer, "Recent advances in group theory and its applications to spectroscopy", Ed. J.C. Donini, pag. 537-601.
- [14] B.R. Judd, Phys. Rev., 127, 750 (1962).
- [15] J.C. Slater, "Quantum theory of atomic structure", McGraw-Hill Book Company, INC,1960.
- [16] E.B. Condon, G.H. Shortley,"The theory of atomic spectra", Cambridge University Press (1961).
- **[17]** C.W. Nielson, G.F Koster, "Spectroscopies coefficients for pⁿ, dⁿ and fⁿ configurations", MIT Press, Cambridge, Massachussetts (1963).

ANEXO IV

UN MODELO VIBRONICO COMBINADO DE CAMPO CRISTALINO -POLARIZACION DE LIGANDOS

Palabras Preliminares.

En este Anexo se desarrollan ecuaciones desarrolladas por el grupo del Dr. Acevedo, apropiadas a la evaluación de momenta de transición dipolar eléctrico en compuestos de coordinación centrosimétricos de los iones lantánidos, actínidos y cúridos.

El formalismo teórico se desarrolla en el modelo de partículas independientes y se hace uso intensivo de los métodos físico - matemáticos desarrollados en el Anexo III. Se generaliza el modelo de Judd – Olfet, el cual era el único patrón de referencia aplicable sólo a compuestos de coordinación no centrosimétricos, en los cuales los mecanismos de intensidades espectrales son distintos a los correspondientes a compuestos de coordinación centrosimétricos. En el caso de la formulación de Judd - Olfet, la perturbación vibrónica es de naturaleza estática, y la perturbación corresponde a las armónicas esféricas impares del potencial de interacción Coulómbico. En nuestras ecuaciones, hemos incorporado una perturbación dinámica, la cual es expresable como los gradientes del potencial de interacción con respecto de las coordenadas cartesianas de desplazamientos nucleares.

Estos gradientes son evaluados en la configuración de equilibrio del sistema molecular y se proyecta la contribución impar de este potencial dinámico, la cual da origen a términos de interacción no nulos, que involucran

estados del metal central (campo cristalino) y estados de los ligandos (polarización de ligandos).

Anexo IV.1.- Método Vibrónico de campo cristalino – Sin clausura.

Anexo IV.1.1 Introducción.

Las intensidades de transiciones electrónicas en el enfoque de campo cristalino para complejos no centrosimétricos de los iones lantánidos, han sido abordadas utilizando el procedimiento de Judd - Olfet [1, 2]. Diversas aplicaciones de este método, se pueden encontrar en la literatura, fundamentalmente para cálculos de intensidades espectrales haciendo uso de la aproximación de clausura. El procedimiento estático (CF) de estos autores, significó en su época un avance importante en la comprensión de los mecanismos de relajación radiativos, en el caso de compuestos de coordinación no centrosimétricos de los iones lantánidos. El mecanismo de intensidades es desde un punto formal el siguiente: Se supone que una excitación del tipo $f \rightarrow f$ adquiere intensidad espectral a partir de una transición del tipo $f \rightarrow d$ y/o $f \rightarrow g$, siendo la perturbación aquella que es derivada de las componentes impares del potencial de campo cristalino. El formalismo es desarrollado dentro de las aproximaciones del modelo de sistemas independientes, en el cual se supone que los cromóforos (M) y (L)

interactúan débilmente entre sí, siendo el potencial de interacción de largo alcance, es decir de tipo Coulómbico. Cuando se adopta este modelo, procesos tales como transferencia de cargas y otros similares son excluidos del tratamiento teórico. Un modelo de esta naturaleza presenta cierta realidad física especialmente en el caso de aquellos compuestos muy poco covalentes y con ligandos monoatómicos.

El formalismo de campo cristalino de Judd - Olfet es necesariamente aproximado en sus supuestos físicos, como también en el método de cálculo. Basta recordar que, en este tipo de cálculos de intensidades espectrales estamos trabajando con iones metálicos pesados, para los cuales los efectos relativistas son bastante importantes. Se requiere en consecuencia de una maquinaria compleja de subrutinas, capaces de generar conjuntos consistentes de valores propios y vectores propios para los iones complejos de los lantánidos. Un modelo de esta naturaleza, exige la introducción de a lo menos 4 parámetros de campo cristalino, dos de origen no relativista y los dos restantes puramente relativistas **[3].**

Son diversos los intentos en la literatura para parametrizar las energías de los estados permitidos en el caso de los iones complejos de los lantánidos y existen cálculos reportados por Richardson y colaboradores **[4]** en los cuales se ocupan, para el ion libre, a lo menos 16 parámetros, a los cuales es preciso agregar los parámetros de campo cristalino. Estos procedimientos de

optimización, por definición complejos, no aseguran en absoluto resultados teóricos razonables y es, en consecuencia, preciso abordar el problema de intensidades espectrales utilizando un método distinto basado, fundamentalmente en un número menor de parámetros con claro sentido físico a expensas de un incremento razonable del error promedio de desviación entre las energías calculadas y las observadas experimentalmente.

El vigoroso desarrollo de la investigación experimental y teórica de cristales estequiométricos y no estequiométricos de las elpasolitas, exige un esfuerzo adicional y una generalización de los modelos de cálculo existentes en la literatura. Se conocen diversos estudios experimentales de alto grado de sofisticación en el caso de elpasolitas del tipo Cs₂NaLnCl₆ [5, 6]. En el caso de elpasolitas del tipo Cs₂NaYbCl₆ y Cs₂NaPrCl₆ los iones complejos del tipo $LnCl_6^{-3}$ son tales, que el ion lantánido trivalente positivo ocupa un sitio de alta simetría, en muchos de los casos del tipo octaédrico. Es precisamente en estos casos, en donde es relevante generalizar el formalismo desarrollado por Judd - Olfet, por cuanto para estos compuestos de coordinación centrosimétricos, las transiciones del tipo $f \rightarrow f$ adquieren su intensidad a partir de excitaciones del tipo $f \rightarrow d$ y/o $f \rightarrow g$ con la cooperación de los modos impares de vibración (modos ungerade). Adicionalmente es preciso incorporar la componente de polarización de ligandos al momento de transición dipolar eléctrico [7, 8] la cual juega un rol importantísimo en la

comprensión y racionalización de los modelos de intensidades espectrales. El método de polarización de ligandos ha jugado un rol importante en la comprensión del parámetro T⁽²⁾ de Judd y en el concepto de hiperpolarízabilidad **[1, 9].**

El trabajo realizado por Acevedo et al. **[10]** sobre el problema similar en las series de los metales de transición, ha mostrado que la distribución de intensidad calculada es fuertemente dependiente de las funciones de onda vibracionales empleadas, las cuales son determinadas por el campo de fuerzas supuesto y por las frecuencias vibracionales experimentales, dentro de la aproximación armónica. Es probable que consideraciones similares puedan aplicarse en la serie de los lantánidos.

De esta manera, es posible parametrizar las intensidades vibrónicas [11, 12], pero el número de parámetros a ser determinado es grande por lo que sólo en algunas ocasiones habrá suficiente información experimental para una determinación confiable de estos. Luego, los intentos por reproducir los valores de estos parámetros a partir de tratamientos dinámicos necesariamente imprecisos, son probablemente inútiles. Es preferible adoptar un modelo de cálculo en donde la dependencia de la distribución de intensidades con respecto a uno o más parámetros del modelo pueda ser explícitamente determinada.

En el tratamiento de los sistemas metálicos de transición, para evaluar el término de campo cristalino, se consideran tanto la aproximación de clausura sobre los estados impares intermedios, como el uso de un sólo estado impar intermedio en el modelo de Liehr - Ballhausen. Ambos métodos son capaces de dar cuenta de la distribución de intensidad vibrónica para varias transiciones electrónicas, pero los parámetros no son los mismos en los dos esquemas. El procedimiento de Judd - Olfet se basa en la propiedad de clausura para la determinación de parámetros desde datos experimentales, pero Judd **[1]** usa tanto una sola transición $f \rightarrow d$ como también la suma de transiciones $f \rightarrow d$ y $f \rightarrow g$ como fuente de intensidad.

El método de Liehr - Ballhausen tiene la ventaja de claridad conceptual y para ciertas transiciones, conduce a una distribución de intensidad vibrónica que es independiente de las funciones radiales del ión metálico central, de la carga del ligando y de la energía del estado intermedio.

Los compuestos Cs₂NaLnX₆ son cúbicos o levemente distorsionados de la simetría cúbica, de tal manera que los iones lantánidos ocupan los sitios octaédricos. El espectro electrónico consiste de orígenes electrónicos, dipolos magnéticos agudos, de orígenes vibrónicos más anchos correspondientes a los tres modos vibracionales impares v_3 , v_4 y v_6 de los aniones Ln_6^{-3} y otras características debido a los modos reticulares. Los experimentos muestran que la intensidad de los orígenes vibrónicos, tanto absoluta como relativa, varía en varios órdenes de magnitud para diferentes transiciones electrónicas en el mismo sistema, sin embargo la explicación teórica de estas variaciones de intensidad no ha sido aún bien establecida.

El único estudio teórico detallado sobre intensidades vibrónicas en estos materiales fue realizado por Richardson y colaboradores [11] usando un formalismo combinado de campo cristalino – clausura - polarización de ligandos.

Desgraciadamente, el modelo fue desarrollado usando una asignación incorrecta del espectro vibracional y cuando esto fue corregido, el acuerdo entre las intensidades relativas calculadas y las experimentales no fue bueno **[4, 12, 13].** A lo largo de este anexo exploraremos un método combinado de campo cristalino con y sin utilizar la aproximación de clausura - polarización de ligandos para transiciones del tipo $f \rightarrow f$ en el caso de compuestos de coordinación centrosimétricos. Generalizaciones de nuestro formalismo a subgrupos del octaédrico pueden ser realizadas haciendo uso del método de cadenas de grupos subgrupos, que ha sido ilustrado por Butler **[3].**

Anexo IV.1.2. Modelo Vibrónico.

En primer orden, y en la base de las coordenadas de simetría, el Hamiltoniano para el ion LnX_6^{-3} puede ser escrito como **[14]**:

$$H = \sum_{i} h_{i}^{eff} + \sum_{i < j} \left\{ \frac{e^{2}}{r_{ij}} \right\} + \sum_{i} \xi_{so} \left(\vec{l}_{i} \cdot \vec{s}_{i} \right) + V(O_{h}) + \sum_{kt} \left\{ \frac{\partial H}{\partial S_{kt}} \right\} S_{kt} + \dots \quad (1)$$

donde S_{kt} denotan las coordenadas de simetría y $V(O_h)$ es el potencial coulómbico octaédrico. La identidad anterior es posible escribirla de la forma que se indica a continuación:

$$H = H^{(0)} + \sum_{kt} \left\{ \frac{\partial H}{\partial S_{kt}} \right\} S_{kt}$$
 (2)

donde los valores propios de H⁽⁰⁾ pueden ser determinados a partir de un procedimiento de optimización, basado en un conjunto suficiente de niveles de energía experimentales, que permita obtener los parámetros de repulsión inter - electrónica, de campo cristalino y de acoplamiento spin - órbita.

Debido a que, en muchos casos, la posición de un gran número de niveles de energía puede ser estudiado con un grado de exactitud (generalmente 0.01%) incompatible con el uso de una configuración del ión metálico pura y con el modelo de sistemas independientes, es que ha llegado a ser común introducir parámetros adicionales para mejorar el ajuste. La justificación física para los valores de dichos parámetros no es siempre clara.

El modelo de sistemas independientes supone que las distribuciones de carga de los subsistemas metal (M) y ligando (L) no traslapan y que la interacción entre ellas puede ser descrita por un potencial coulómbico. Así, de acuerdo a Carlson y Rushbrook **[15]**, el potencial de interacción queda descrito por:

$$v = \sum_{L} \sum_{k_1 q_1} \sum_{k_2 q_2} \underline{T}_{(q_1 + q_2)}^{(k_1 + k_2)} [R_L, Q_L, \Phi_L] D_{q_1}^{k_1}(M) D_{q_2}^{k_2}(L)$$
(3)

donde $\underline{T}_{(q_1+q_2)}^{(k_1+k_2)}[R_L, Q_L, \Phi_L]$ es un tensor que da cuenta de la dependencia geométrica de la interacción entre los cromóforos (M) y (L), los cuales se suponen débilmente acoplados contribución de la componente de campo cristalino (CF) está referida a $k_2 = 0$ y la contribución de la componente de polarización de ligando (LP) al caso $k_2 = I$, siendo truncada la expansión anterior para términos superiores en k_2 . Así, la perturbación en la ecuación (2) puede ser escrita como la suma de dos contribuciones **[10, 14]**:

$$H_{CF}^{(1)} = -\sum_{L} Z_{L} e(\vec{s}_{L} - \vec{s}_{M}) \sum_{k_{1}q_{1}} D_{q_{1}}^{k_{1}}(M) \{ \nabla_{L} G_{k_{1}q_{1}}^{CF}(L) \}$$
(4)
$$H_{LP}^{(1)} = \sum_{L} (\vec{s}_{L} - \vec{s}_{M}) \sum_{k_{1}q_{1}} D_{q_{1}}^{k_{1}}(M) \sum_{\alpha = X,Y,Z} \{ \nabla_{L} G_{k_{1}q_{1},\alpha}^{LP}(L) \}$$
(5)

donde $(\vec{s}_L - \vec{s}_M)$ es la coordenada de desplazamiento cartesiano nuclear del ligando L-ésimo con respecto al ión metálico central. Los factores geométricos de campo cristalino $G_{k_1q_1}^{CF}$ y de polarización de ligando $G_{k_1q_1,\alpha}^{LP}$ han sido tabulados previamente **[10].**

El momento de transición dipolo eléctrico total puede escribirse como la suma de las contribuciones de campo cristalino (CF) y de polarización de ligando (LP) al momento dipolar de transición total μ_T :

$$\mu_T = \mu^{CF} + \mu^{LP} \tag{6}$$

Para los cálculos en iones complejos de alta simetría, es conveniente reescribir las ecuaciones anteriores en un esquema adaptado por simetría para obtener [10, 14]:

$$H_{CF}^{(1)} = -\sum_{L} Z_{L} e \sum_{kt} \sum_{\Gamma \gamma i} \sum_{\tau} \left\{ \frac{\partial G_{\Gamma \gamma}^{CF,L}(i,\tau)}{\partial S_{kt}} \right\} M_{\gamma}^{\Gamma}(i,\tau) S_{kt}$$
(7)

$$H_{LP}^{(1)} = \sum_{L} \sum_{kt} \sum_{\Gamma\gamma} \sum_{i\tau} \sum_{\alpha} \left\{ \frac{\partial G_{\Gamma\gamma,\alpha}^{LP,L}(i,\tau)}{\partial S_{kt}} \right\} M_{\gamma}^{\Gamma}(i,\tau) \mu^{\alpha}(L) S_{kt}$$
(8)

donde i denota el rango de los multipolos del ión metálico central, τ es un índice de representación repetida, M_{γ}^{Γ} es el multipolo del ión metálico central que transforma como la componente γ -ésima de la representación irreductible Γ -ésima y μ^{α} es la componente α -ésima del dipolo transciente inducido correspondiente al ligando L-ésimo.

Anexo IV.1.2.1. Componente de Campo Cristalino.

En base a la ecuación (7), la mezcla de estados impares intermedios entre los estados terminales involucrados en la transición $|\Gamma_1\gamma_1l\rangle \rightarrow |\Gamma_2\gamma_2m\rangle$, conduce a un momento dipolar de transición de campo cristalino de la forma:

$$\mu_{\Gamma_{i}\gamma_{1}l\to\Gamma_{2}\gamma_{2}m}^{CF,\beta} = \sum_{\Gamma_{i}\gamma_{i}n} (\Delta E_{i1})^{-1} \langle \Gamma_{1}\gamma_{1}l | H_{CF}^{(1)} | \Gamma_{i}\gamma_{i}n \rangle \langle \Gamma_{i}\gamma_{i}n | \mu^{\beta} | \Gamma_{2}\gamma_{2}m \rangle + \sum_{\Gamma_{i}\gamma_{i}n} (\Delta E_{i2})^{-1} \langle \Gamma_{1}\gamma_{1}l | \mu^{\beta} | \Gamma_{i}\gamma_{i}n \rangle \langle \Gamma_{i}\gamma_{i}n | H_{CF}^{(1)} | \Gamma_{2}\gamma_{2}m \rangle$$
⁽⁹⁾

En campo cristalino se define:

$$A_{kt}^{\Gamma\gamma}(i,\tau) = \sum_{L} \begin{cases} \partial G_{\Gamma\gamma}^{CF,L}(i) \\ \partial S_{kt} \end{cases}$$
(10)

donde los términos $A_{kt}^{\Gamma\gamma}(i,\tau)$ son listados en el **Apéndice 1** y han sido evaluados usando un conjunto estándar de coordenadas de simetría definido y tabulado en ref. **[10].**

En la práctica existen dos formas de aproximar la ecuación (9). En la serie de lantánidos generalmente se invoca la propiedad de clausura sobre los estados intermedios $\{\Gamma_i \gamma_i n\}$ mientras que en la serie de elementos de transición se ha empleado tanto la aproximación de clausura como la aproximación de Liehr - Ballhausen para los estados intermedios **[16]**.

Para una excitación $|\alpha(LSJ)\Gamma\gamma\rangle \rightarrow |\alpha'(L'SJ')\Gamma'\gamma'm\rangle$ la ecuación (3.9) adopta la forma:

$$\mu^{\beta} \left[\left| \alpha(LSJ) \Gamma \mathcal{H} \right\rangle \rightarrow \left| \alpha'(L'SJ') \Gamma' \gamma' m \right\rangle \right] = \\ = - \left(\frac{Ze}{\Delta E} \right) \sum_{kt} S_{kt} \sum_{\Gamma \gamma} \sum_{i\tau} A_{kt}^{\Gamma \gamma}(i,\tau) \sum_{\psi''} \left\{ \left| \alpha(LSJ) \Gamma \mathcal{H} \right| M_{\gamma}^{\Gamma}(i,\tau) \psi'' \right\rangle \times$$

$$\times \left\langle \psi'' \right| \mu^{\beta} \left| \alpha'(L'SJ') \Gamma' \gamma' m \right\rangle + \left\langle \alpha(LSJ) \Gamma \mathcal{H} \right| \mu^{\beta} \left| \psi'' \right\rangle \left\langle \psi'' \right| M_{\gamma}^{\Gamma}(i,\tau) \left| \alpha'(L'SJ') \Gamma' \gamma' m \right\rangle$$

$$(11)$$

donde ψ'' da cuenta de los estados electrónicos intermedios $|\alpha''(L''SJ'')\Gamma''\gamma''n\rangle$. Para simplificar esta compleja expresión se desarrollará un procedimiento que permita manejar los elementos matriciales de los operadores tensoriales entre los estados de los iones lantánidos.

Anexo IV.1.2.2. Reducción de los elementos matriciales.

Sean los operadores tensoriales independientes del spin $O_{\gamma}^{\Gamma}(i,\tau)$ los cuales transforman como la componente γ -ésima de la representación irreductible Γ -ésima del grupo molecular, tal que:

$$O_{\gamma}^{\Gamma}(i,\tau) = \sum_{q} R_{iq}^{\Gamma\gamma}(\tau) D_{q}^{i}$$
(12)

donde $D_q^i = -er^i C_q^i$ son los operadores tensoriales de Garstang **[17].** Los coeficientes de expansión $R_{iq}^{\Gamma\gamma}(\tau)$ han sido tabulados para los casos de interés **[18, 19].**

Escribiendo:

$$|\alpha(LSJ)\Gamma \not k\rangle = \sum_{M} C(\alpha JM | \Gamma \not k) \alpha(LS) JM \rangle$$
(13)

los elementos matriciales relevantes adoptan la forma:

$$\langle \alpha_1 (L_1 S_1 J_1) \Gamma_1 \gamma_1 l | O_{\gamma}^{\Gamma} (i, \tau) | \alpha_2 (L_2 S_2 J_2) \Gamma_2 \gamma_2 m \rangle =$$

$$= \delta(S_1, S_2) \sum_{M_1 M_2} \sum_q R_{iq}^{\Gamma \gamma} (\tau) C^* (\alpha_1 J_1 M_1 | \Gamma_1 \gamma_1 l) C (\alpha_2 J_2 M_2 | \Gamma_2 \gamma_2 m) \times$$

$$\times \langle \alpha_1 (L_1 S_1) J_1 M_1 | D_q^i | \alpha_2 (L_2 S_2) J_2 M_2 \rangle$$
(14)

Aplicando el teorema de Wigner - Eckart a ambos lados de la ecuación anterior se obtiene:

$$\langle \alpha_1(L_1S_1J_1)\Gamma_1\gamma_1l \| O_{\gamma}^{\Gamma}(i,\tau) \| \alpha_2(L_2S_2J_2)\Gamma_2\gamma_2m \rangle_r = = \delta(S_1,S_2)Z_{(i,\tau);r}^{\Gamma} [\Gamma_1J_1|\Gamma_2J_2] \langle \alpha_1(L_1S_1)J_1 \| D^i \| \alpha_2(L_2S_2)J_2 \rangle$$
⁽¹⁵⁾

donde se han introducido los coeficientes determinados por simetría:

$$Z_{(i,\tau);r}^{\Gamma} \left[\Gamma_{1} J_{1} \middle| \Gamma_{2} J_{2} \right] = \sum_{\gamma_{1} \gamma_{2} \gamma} (-1)^{\Gamma_{1} + \gamma_{1}^{+}} v_{r} \left[\begin{array}{cc} \Gamma_{1} & \Gamma_{2} & \Gamma \\ \gamma_{1}^{+} & \gamma_{2} & \gamma \end{array} \right] \sum_{M_{1} M_{2}} \sum_{q} R_{iq}^{\Gamma \gamma} (\tau) C^{*} (\alpha_{1} J_{1} M_{1} \middle| \Gamma_{1} \gamma_{1} l) \times \\ \times C (\alpha_{2} J_{2} M_{2} \middle| \Gamma_{2} \gamma_{2} m) (-1)^{J_{1} - M_{1}} \left[\begin{array}{cc} J_{1} & i & J_{2} \\ -M_{1} & q & M_{2} \end{array} \right]$$

$$(16)$$

donde r = 1, 2 y los coeficientes $Z_{(i,\tau);r}^{\Gamma}$ pueden ser evaluados para las distintas transiciones electrónicas $f \rightarrow f$ usando las tablas de Griffith **[18]** y de Rotemberg y col. **[20]**. Para O = M, $\Gamma \subset \Gamma_1 \times \Gamma_2$, i = 1,3,5,7,... y $\tau = a,b$; mientras que para $O = \mu, \gamma = \beta e$ i = 1. El producto de dos elementos de matriz reducido de operadores independientes del spin es:

$$\langle (L_{1}S)J_{1} \| D^{k_{1}} \| (L'S)J' \rangle \langle (L'S)J' \| D^{k_{2}} \| (L_{2}S)J_{2} \rangle = (-1)^{k_{1}+k_{2}+L_{1}+L'+J'+J_{2}} (2J'+1)\sqrt{(2J_{1}+1)(2J_{2}+1)} \times \times \begin{cases} L_{1} & J_{1} & S \\ J' & L' & k_{1} \end{cases} \begin{cases} L' & J' & S \\ J_{2} & L_{2} & k_{2} \end{cases} \langle (L_{1}S) \| D^{k_{1}} \| (L'S) \rangle \langle (L'S) \| D^{k_{2}} \| (L_{2}S) \rangle$$

$$(17)$$

Asumiendo que los estados intermedios están restringidos a la configuración 4fⁿ⁻¹5d se puede escribir que:

$$\langle L_{1}S(f^{n}) \| D^{k_{1}} \| L'S(f^{(n-1)}d) \rangle \langle L'S(f^{(n-1)}d) \| D^{k_{2}} \| L_{2}S(f^{n}) \rangle =$$

$$= n(-1)^{L_{2}+L'+k_{1}+k_{2}} (2L'+1)\sqrt{(2L_{1}+1)(2L_{2}+1)} \times$$

$$\times \sum_{L_{3}S_{3}} \langle L_{1}S(f^{n}) \rangle \langle f^{(n-1)}(L_{3}S_{3})d, L_{1}S \rangle \langle f^{(n-1)}(L_{3}S_{3})d, L_{2}S | \rangle f^{n}L_{2}S \rangle \times$$

$$\times \begin{cases} 3 \quad L_{1} \quad L_{3} \\ L' \quad 2 \quad k_{1} \end{cases} \langle 2 \quad L' \quad L_{3} \\ L_{2} \quad 3 \quad k_{2} \end{cases} \langle f \| D^{k_{1}} \| d \rangle \langle d \| D^{k_{2}} \| f \rangle$$

$$(18)$$

Los coeficientes de parentesco fraccionario son tabulados por Nelson y Koster [21]. Los elementos de matriz reducidos monoelectrónicos pueden ser evaluados para dar:

$$\langle 3m | D_q^k | 2m' \rangle = (-1)^{3-m} \begin{bmatrix} 3 & k & 2 \\ -m & q & m' \end{bmatrix} \langle 3 \| D^k \| 2 \rangle \quad (19)$$

donde q = m - m' y k = 1, 3, 5, 7, ...

Adicionalmente, para los multipolos más importantes del ion metálico central correspondientes a k = l y k = 3 se tiene que:

$$\langle d \| D^{1} \| f \rangle = \sqrt{3} e \langle r \rangle_{df}$$

$$\langle d \| D^{3} \| f \rangle = -(2\sqrt{3}/3) e \langle r^{3} \rangle_{df}$$
(20)

Anexo IV.1.2.3. Componente de polarización de ligandos.

Para subsistemas de ligandos isotrópicos, la contribución de polarización de ligandos al momento dipolar de transición total es expresable **[8, 10 - 11]:**

$$\mu^{\alpha} |\alpha_{1}(L_{1}SJ_{1})\Gamma_{1}\gamma_{1}l\rangle \rightarrow |\alpha_{2}(L_{2}SJ_{2})\Gamma_{2}\gamma_{2}m\rangle =$$

$$= \sum_{kt} S_{kt} \sum_{\Gamma\gamma} \sum_{i\tau} B_{kt}^{\Gamma\gamma,\alpha}(i,\tau) \langle \alpha_{1}(L_{1}SJ_{1})\Gamma_{1}\gamma_{1}l | M_{\gamma}^{\Gamma}(i,\tau) | \alpha_{2}(L_{2}SJ_{2})\Gamma_{2}\gamma_{2}m\rangle \quad (21a)$$

donde las constantes de acoplamiento vibrónico de polarización de ligandos:

$$B_{kt}^{\Gamma\gamma,\alpha}(i,\tau) = -\alpha_L \sum_{L} \begin{cases} \partial G_{\Gamma\gamma,\alpha}^{LP,L}(i,\tau) \\ \partial S_{kt} \end{cases}$$
(21b)

se presentan tabuladas en el Apéndice 2.

La reducción de los elementos matriciales anteriores conduce a una expresión del tipo:

$$\mu^{\alpha} | \alpha_{1}(L_{1}SJ_{1})\Gamma_{1}\gamma_{1}l \rangle \rightarrow | \alpha_{2}(L_{2}SJ_{2})\Gamma_{2}\gamma_{2}m \rangle =$$

$$= (-1)^{\Gamma_{1}+\gamma_{1}^{+}} \sum_{kt} S_{kt} \sum_{\Gamma\gamma} B_{kt}^{\Gamma\gamma,\alpha}(i,\tau) \sum_{r} V_{r} \begin{bmatrix} \Gamma_{1} & \Gamma_{2} & \Gamma \\ \gamma_{1}^{+} & \gamma_{2} & \gamma \end{bmatrix} \times$$

$$\times \langle \alpha_{1}(L_{1}SJ_{1})\Gamma_{1}l | M^{\Gamma}(i,\tau) | \alpha_{2}(L_{2}SJ_{2})\Gamma_{2}m \rangle_{\Gamma}$$
(22a)

donde

$$\left\langle f^{n} \alpha_{1}(L_{1}S)J_{1} \| D^{i} \| f^{n} \alpha_{2}(L_{2}S)J_{2} \right\rangle = (-1)^{S+i+L_{1}+J_{2}} \sqrt{(2J_{1}+1)(2J_{2}+1)} \times \\ \times \begin{cases} J_{1} & J_{2} & i \\ L_{2} & L_{1} & S \end{cases} \left\langle \alpha_{1}(L_{1}S) \| D^{i} \| \alpha_{2}(L_{2}S) \right\rangle$$
(22b)

у

$$\langle \alpha_{1}(L_{1}S) \| D^{i} \| \alpha_{2}(L_{2}S) \rangle = n \sqrt{(2L_{1}+1)(2L_{2}+1)} \langle 3 \| D^{i} \| 3 \rangle_{\overline{\alpha LS}} (-1)^{\overline{L}+3+L_{1}+i} \times \\ \times \begin{cases} L_{1} & L_{2} & i \\ 3 & 3 & \overline{L} \end{cases} \langle f^{n}(\alpha_{1}L_{1}S) \langle f^{n-1}(\overline{\alpha LS}), f \rangle \langle f^{n-1}(\overline{\alpha LS}), f | \rangle f^{n}(\alpha_{2}L_{2}S) \rangle$$

$$(22c)$$

finalmente

$$\langle 3 \| D^i \| 3 \rangle = 7e \langle r^i \rangle_{ff} \begin{bmatrix} 3 & i & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
(22d)

para i = 2, 4 y 6.

Así, usando las ecuaciones (12 y 22) puede ser evaluado el momento dipolar de transición entre dos estados vibrónicos fⁿ de iones complejos lantánidos centrosimétricos involucrando un único quantum de vibraciones impares. Las ecuaciones anteriores dan la intensidad asociada a una coordenada de simetría vibracional en particular, sin embargo esta intensidad puede ser distribuida entre los modos normales a través de la relación S = LQ. Luego, la evaluación de la intensidad vibrónica asociada con una transición específica requiere disponer de la matriz L (derivada de las frecuencias vibracionales experimentales), de las funciones propias de campo cristalino y de las polarizabilidades experimentales en los ligandos. Las otras cantidades requeridas, las integrales radiales $\left(\left\langle r^{k}\right\rangle _{_{ff}},\left\langle r^{k}\right\rangle _{_{fd}}\right)$ y la carga sobre el ligando, pueden ser derivadas a partir de algún modelo físico asumido para el ion complejo, por ejemplo usando funciones de Hartree - Fock apropiadas para un estado específico de oxidación del ion metálico central y usando una carga apropiada para todo el complejo.

Anexo IV.2. Intensidades vibrónicas en iones complejos Lantánidos centrosimétricos. Método Vibrónico de Campo cristalino – clausura.

Anexo IV.2.1 Introducción.

La teoría de acoplamiento vibrónico en compuestos de coordinación centrosimétricos de los iones complejos lantánidos ha sido objeto de un creciente interés durante las últimas tres décadas **[1, 2, 4, 5, 12, 13, 23]**. Notable éxito ha alcanzado en cálculos que usan un formalismo combinado de campo cristalino vibrónico (con y sin aproximación de clausura) - polarización de ligandos **[8, 10, 22]**. Para la transición ${}^{2}E_{g} \rightarrow {}^{4}A_{2g}$ del ion MnF_{6}^{-2} en el sistema $Cs_{2}MnF_{6}$, se ha demostrado **[8]** que al adoptar el procedimiento de clausura sobre las funciones de onda intermediarias del ión metálico central, la distribución de intensidad vibrónica depende tanto de los detalles del campo de fuerza intermolecular como del parámetro adimensional $\alpha = \langle \langle r^{6} \rangle / \langle r^{4} \rangle R_{0}^{2} \rangle$, siendo R_{0} la distancia de enlace.

Judd y Olfet **[1, 2]** desarrollaron un formalismo para dar cuenta de las intensidades espectrales observadas en las tierras raras. Esta aproximación es aplicable a compuestos de coordinación no centrosimétricos, en donde transiciones electrónicas f - f roban intensidad de excitaciones f - d y/o f - g a

través de la cooperación de componentes impares del potencial de campo cristalino.

Cuando éste modelo es adoptado, la naturaleza explícita de los estados electrónicos intermediarios del ion metálico central es irrelevante, excepto en la elección de un gap de energía efectivo correspondiente a una transición electrónica permitida por paridad y spin. Este formalismo ha sido ampliamente usado en aplicaciones a compuestos de coordinación [1, 2, 4 – 7, 10, 12, 13, 22].

El formalismo de Judd - Olfet requiere de una extensión para ser aplicable a compuestos de coordinación centrosimétricos de iones complejos lantánidos dada la gran información experimental disponible de IR, Raman y espectroscopía vibracional para estos sistemas [4, 5, 8, 10, 12, 13, 21 - 24]. Richardson y col. [4, 12, 13, 25] han realizado varios cálculos de intensidades para compuestos de coordinación centrosimétricos y no centrosimétricos, usando un modelo combinado de campo cristalino – clausura - polarización de ligandos. En todos estos cálculos una creciente parametrización ha sido introducida para minimizar la desviación media entre los niveles de energía calculados y los observados, poniéndose poca atención sobre los detalles del campo de fuerzas intermolecular. Adicionalmente, existe desacuerdo en la literatura en relación a las asignaciones espectrales [26, 27], por lo que parece necesario reformular el modelo de cálculo a objeto de explicar la distribución

de intensidades vibrónica relativas de los falsos orígenes en el espectro de las elpasolitas cúbicas.

En esta sección se presenta un formalismo general para describir, sobre una base cuantitativa, cálculos de intensidades vibrónicas en compuestos de coordinación centrosimétricos de iones complejos y lantánidos, entregándose una completa tabulación de los operadores y elementos matriciales reducidos que se requieren.

Anexo IV.2.2. Método de cálculo. Aproximación vibrónica campo cristalino – clausura.

Sea una transición electrónica $|\alpha(LSJ)\Gamma\gamma j\rangle \rightarrow |\alpha'(L'SJ')\Gamma'\gamma' l\rangle$, donde j y l son índices de representación repetida. Adicionalmente, α y α' son números cuánticos extras. Para compuestos de coordinación centrosimétricos de iones complejos de lantánidos, el momento dípolar de transición de orden cero se anula, de tal manera que es operativo un mecanismo de acoplamiento vibrónico en el cual transiciones prohibidas por paridad roban intensidad de excitaciones permitidas por paridad y spin, con la cooperación de modos impares. Es costumbre en la literatura [1, 2, 8, 10, 22] seguir el siguiente procedimiento:

- (a) Usando teoría de perturbación independiente del tiempo para estados no degenerados se expanden los estados de Born - Oppenheimer de orden cero a una corrección, de primer orden. La perturbación está dada por el operador de acoplamiento vibrónico.
- (b) Expandiendo el Hamiltoniano en términos de desplazamientos cartesianos nucleares (R) a una corrección de primer orden, éste se puede expresar en el espacio de coordenadas de simetría (S) a través de la transformación R = (UB)⁻¹S.
- (c) Las ecuaciones de movimiento $(GFL = L\Lambda)$ son resueltas con un campo de fuerzas apropiado para describir la dinámica del sistema. Posteriormente, se minimiza tanto la desviación media entre las frecuencias vibracionales calculadas, como el término cruzado (CT), el cual se define partir de la distribución de energía potencial (PED) como:

$$\left(CT\right)_{v_i} = \sum_{k \pm 1} L_{ki} L_{li} F_{kl}$$

Una vez que son resueltas las ecuaciones de movimiento vibracional, las amplitudes de vibración relativas son establecidas en función de los elementos diagonales de la matriz L (L_{ii}). Posteriormente, la normalización de los elementos de dicha matriz se realiza usando la restricción LL' = G. Para un mismo campo de fuerzas no existe una forma única de definir las fases de los elementos L_{ij} . Este punto, el cual es irrelevante en un análisis de coordenadas normales estándar, es crucial en cálculos de intensidades vibrónicas en materiales inorgánicos. Una vez que se adopta un criterio de fases se procede a la normalización de la matriz L. Finalmente, las coordenadas normales son encontradas a partir de la relación Q = L⁻¹S.

Así, de las etapas (a) y (b), la componente vectorial β -ésima del momento dipolar de transición asociado con la transición electrónica $|\alpha(LSJ)\Gamma_1\gamma_1j\rangle \rightarrow |\alpha'(L'SJ')\Gamma_2\gamma_2l\rangle$ se escribe [28]:

$$\mu^{\beta} \left[\alpha(LSJ)\Gamma_{1}\gamma_{1}j \right\rangle \rightarrow \left| \alpha'(L'SJ')\Gamma_{2}\gamma_{2}l \right\rangle \right] =$$

$$= \sum_{\Psi''} \left[E''-E_{j} \right]^{-1} \left\langle \alpha(LSJ)\Gamma_{1}\gamma_{1}j \left| \mu^{\beta} \right| \Psi'' \right\rangle \left\langle \Psi'' \left| H_{CF}^{(1)} \right| \alpha'(L'SJ')\Gamma_{2}\gamma_{2}l \right\rangle +$$

$$+ \sum_{\Psi''} \left[E''-E_{l} \right]^{-1} \left\langle \alpha(LSJ)\Gamma_{1}\gamma_{1}j \left| H_{CF}^{(1)} \right| \Psi'' \right\rangle \left\langle \Psi'' \left| \mu^{\beta} \right| \alpha'(L'SJ')\Gamma_{2}\gamma_{2}l \right\rangle$$
(23)

donde la función $|\psi''\rangle = |\alpha''(L''SJ'')\Gamma''\gamma''k\rangle$ da cuenta de los estados electrónicos intermedios del ión metálico central. El operador vibrónico $H_{CF}^{(1)}$ está dado por **[10, 28]**:

$$H_{CF}^{(1)} = -\sum_{L} Z_{L} e(\vec{s}_{L} - \vec{s}_{M}) \sum_{k_{1}q_{1}} D_{q_{1}}^{k_{1}}(M) \{ \nabla_{L} G_{k_{1}q_{1}}^{CF}(L) \}$$
(24)

donde los factores geométricos de campo cristalino $G_{k_1q_1}^{CF}(L)$ están definidos por **[10, 28, 29]**:

$$G_{k_{1}q_{1}}^{CF}(L) = (-1)^{q_{1}+1} R_{L}^{-(k_{1}+1)} C_{-q_{1}}^{k_{1}}(\theta_{L}, \phi_{L})$$
(25)

siendo $C_q^k(\theta,\phi)$ los operadores tensoriales de Racah [21].

Cuando la aproximación de clausura es adoptada, se asume que todos los estados electrónicos intermedios relevantes $|\psi''\rangle$ presentan la misma energía (ΔE) y forman un set completo de autofunciones en el espacio de Hilbert.

En estos términos la ecuación (23) puede reescribirse como [1, 2, 10]:

$$\mu^{\beta} \left[\alpha(LSJ)\Gamma_{1}\gamma_{1}j \right\rangle \rightarrow \left| \alpha'(L'SJ')\Gamma_{2}\gamma_{2}l \right\rangle \right] = \\ = \left(\frac{1}{\Delta E} \right) \left\langle \alpha(LSJ)\Gamma_{1}\gamma_{1}j \right| \mu^{\beta} H_{CF}^{(1)} \left| \alpha'(L'SJ')\Gamma_{2}\gamma_{2}l \right\rangle$$
(26)

donde $(\Delta E)^{-1} = \{\!\!\{E''-E_j\}^{-1} + [E''-E_l]^{-1}\}\$ es un gap de energía efectivo, correspondiente a una transición electrónica permitida por spin y paridad.

Existen dos formas de tratar estos elementos matriciales, dependiendo de si el esquema es simetrizado o no.

Anexo IV.2.2.1. Esquema simetrizado.

En un esquema simetrizado el operador vibrónico de campo cristalino puede escribirse:

$$H_{CF}^{(1)} = \sum_{v_t} V_{v_t} S_{v_t}$$
(27)

donde $V_{v_r} = \left\{ \frac{\partial V}{\partial S_{v_r}} \right\}$ y S_{v_r} denota las coordenadas de simetría del sistema.

Para un ion complejo del tipo ML_6 , en el grupo doble octaédrico (O_h^*) , en la literatura **[10]** se reporta un conjunto estándar de coordenadas de simetría y operadores vibrónicos, de tal manera que es posible escribir la identidad:

$$V_{\nu_{\tau}} = -Ze \sum_{\Gamma \gamma i} \sum_{\tau} A_{\nu_{\tau}}^{\Gamma \gamma} (i, \tau) M_{\gamma}^{\Gamma} (i, \tau)$$
(28)

donde τ es un índice extra que permite distinguir entre conjuntos de funciones de onda ortogonales que transforman de acuerdo a la misma representación irreductible en el grupo doble octaédrico (O_h^*) y finalmente el índice i da cuenta del orden del multipolo eléctrico en el ion metálico central.

Debido a que el producto directo $T_1 \times \Gamma$ es simplemente reducible:

$$\mu^{\beta} M_{\gamma}^{\Gamma}(i,\tau) = \sum_{\overline{\Gamma\gamma}} \lambda \left(\overline{\Gamma}\right)^{\frac{1}{2}} \left(-1\right)^{\overline{\Gamma}+\overline{\gamma}^{+}} \nu \begin{bmatrix} T_{1} & \Gamma & \overline{\Gamma} \\ \beta & \gamma & \overline{\gamma}^{+} \end{bmatrix} o_{\overline{\gamma}}^{\overline{\Gamma}} \left(T_{1}\Gamma|i,\tau\right)$$
(29)

de tal manera que en base a las ecuaciones (27-29), la ecuación (26) es expresable como:

$$\mu^{\alpha} \left[\left(L_{1}SJ_{1} \right) \Gamma_{1}\gamma_{1}j \right\rangle \rightarrow \left| \left(L_{2}SJ_{2} \right) \Gamma_{2}\gamma_{2}l \right\rangle \right] =$$

$$= -2(Ze)(\Delta E)^{-1} \sum_{\nu_{t}} S_{\nu_{t}} \sum_{\tau} \sum_{\tau} A_{\nu_{t}}^{\Gamma\gamma}(i,\tau) \sum_{\overline{\Gamma\gamma}} \lambda(\overline{\Gamma})^{1/2} (-1)^{\overline{\Gamma}+\overline{\gamma}^{+}} \nu \begin{bmatrix} T_{1} & \Gamma & \overline{\Gamma} \\ \beta & \gamma & \overline{\gamma}^{+} \end{bmatrix} (-1)^{\Gamma_{1}+\gamma_{1}^{+}} \times$$

$$\times \sum_{m} \nu_{m} \begin{bmatrix} \Gamma_{1} & \Gamma_{2} & \overline{\Gamma} \\ \gamma_{1}^{+} & \gamma_{2} & \overline{\gamma} \end{bmatrix} \langle (L_{1}SJ_{1})\Gamma_{1}j \| o^{\overline{\Gamma}} (T_{1}\Gamma|i,\tau) \| (L_{2}SJ_{2})\Gamma_{2}l \rangle_{m}$$

$$(30)$$

Los elementos de matriz reducido de la identidad anterior son obtenidos a partir de:

$$\langle (L_1 S J_1) \Gamma_1 j \left\| o^{\overline{\Gamma}} (T_1 \Gamma | i, \tau) \right\| (L_2 S J_2) \Gamma_2 l \rangle_m =$$

$$= \sum_{\gamma_1 \gamma_2 \overline{\gamma}} (-1)^{\Gamma_1 + \gamma_1^+} v_m \begin{bmatrix} \Gamma_1 & \Gamma_2 & \overline{\Gamma} \\ \gamma_1^+ & \gamma_2 & \overline{\gamma} \end{bmatrix} \langle (L_1 S J_1) \Gamma_1 \gamma_1 j \left\| o^{\overline{\Gamma}} (T_1 \Gamma | i, \tau) \right\| (L_2 S J_2) \Gamma_2 \gamma_2 l \rangle$$

$$(31)$$

Por otro lado, los estados vibrónicos adaptados por simetría $\{(LSJ)\Gamma\gamma k\}$, pueden ser expresados como combinaciones lineales de un conjunto base de campo débil $\{\alpha(LS)JM\}$ de acuerdo a:

$$|(LSJ)\Gamma\gamma k\rangle = \sum_{M} C(\alpha JM|\Gamma\gamma k)\alpha (LS)JM\rangle$$
 (32)

donde los coeficientes $C(\alpha JM | \Gamma \gamma k)$ están dados por Griffith **[18, 30]** para el grupo octaédrico doble.

Los operadores tensoriales relevantes $o_{\overline{\gamma}}^{\overline{\Gamma}}(T_1\Gamma|i,\tau)$ pueden ser escritos en términos de los operadores tensoriales de Racah $C_q^i(\theta,\phi)$. Una tabulación de estos operadores en un sistema cartesiano está dada por Butler **[3]**, de tal manera que:

$$o_{\bar{\gamma}}^{\bar{\Gamma}}(T_{1}\Gamma|i,\tau) = \sum_{k,q} P_{kq}^{\bar{\Gamma}\,\bar{\gamma}}(T_{1}\Gamma|i,\tau)C_{q}^{k} \qquad (33)$$

Estos operadores han sido determinados para todos los casos posibles. Y aquellos no nulos se reportan en el **Apéndice 3**.

Con el objetivo de establecer una notación más práctica, resulta conveniente definir los coeficientes Z según:

$$Z_{(k,m)}^{\left[(T_{1}\Gamma)\overline{\Gamma};i,\tau\right]}\left[\Gamma_{1}J_{1}|\Gamma_{2}J_{2}\right] = \sum_{\gamma_{1}\gamma_{2}\overline{\gamma}}(-1)^{\Gamma_{1}+\gamma_{1}^{+}}v_{m}\left[\begin{array}{cc}\Gamma_{1}&\Gamma_{2}&\overline{\Gamma}\\\gamma_{1}^{+}&\gamma_{2}&\overline{\gamma}\end{array}\right] \times \\ \times \sum_{M_{1}M_{2}q}C^{*}\left(\alpha J_{1}M_{1}|\Gamma_{1}\gamma_{1}j\right)C\left(\alpha^{\prime}J_{2}M_{2}|\Gamma_{2}\gamma_{2}l\right)P_{kq}^{\overline{\Gamma}\overline{\gamma}}\left(T_{1}\Gamma|i,\tau\right)(-1)^{J_{1}-M_{1}}\left[\begin{array}{cc}J_{1}&k&J_{2}\\-M_{1}&q&M_{2}\end{array}\right]$$

$$(34)$$

de tal forma que los elementos de matriz reducido quedan expresados:

$$\langle (L_1 S J_1) \Gamma_1 j \left| o^{\overline{\Gamma}} (T_1 \Gamma | i, \tau) \right| (L_2 S J_2) \Gamma_2 l \rangle_m = = Z_{(k,m)}^{[(T_1 \Gamma) \overline{\Gamma}; i, \tau]} [\Gamma_1 J_1 | \Gamma_2 J_2] \times \langle \alpha(L_1 S) J_1 \left| C^k \right| \alpha'(L_2 S) J_2 \rangle$$

$$(35)$$

Los elementos de matriz reducidos de acuerdo a Racah [31] pueden ser evaluados en base a la identidad:

$$\langle \alpha(L_1 S) J_1 \| C^k \| \alpha'(L_2 S) J_2 \rangle = = (-1)^{S+k+J_2+L_1} \sqrt{(2J_1+1)(2J_2+1)} \begin{cases} J_1 & J_2 & k \\ L_2 & L_1 & S \end{cases} \langle \alpha(L_1 S) \| C^k \| \alpha'(L_2 S) \rangle$$
(36)

у

$$\left\langle f^{n} \alpha L_{1} S \left\| C^{k} \right\| f^{n} \alpha' L_{2} S \right\rangle = n \sqrt{(2J_{1}+1)(2J_{2}+1)} \left\langle 3 \left\| C^{k} \right\| 3 \right\rangle \sum_{\alpha LS} (-1)^{\overline{L}+3+L_{1}+k} \times \left\{ \begin{array}{c} L_{1} & L_{2} & k\\ 3 & 3 & \overline{L} \end{array} \right\} \left\langle f^{n} (\alpha L_{1} S) \left\{ f^{n-1} \left(\overline{\alpha LS} \right), f \right\rangle \left\langle f^{n-1} \left(\overline{\alpha LS} \right), f \right| \right\} f^{n} (\alpha' L_{2} S) \right\rangle$$

$$(37)$$

con

$$\langle 3 \| C^k \| 3 \rangle = -7 \begin{bmatrix} 3 & k & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
 (38)

siendo n el número de electrones f, encontrándose tabulados en la literatura los símbolos 3j y 6j [20].

Anexo IV.2.2.2. Esquema no simetrizado.

En un tratamiento no simetrizado, dentro del procedimiento de clausura, la componente vectorial β -ésima del momento dipolar de transición asociado a la excitación $|\alpha(LSJ)\Gamma_{jj}\rangle \rightarrow |\alpha'(L'SJ')\Gamma_{jj}\rangle$ adopta la forma **[10]**:

$$\mu^{\beta} \left[\alpha(LSJ)\Gamma_{1}\gamma_{1}j \right\rangle \rightarrow \left| \alpha'(L'SJ')\Gamma_{2}\gamma_{2}l \right\rangle \right] =$$

= $2(\Delta E)^{-1} \sum_{M,M'} C^{*} \left(\alpha JM |\Gamma_{1}\gamma_{1}j\rangle C \left(\alpha'J'M' |\Gamma_{2}\gamma_{2}j\rangle \left| \alpha(LS)JM |\mu^{\beta}H_{CF}^{(1)}| \alpha'(L'S)J'M' \right\rangle \right)$

(39)

De acuerdo a la ecuación (24) el producto tensorial $\mu^{\beta} H_{CF}^{(1)}$ puede ser reescrito:

$$\mu^{\beta} H_{CF}^{(1)} = -\sum_{L} Z_{L} e(\vec{s}_{L} - \vec{s}_{M}) \sum_{k_{1}q_{1}} \left[\mu^{\beta} D_{q_{1}}^{k_{1}}(M) \left[\nabla_{L} G_{k_{1}q_{1}}^{CF}(\theta_{L}, \phi_{L}) \right] \right]$$
(40)
donde:

$$\mu^{\beta} D_{q_1}^{k_1}(M) = \sum_{l,m} (-1)^{k_1 - m - 1} \sqrt{(2l + 1)} \begin{bmatrix} 1 & k_1 & l \\ \beta & q_1 & -m \end{bmatrix} T_m^{l(k_1)}$$
(41)

con los operadores tensoriales $T_m^{l(k_1)}$ dados por:

$$T_m^{l(k_1)} = (-1)^{k_1 - m - 1} \sum_{\theta, \varepsilon} \sqrt{(2l+1)} \begin{bmatrix} 1 & k_1 & l \\ \theta & \varepsilon & -m \end{bmatrix} \mu^{\theta} D_{\varepsilon}^{k_1}$$
(42)

Definamos $\mu^{\beta} = D_{\beta}^{1}$ ($\beta = 0, \pm 1$), siendo $D_{q}^{k}(\theta, \phi) = -er^{k}C_{q}^{k}(\theta, \phi)$ los operadores tensoriales de Garstang [17]. Así, el producto tensorial $\mu^{\beta}D_{\varepsilon}^{k_{1}}$, puede ser expresado:

$$\mu^{\beta} D_{\varepsilon}^{k_{1}} = \left[\frac{e^{2} r^{(k_{1}+1)}}{\sqrt{2(2k_{1}+1)}}\right]_{k} \left(-1\right)^{\varepsilon} \left(2k+1\right) C^{k} \left(l\theta, k_{1}-\varepsilon\right) C_{(\theta+\varepsilon)}^{k} \quad (43)$$

De las ecuaciones (39 - 41) se obtiene la identidad:

$$\mu^{\beta} \left[\left| \alpha(LSJ) \Gamma_{1} \gamma_{1} j \right\rangle \rightarrow \left| \alpha'(L'SJ') \Gamma_{2} \gamma_{2} l \right\rangle \right] =$$

$$= 2(\Delta E)^{-1} \sum_{L} Z_{L} e(\vec{s}_{L} - \vec{s}_{M}) \sum_{k_{1}q_{1}} \sum_{l,m} (-1)^{k_{1}-m-1} \sqrt{(2l+1)} \begin{bmatrix} 1 & k_{1} & l \\ \beta & q_{1} & -m \end{bmatrix} \delta(\beta + q_{1}, M - M') \times$$

$$\times \left\{ \sum_{M,M'} C^{*} \left(\alpha JM \left| \Gamma_{1} \gamma_{1} j \right) C(\alpha' J'M' \left| \Gamma_{2} \gamma_{2} j \right) (-1)^{J-M} \begin{bmatrix} J & l & J' \\ -M & m & M' \end{bmatrix} \right\} \times$$

$$\times \left\langle \alpha(LS) J \left\| T^{l(k_{1})} \right\| \alpha'(L'S) J' \right\rangle \left[\nabla_{L} G_{k_{1}q_{1}}^{CF}(L) \right]$$

$$(44)$$

562

donde los elementos de matriz reducidos $\langle \alpha(LS)J || T^{l(k_1)} || \alpha'(L'S)J' \rangle$ son expresados de acuerdo a **[31]:**

$$\langle \alpha(LS)J \| T^{l(k_1)} \| \alpha'(L'S)J' \rangle = (-1)^{L+S+J'+l} \sqrt{(2J+1)(2J')+1} \begin{cases} J & J' & l \\ L' & L & S \end{cases} \times \times \langle f^n, (\alpha LS) \| T^{l(k_1)} \| f^n, \alpha'(L'S) \rangle$$

$$(45)$$

y adicionalmente:

$$\left\langle f^{n}, (\alpha LS) \left\| T^{l(k_{1})} \right\| f^{n}, \alpha'(L'S) \right\rangle = n \sqrt{(2L+1)(2L'+1)} \left\langle 3 \left\| T^{l(k_{1})} \right\| 3 \right\rangle \times \\ \times \sum_{\alpha \overline{LS}} (-1)^{\overline{L}+3+L_{1}+l} \left\{ \begin{matrix} L & L' & l \\ 3 & 3 & L \end{matrix} \right\} \left\langle f^{n}(\alpha LS) \right\rangle \left\{ f^{n-1}(\overline{\alpha LS}), f \right\rangle \left\langle f^{n-1}(\overline{\alpha LS}), f \right\rangle \right\} f^{n}(\alpha'L'S) \right\rangle$$

$$(46)$$

Finalmente, los elementos de matriz reducidos $\langle 3 \| T^{l(k_1)} \| 3 \rangle$ pueden ser evaluados usando las identidades:

$$T_{m}^{l(k_{1})} = \sum_{\theta} (-1)^{k_{1}-m-1} e^{2} r^{k_{1}+1} \sqrt{\frac{(2l+1)}{3(2k_{1}+1)}} \sum_{\varepsilon,k} (-1)^{\varepsilon} \begin{bmatrix} 1 & k_{1} & l \\ \theta & \varepsilon & -m \end{bmatrix} (2k+1) \times C^{k} (l\theta|k_{1}-\varepsilon) C_{(\varepsilon+\theta)}^{k}$$

$$(47)$$

у

$$\langle 3p | T_m^{l(k_1)} | 3q \rangle = (-1)^{3-p} \begin{bmatrix} 3 & l & 3 \\ -p & m & q \end{bmatrix} \langle 3 | T^{l(k_1)} | 3 \rangle$$
 (48)

Una tabulación completa de los elementos de matriz reducidos monoelectrónicos no nulos está dada por el **Apéndice 4**.

Anexo IV.3.- Referencias.

- [1] B.R. Judd, Phys. Rev., 127, 750 (1962).
- [2] G.S. Olfet, J. Chem. Phys., 37, 511 (1962).
- [3] P.H. Butler, "Point group symmetry applications", Plenum Press (1981).
- [4] J.P. Morley, T.R. Faulkner, F.S. Richardson, R.W. Schwartz, J. Chem. Phys., 77, 1734 (1982).
- [5] P.A. Tanner, Mol. Phys., 57(4), 697 (1986).
- [6] P.A. Tanner, Mol. Phys., 53, 835 (1984).

[7] R. Acevedo, G. Diaz, J.R. Letelier y C.D. Flint, Mol. Phys., 71, 1063

(1990).

[8] R. Acevedo, S.O. Vasquez, C.D. Flint, Mol. Phys., 74 (4), 853 (1993).

[9] S.F.Mason, "Structure and bonding", 39, 43 (1980).

- [10] R.Acevedo, G. Diaz, S.O. Vasquez, C.D.Flint, Theoret. Chim Acta (Berl.), 79, 349 (1991).
- [11] T.R. Faulkner, F.S. Richardson, Mol. Phys., 35, 1141 (1978).
- [12] F.S. Richardson, M.F. Reid, J.J. Dallara, R.D.Smith, J. Chem. Phys., 83, 3813 (1985).
- [13] M.F. Reid, F.S. Richardson, J. Chem. Phys., 83, 3831 (1985).
- [14] R. Acevedo, "Vibronic processes in inorganic chemistry", Series C: Mathematical and Physics Sciences, 288, 139 (1989).
- [15] B.C. Carlson, J.S. Rushbrooke, Proc. Cambridge Phil. Soc., 46, 662 (1950).
- [16] C.J. Ballhausen, "Vibronic processes in inorganic chemistry", Series C: Mathematical and Physics Sciences, 288, 1 (1989).
- [17] R.H. Garstang, Proc. Cambridge Phil. Soc., 53, 214 (1957).
- [18] J.S. Griffith, "The theory of transition metal ions". Cambridge University Press, New York (1961).
- [19] P.A. Dobosh, Phys. Rev. A-5, 2376 (1972).

- [20] M. Rotemberg, R. Bivis, N. Metropolis, J.K. Wooten Jr., "The 3j and 6j symbols". Technology Press, M.I.T. Cambridge Mass (1959).
- [21] D.J. Newman, G.G. Sui, W.Y Fung, J.Chem. Phys., 15, 3113 (1982).
- [22] R. Acevedo, S.O. Vasquez, C.D. Flint, Mol. Phys., 74 (4), 843 (1993).
- [23] R.W. Sshwartz, Mol. Phys., 31, 1909 (1976).
- [24] H.M. Crosswhite, "Spectroscopies des elements de transition et des elements lourds dans les solides", (CNRS,Paris), pp. 65 (1977).
- [25] M.F. Reid, F.S. Richardson, P.A. Tanner, Mol. Phys., 60(4), 881 (1981).
- [26] F.L. Stewart-Darling, PhD Thesis. University of London (1981).
- [27] R.Acevedo, T.Meruane, E. Cortés, S.O.Vásquez, C.D.Flint, Theoret.Chim.Acta (Berl.,), 88, 99 (1994)
- [28] R.Acevedo, E. Cortés, T.Meruane, S.O.Vásquez, C.D.Flint, An. Quím, 90, 334 (1994)
- [29] R.Acevedo, E. Cortés, T.Meruane, S.O.Vásquez, C.D.Flint, An. Quím, 90, 339 (1994)
- [30] J.S. Griffith, "The irreducible tensor method for molecular symmetry groups", Prentice-Hall, Englewwod Cliffs, New Jersey (1962).
- [31] U. Fano, G. Racah, "Irreducible tensorial sets", Academic Press, New York (1959).

ANEXO V

REFERENCIAS

Referencias.

- R. Acevedo, T. Meruane, E. Cortés, S. O. Vasquez, and C. D. Flint. (1994)
 Vibronic intensities in centrosymmetric lanthanide complex ions. I. A combined crystal field-ligand polarisation approach. *Theor. Chim. Acta* 88, 99-110.
- R. Acevedo, C. D. Flint, T. Meruane, G. Muñoz, M. Passman, and V. Poblete. (1994) Vibronic intensities in centrosymmetric coordination compounds of the rare earths. Part II. A vibronic crystal field-closure-ligand polarisation model and applications to the PrCl₆³⁻ and UBr₆²⁻ complex ions in octahedral symmetry. *J. Mol. Struct.* (*Theochem*) **390**, 109-19.
- S. Ahmad and D. J. Newman. (1979) Use of discreet basis sets in configuration interaction calculation. *Comp. Phys. Comm.* **18**, 331-7.
- K. S. Aleksandrov, A. T. Anistratov, V. I. Zinenko, I. M. Iskornev, S. V. Misul, and L. A. Shabanova. (1980) The properties of Cs₂NaB³⁺Cl₆ single crystals near their Curie points. *Ferroelectrics* 26, 653-6.
- S. Aleonard and C. Pouzet. (1968) Etude cristallographique de quelques fluorures complexes de terres rares de formule A₂NaTF₆. J. Appl. Cryst. 1, 113-6.

- H.-D. Amberger, G. G. Rosenbauer, and R. D. Fischer. (1976) Zur Elektronenstruktur Hochsymmetrischer Verbindungen der Lanthanoiden und Actinoiden VI. Das Elektronische Raman-Spektrum von Cs₂NaCe(III)Cl₆. Mol. Phys. **32**, 1291-8.
- H.-D. Amberger. (1978) Zur Elektronenstruktur Hochsymmetrischer Verbindungen der f-Elemente XI (1) Electronisches Raman-Spektrum und Kristallfeld-Aufspaltungsmuster der Grundmannigfaltigkeit ³H₄ von Cs₂KPr^{III}F₆. Inorg. Nucl. Chem. Lett. **14**, 491-5.
- H.-D. Amberger. (1980a) Electronic structure of highly symmetrical compounds of the lanthanides and actinides XIII Cs₂KYF₆- a lattice which is especially suitable for spectroscopic studies of fluoroelpasolites. *Z. Anorg. Allg. Chem.* **467**, 231-9.
- H.-D. Amberger. (1980b) The electronic structure of highly symmetrical compounds of the f-elements, XIV [1] The preparation of bromoelpasolites for optical measurements. *Z. Naturforsch.* **35b**, 507-8.
- P. A. Apanasevich, R. I. Gintoft, V. S. Korolkov, A. G. Makhanek, and G. A. Skripko. (1973) Two-photon excitation spectra of trivalent rare earth ion luminescence in crystals. *Phys. Stat. Sol. B* 58, 745-57.

- J. D. Axe, Jr. (1964) Two-photon processes in complex atoms. *Phys. Rev. A* **136**, 42-5.
- R. F. Bacher and S. Goudsmit. (1934) Atomic energy relations I. *Phys. Rev.* 46, 948-69.
- T. R. Bader and A. Gold. (1968) Polarisation dependence of two-photon absorption in solids. *Phys. Rev.* **171**, 997-1003.
- C. W. Balke. (1919) Dehydrating chlorides of rare earth metals. *Chem. Abs.* **13**, 773.
- A. K. Banerjee and R. W. Schwartz. (1981) The optical absorption and emission spectra of Cs₂NaSmCl₆. *Chem. Phys.* **58**, 255-66.
- Y. A. Barbanel, R. B. Dushin, and N. K. Zabelinskaya. (1986) The optical spectra of the hexabromo-ytterbate Cs₂NaYbBr₆ and the energy levels of the f¹³ configuration in an octahedral ligand field. *Russ. J. Inorg. Chem.* **31**, 184-7.
- T. J. Barker, R. G. Denning, and J. R. G. Thorne. (1987) Applications of twophoton spectroscopy to inorganic compounds. 1. Spectrum and electronic structure of Cs₂UO₂Cl₄. *Inorg. Chem.* 26, 1721-32.

- T. J. Barker, R. G. Denning, and J. R. G. Thorne. (1992) Applications of twophoton spectroscopy to inorganic compounds. 2. Spectrum and electronic structure of CsUO₂(NO)₃. *Inorg. Chem.* **31**, 1344-53.
- E. Bayer and G. Schaack. (1970) Two-photon absorption of CaF₂:Eu²⁺. *Phys. Stat. Sol.* **41**, 827-35.
- H. Becquerel. (1888) Sur les variations des spectres d'absorption des composés du didyme. Ann. Chim. Phys. (Paris) 6^{me} série 14, 257-79.

A. J. Berry. (1995) *Optical Spectroscopy of Terbium Elpasolites*. D. Phil. thesis, University of Oxford.

- A. J. Berry, C. S. McCaw, I. D. Morrison, and R. G. Denning. (1996) Twophoton spectroscopy of terbium(III) elpasolites. *J. Lumin.* **66&67**, 272-7.
- A. J. Berry, R. G. Denning, and I. D. Morrison. (1997a) Two-photon Zeeman spectroscopy of terbium(III) elpasolites. *J. Chem. Phys.* **106**, 8967-73.
- A. J. Berry, R. G. Denning, and I. D. Morrison. (1997b) Two-photon excitation spectroscopy of lanthanide elpasolites- implications for the correlation crystal field. *Chem. Phys. Lett.* **266**, 195-200.

- A. J. Berry, I. D. Morrison, and R. G. Denning. (1998a) Energy levels of terbium(III) in the elpasolite Cs₂NaTbF₆. *Mol. Phys.* **93**, 1-14.
- A. J. Berry, I. D. Morrison, and R. G. Denning. (1998b) Energy levels of terbium(III) in the elpasolite Cs₂NaTbCl₆. Accepted for *Mol. Phys.*
- M. T. Berry, M. F. Reid, and F. S. Richardson. (1986) The ligand dependence of lanthanide 4*f*→4*f* magnetic dipole transition moments. *J. Chem. Phys.* 84, 2917-25.
- J. P. Besse and M. Capestan. (1968) *Composés du type* M₃CeF₆ *et* $M_2M'CeF_6$. *Comptes Rendus Acad. Sci. Paris Série* C **260**, 551-3.

H. Bethe. (1929) *Termaufspaltung in Kristallen. Ann. Phys. (Leipzig)* **3**, 133-208.

- M. Bettinelli and C. D. Flint. (1990a) Non-resonant energy transfer between Tb^{3+} and Eu^{3+} in the cubic hexachloroelpasolite crystals Cs_2NaTb_{1-} _x Eu_xCl_6 (x = 0.01-0.15). J. Phys.: Cond. Matt. **2**, 8417-26.
- M. Bettinelli and C. D. Flint. (1990b) ${}^{7}F_{0}\rightarrow {}^{5}D_{0}$ Excitation spectrum of Cs₂NaEuCl₆.and Cs₂NaY_{1-x}Eu_xCl₆. *Chem. Phys. Lett.* **167**, 45-8.

- M. Bettinelli and C. D. Flint. (1991a) Energy transfer from the ⁵D₁ state of Cs₂NaY_{1-x}Eu_xCl₆ and Cs₂NaEuCl₆. *J. Phys.: Cond. Matt.* **3**, 4433-42.
- M. Bettinelli and C. D. Flint. (1991b) Energy migration and transfer in the ⁵D₀ state of Cs₂NaEuCl₆. *J. Phys.: Cond. Matt.* **3**, 7053-9.
- R. Bevington. (1969) *Data Reduction and Error Analysis for the Physical Sciences*. McGraw-Hill, New York.
- L. C. Biedenharn. (1953) An identity satisfied by the Racah coefficients. J. Math. and Phys. **31**, 287-93.
- S. S. Bishton and D. J. Newman. (1970) Parametrization of the correlation crystal field. J. Phys. C 3, 1753-61.
- B. Bleaney, A. G. Stephen, P. J. Walker, and M. R. Wells. (1981) Magnetic resonance in a cubic Γ_3 (E) doublet system. II. Nuclear magnetic resonance of ¹⁶⁵Ho (enhanced), ²³Na and ¹³³Cs in Cs₂NaHoCl₆. *Proc. Roy. Soc. Lond. Ser. A* **376**, 235-52.
- B. Bleaney, A. G. Stephen, P. J. Walker, and M. R. Wells. (1982) Enhanced n.m.r. of Cs₂NaPrCl₆, Cs₂NaTbCl₆ and Cs₂NaTmCl₆. *Proc. Roy. Soc. Lond. Ser. A* 381, 1-16.

- N. Bloembergen and M. D. Levenson. (1976) Doppler-free two-photon absorption spectroscopy. *High Resolution Laser Spectroscopy*. ed. K. Shimoda. *Topics in Applied Physics*. Volume 13, Chapter 8, pp315-69.
- M. Blume, A. J. Freeman, and R. E. Watson. (1964) Theory of spin-orbit coupling in atoms. III. *Phys. Rev.* **134**, A320-7.
- L. Brewer. (1971) Energies of the electronic configurations of the singly, doubly, and triply ionised lanthanides and actinides. J. Opt. Soc. Am. 61, 1666-82.
- P. W. Bridgman. (1925) Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc and tin. *Proc. Am. Acad. Arts Sci.* **60**, 303-83.
- D. Brown. (1968) Halides of the Transition Elements: Halides of the Lanthanides and Actinides. Wiley, London. pp195-7.
- D. Brown, S. Fletcher, and D. G. Holah. (1968) The preparation and crystallographic properties of certain lanthanide and actinide tribromides and tribromide hexahydrates. J. Chem. Soc. (A), 1889-94.

- E. Bucher, H. J. Guggenheim, K. Andres, G. W. Hull, and A. S. Cooper. (1974) Magnetic properties of some cubic rare earth elpasolite hexafluorides. *Phys. Rev. B* 10, 2945-51.
- W. Bührer and H. U. Güdel. (1987) Soft rotatory mode and structural phase transition in the rare earth bromo-elpasolites Cs₂Na REBr₆. J. Phys. C 20, 3809-21.
- G. W. Burdick, and F. S. Richardson. (1997) Correlation-crystal-field 'δ-function' analysis of Pr³⁺ (4t²) energy-level structure. *J. Alloys Comp.* 250, 293-6.
- G. W. Burdick, and F. S. Richardson. (1998) Application of the correlationcrystal-field delta-function model in analyses of the Pr^{3+} ($4t^2$) energylevel structures in crystalline hosts. *Chem. Phys.* **228**, 81-101.
- G. W. Burdick, C. K. Jayasankar, F. S. Richardson, and M. F. Reid. (1994) Energy-level and line-strength analysis of optical transitions between Stark levels in Nd³⁺:Y₃Al₅O₁₂. *Phys. Rev. B* **50**, 16309-25.
- W. T. Carnall, P. R. Fields, and K. Rajnak. (1968a) Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺, and Tm³⁺. J. Chem. Phys. 49, 4424-42.

- W. T. Carnall, P. R. Fields, and K. Rajnak. (1968b) Electronic energy levels of the trivalent lanthanide aquo ions. II. Gd³⁺. J. Chem. Phys. 49, 4443-6.
- W. T. Carnall, P. R. Fields, and K. Rajnak. (1968c) Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb³⁺. J. Chem. Phys. 49, 4447-9.
- W. T. Carnall, P. R. Fields, and K. Rajnak. (1968d) Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu³⁺. J. Chem. Phys. 49, 4450-5.
- W. T. Carnall, H. Crosswhite, H. M. Crosswhite, and J. G. Conway. (1976) Energy level analysis of Pm³⁺:LaCl₃. *J. Chem. Phys.* **64**, 3582-91.
- W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana. (1989) A systematic analysis of the spectra of the lanthanides doped into single crystal LaF₃. J. Chem. Phys. **90**, 3443-57.
- P. Caro. (1993) Theory and experiment in rare earth spectroscopy: successes and failures of computer simulations. *J. Alloys Comp.* **193**, 148-54.
- M. Casalboni, R. Francini, U. M. Grassano, and R. Pizzoferrato. (1987) Twophoton spectroscopy in Eu²⁺ doped alkali halides. *Cryst. Latt. Def. Amorph. Mat.* **16**, 261-7.

- A. Ceulemans and G. M. Vandenberghe. (1993) Third- and fourth-order analysis of orbit- and spin-forbidden transitions in two-photon spectroscopy of lanthanide compounds. J. Chem. Phys. 98, 9372-8.
- A. Ceulemans and G. M. Vandenberghe. (1996) Fourth-order contributions to the ${}^{7}F_{6}\rightarrow{}^{5}D_{4}$ two-photon transition of Tb³⁺ in a cubic lattice. *Phys. Rev. B* **53**, 8310-5.
- M. Chua and P. A. Tanner. (1996a) Direct calculation of the two-photon line strength of a Γ_{1g} - Γ_{1g} transition in octahedral symmetry. *Phys. Rev. B* **54**, 11014-7.
- M. Chua and P. A. Tanner. (1996b) ${}^{7}F_{6}(\Gamma_{1g}) \rightarrow {}^{5}D_{4}(\Gamma_{1g})$ two-photon transition of Tb³⁺ in Cs₂NaTbCl₆. *Acta Phys. Pol. A* **90**, 169-80.
- M. J. Churchman. (1991) Luminescence and Charge Storage in some Rare Earth Halide Compounds. Part II thesis, University of Oxford.
- E. U. Condon and G. H. Shortley. (1935) *The Theory of Atomic Spectra*. Cambridge University Press, Cambridge.
- G. M. Copland, G. Balasubramanian, and D. J. Newman. (1978) Configuration interaction contributions to the correlation crystal field in Pr³⁺. J. Phys. C 11, 2029-37.

- C. D. Cordero-Montalvo. (1985) Two-photon absorption spectroscopy of multisite Gd³⁺ in CaF₂. *Phys. Rev. B* **31**, 5433-6.
- C. D. Cordero-Montalvo and N. Bloembergen. (1984) Two-photon transition from ³H₄ to ¹S₀ of Pr³⁺ in LaF₃. *Phys. Rev. B* **30**, 438-40.
- H. M. Crosswhite. (1977) Systematic atomic and crystal-field parameters for lanthanides in LaCl₃ and LaF₃. Spectroscopie des Éléments de Transition et des Éléments Lourds dans les Solides. Colloques Internationaux C. N. R. S. pp65-9.
- H. M. Crosswhite and H. Crosswhite. (1984) Parametric model for *f*-shell configurations. I. The effective-operator Hamiltonian. *J. Opt. Soc. Am. B* 1, 246-54.
- H. Crosswhite and D. J. Newman. (1984) Spin-correlated crystal field parameters for lanthanide ions substituted into LaCl₃. J. Chem. Phys. 81, 4959-62.
- H. M. Crosswhite, H. Crosswhite, N. Edelstein, and K. Rajnak. (1977)
 Parametric energy level analysis of Ho³⁺:LaCl₃. J. Chem. Phys. 67, 3002-10.

- C. de Mello Donegá, A. Meijerink, and G. Blasse. (1992) Vibronic transition probabilities in the excitation spectra of the Pr³⁺ ion. *J. Phys.: Cond. Matt.* **4**, 8889-902.
- R. G. Denning. (1991) Two-photon spectroscopy of *f*-block compounds. *Eur. J. Sol. St. Inorg. Chem.* 28, 33-45.
- R. G. Denning, A. J. Berry, and C. S. McCaw. (1998) Ligand dependence of the correlation crystal field. *Phys. Rev.* B 57, R2021-4.
- L. G. DeShazer and G. H. Dieke. (1963) Spectra and energy levels of Eu³⁺ in LaCl₃. *J. Chem. Phys.* **38**, 2190-9.
- G. H. Dieke. (1968) Spectra and Energy Levels of Rare Earth lons in Crystals.ed. H. M. Crosswhite, H. Crosswhite. Interscience, New York.
- G. H. Dieke, H. M. Crosswhite, and B. Dunn. (1961) Emission spectra of the doubly and triply ionised rare earths. *J. Opt. Soc. Am.* **51**, 820-7.
- J. M. Dixon and R. Chatterjee. (1980) Effective operators of the spincorrelated crystalline electric field. *Phys. Lett. A* **76**, 147-8.
- V. L. Donlan. (1970) Two-electron fractional parentage coefficients for the configurations *P*. J. Chem. Phys. **52**, 3431-8.

- M. C. Downer. (1989) The puzzle of two-photon rare earth spectra in solids. Laser Spectroscopy of Solids II. ed. W. M. Yen. Top. Appl. Phys. 65, 29-75.
- M. C. Downer, A. Bivas, and N. Bloembergen. (1982) Selection rule violation, anisotropy, and anomalous intensity of two-photon absorption lines in Gd³⁺:LaF₃. Opt. Comm. **41**, 335-40.
- M. C. Downer, C. D. Cordero-Montalvo, and H. Crosswhite. (1983) Study of new 4t⁷ levels of Eu²⁺ in CaF₂ and SrF₂ using two-photon absorption spectroscopy. *Phys. Rev. B* 28, 4931-43.
- C. Dujardin, B. Moine, and C. Pedrini. (1993) One- and two-photon spectroscopy of $f \rightarrow d$ and $f \rightarrow f$ transitions of Eu²⁺ ions in M_{1-x}N_xF₂ mixed fluoride crystals (M,N = Ba, Sr, Ca; $0 \le x \le 1$). *J. Lumin.* **54**, 259-70.
- J. C. Eisenstein. (1963a) The validity of crystal-field theory as applied to rare earth ions: an analysis of the spectrum of praseodymium trichloride. *Paramagnetic resonance. Proceedings of the First International Conference held in Jerusalem, July 16-21, 1962.* ed. W. Low. Academic Press, New York. pp253-9.

J. C. Eisenstein. (1963b) Spectrum of Nd³⁺ in LaCl₃. *J. Chem. Phys.* **39**, 2134-40.

J. C. Eisenstein. (1963c) Spectrum of Er³⁺ in LaCl₃. *J. Chem. Phys.* **39**, 2128-33.

- J. P. Elliot. (1953) Theoretical studies in nuclear structure V. The matrix elements of non-central forces with an application to the 2*p*-shell. *Proc. Roy. Soc. Lond. Ser. A* 218, 345-70.
- B. V. Ershov, Y. P. Pimenov, A. M. Prokhorov, and V. B. Fedorov. (1967) Two-photon absorption in CaF₂:Ho³⁺ crystals. *Sov. Phys.- Doklady* 12, 47-9.
- M. Faucher and D. Garcia. (1988) The calculated quasi-degenerate ²H(2)_{11/2} level under crystal field in some compounds. *Comptes Rendus Acad. Sci. Paris II* **307**, 2015-9.
- M. Faucher and D. Garcia. (1990) Crystal-field simulation by full configuration interaction. *J. Lumin.* **46**, 375-9.
- M. Faucher and H. J. Kooy. (1997) Configuration interaction in PrCl₃. Sol. St. Comm. **102**, 663-7.
- M. Faucher and O. K. Moune. (1995) Two-electron crystal-field analysis in U⁴⁺-doped compounds. J. Alloys Comp. 225, 35-40.

- M. Faucher and O. K. Moune. (1997a) $4\hat{f}/4f_{6p}$ configuration interaction in LiYF₄:Pr³⁺. *Phys. Rev. A* **55**, 4150-4.
- M. Faucher and O. K. Moune. (1997b) Notorious discrepancies in crystal field analyses eliminated by configuration interaction. J. Alloys Comp. 250, 306-9.
- M. Faucher, D. Garcia, E. Antic-Fidancev, and M. Lemaitre-Blaise. (1989a) The spectrum of Nd³⁺ in rare earth orthoaluminates. The trigonal to orthorhombic transition study of the ²H_{11/2} level. *J. Phys. Chem. Sol.* **50**, 1227-35.
- M. Faucher, D. Garcia, and P. Porcher. (1989b) Empirically corrected crystalfield calculation within the ²H(2)_{11/2} level of Nd³⁺. *Comptes Rendus Acad. Sci. Paris II* **308**, 603-8.
- M. Faucher, D. Garcia, P. Caro, J. Derouet, and P. Porcher. (1989c) The anomalous crystal-field splittings of ²H_{11/2} (Nd³⁺, 4t³). J. Phys. France 50, 219-43.
- M. Faucher, O. K. Moune, and D. Garcia. (1993) Determination of twoelectron crystal-field parameters in some neodymium compounds. J. Phys. Il France 3, 961-9.

- M. Faucher, O. K. Moune, D. Garcia, and P. A. Tanner. (1996) Evidence for strong interaction between the $5f^2$ and $5f^17p^1$ configurations of U^{4+} in the octahedral sites of Cs₂UBr₆ and Cs₂ZrBr₆. *Phys. Rev. B* **53**, 9501-4.
- T. R. Faulkner and F. S. Richardson. (1978) Magnetic dipole and vibronically induced electric dipole intensities of the ⁵D₄→⁷F_J transitions of Tb³⁺ in Cs₂NaTbCl₆. *Mol. Phys.* **36**, 193-214.
- I. N. Flerov, W. Bührer, M. V. Gorev, H. U. Güdel, and A. E. Usachev. (1990) Thermodynamic properties of bromo-elpasolites Cs₂NaYBr₆ and Cs₂NaTmBr₆. *J. Phys.: Cond. Matt.* **2**, 9019-23.
- C. D. Flint and A. P. Matthews. (1973) Splitting of the ²E(t₂³) state of Cr(NH₃)₅X²⁺ ions. Significance of the Coulombic parameter B. J. Chem. Soc. Faraday Trans. II 69, 419-25.
- C. D. Flint and A. P. Matthews. (1974) $t_{2g}^{3} \rightarrow t_{2g}^{3}$ transitions of the *trans*difluorobis(ethylenediamine)-chromium(III) ion. Vibronic analyses and crystal-field calculations. *J. Chem. Soc. Faraday Trans. II* **70**, 1307-15.
- C. D. Flint and F. L. Stewart-Darling. (1981) Vibronic transitions in the luminescence spectrum of Cs₂NaEuCl₆. *Mol. Phys.* **44**, 61-8.

- D. R. Foster, F. S. Richardson, and R. W. Schwartz. (1985a) Optical spectra and crystal-field analysis of Nd³⁺ in the cubic Cs₂NaYCl₆ host. *J. Chem. Phys.* 82, 601-17.
- D. R. Foster, F. S. Richardson, and R. W. Schwartz. (1985b) Optical spectra and crystal-field analysis of Sm³⁺ in the cubic Cs₂NaYCl₆ host. *J. Chem. Phys.* 82, 618-?.
- R. Francini, U. M. Grassano, M. Tomini, S. Boiko, G. G. Tarasov, and A. Scacco. (1997) Two-photon excitation spectra of divalent europium in cubic perovskite KMgF₃. *Phys. Rev. B* 55, 7579-84.
- S. Freed. (1931) Electronic transitions between an inner shell and the virtual outer shells of the ions of the rare earths in crystals. *Phys. Rev.* 38, 2122-30.
- S. Freed and F. H. Spedding. (1929) Line absorption spectra in solids at low temperatures in the visible and ultra-violet regions of the spectrum. *Nature* **123**, 525-6.
- R. L. Fuller and D. S. McClure. (1987) Measurement of ionization rate of photoexcited divalent rare earth ions in fluorite-type crystals. *J. Lumin.* 38, 193-4.

- R. L. Fuller and D. S. McClure. (1990) Determination of photoionization rates of divalent samarium doped in alkaline earth fluorides. *J. Lumin.* 45, 354-6.
- W. Y. P. Fung and D. J. Newman. (1983) Spin-correlated crystal field effects in lanthanide ions. J. Less-Common Met. **93**, 241.
- A. Furrer, H.-U. Güdel, and J. Darriet. (1985) Magnetic excitations in Cs_2ALnX_6 and $Cs_3Ln_2X_9$ (A = Li, Na; Ln = Ce, Nd, Tb, Yb; X = Cl, Br). J. Less-Common Met. **111**, 223-37.
- A. Furrer and H.-U. Güdel. (1997) Crystalline electric field of the bromoelpasolites Cs₂Na*R*Br₆ (*R* = rare earth) determined by inelastic neutron scattering. *Phys. Rev. B* 56, 15062-72.
- D. Garcia and M. Faucher. (1985) Crystal-field parameters in rare earth compounds: a mixed "covalo-electrostatic model". J. Chem. Phys. 82, 5554-64.
- D. Garcia and M. Faucher. (1989a) An explanation of the ¹D₂ anomalous crystal-field splitting in PrCl₃. *J. Chem. Phys.* **90**, 5280-3.
- D. Garcia and M. Faucher. (1989b) Configuration interaction and crystal field full calculation for Pr³⁺ and Nd³⁺. *J. de Chim. Phys.* **86**, 961-5.

- D. Garcia and M. Faucher. (1989c) A full calculation of multiconfiguration interaction effects up to 120 000 cm⁻¹ (15eV) on the ground configuration state levels of PrCl₃. Zeeman effect interpretation. *J. Chem. Phys.* **91**, 7461-6.
- R. I. Gintoft and A. G. Makhanek. (1971) Two-photon excitation of luminescence from crystals. J. Appl. Spectr. (USSR) 14, 406-7.
- R. I. Gintoft and G. A. Skripko. (1972) Two-photon excitation of the luminescence of CaF₂:Er³⁺ crystals with the aid of an organic dye laser with frequency scanning. *J. Appl. Spectr. (USSR)* **17**, 1480-1.
- Z. B. Goldschmidt, A. Pasternak, and Z. H. Goldschmidt. (1968) Magnetic interactions in heavy atoms. *Phys. Lett. A* **28**, 265-6.

M. Göppert-Mayer. (1931) Über Elementarakte mit zwei Quantensprüngen. Ann. Physik. 9, 273-94.

M. V. Gorev, S. V. Misyul, A. F. Bovina, I. M. Iskornev, I. T. Kokov, and I. N. Flerov. (1986) Thermodynamic properties of elpasolites Cs₂NaNdCl₆ and Cs₂NaPrCl₆. *J. Phys. C* **19**, 2441-7.

U. M. Grassano. (1992) Two-photon spectroscopy in insulating crystals. Optical Properties of Excited States in Solids. ed. B. D. Bartolo. NATO ASI Series B 301, pp643-59.

J. S. Griffith. (1961) *The Theory of Transition Metal lons*. Cambridge University Press, Cambridge.

- J. B. Gruber, R. P. Leavitt, and C. A. Morrison. (1981) Absorption spectrum, energy levels, and crystal-field parameters of Tm³⁺:LaCl₃. *J. Chem. Phys.* **74**, 2705-9.
- J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson. (1990) Comparative analysis of Nd³⁺ (4^β) energy levels in four garnet hosts. *Phys. Rev. B* 41, 7999-8012.
- J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik. (1993) Energy levels and correlation-crystal-field effects in Er³⁺-doped garnets. *Phys. Rev. B* 48, 15561-73.
- J. B. Gruber, M. D. Seltzer, V. J. Pugh, and F. S. Richardson. (1995) Electronic energy level structure of trivalent holmium in yttrium aluminium garnet. J. Appl. Phys. **77**, 5882-901.

- L. V. Haley and J. A. Koningstein. (1976) Raman spectra of cubic Cs₂NaMCl₆ rare earth compounds. *J. Raman Spectr.* **5**, 305-10.
- R. M. Hammond, M. F. Reid, and F. S. Richardson. (1989) Comparison of crystal field parameters for Ln(C₂H₅SO₄)₃.9H₂O and Na₃(Ln(C₄H₄O₅)₃).2NaClO₄.6H₂O systems. *J. Less-Common Met.* 148, 311-9.
- T. W. Hänsch. (1972) Repetitively pulsed tunable dye laser for high resolution spectroscopy. *Appl. Opt.* **11**, 895-8.
- M. P. Hehlen, H. U. Güdel, and J. R. Quagliano. (1994) Electronic energylevel structure and correlation-crystal-field effects of Er³⁺ in Cs₃Lu₂Br₉.
 J. Chem. Phys. 101, 10303-12.
- N. F. M. Henry and K. Lonsdale (ed.). (1952) *International Tables for X-Ray Crystallography*. Kynoch Press, Birmingham, UK.
- R. Hermann. (1861) Untersuchungen über Didym, Lanthan, Cerit und Lanthanocerit. J. Prakt. Chem. 82, 385-408.
- J. Hölsä and R.-J. Lamminmäki. (1996) Analysis of the 4f^N energy-level structure of the RE³⁺ ions in REOCI. *J. Lumin.* **69**, 311-7.

- J. Hölsä, J. Korventausta, R.-J. Lamminmäki, E. Säilynoja, and P. Porcher. (1997) Host anion effect on the energy level scheme of Sm³⁺ in SmOX (X = F, Cl, and Br). J. Lumin. **72-4**, 204-7.
- J. Huang, G. K. Liu, and R. L. Cone. (1989) Resonant enhancement of direct two-photon absorption in Tb³⁺:LiYF₄. *Phys. Rev. B* **39**, 6348-54.

S. Hüfner. (1978) *Optical Spectra of Transparent Rare Earth Compounds*. Academic Press, New York.

- B. Jacquier, Y. Salem, C. Linarès, J.-C. Gâcon, R. Mahiou, and R. L. Cone.
 (1987) Direct two-photon absorption of Gd(OH)₃ and GdCl₃ in an applied magnetic field. *J. Lumin.* 38, 258-60.
- B. Jacquier, J.-C. Gâcon, J.-F. Marcerou, M.-F. Joubert, and R. L. Cone.
 (1988) Direct two-photon excitation in some terbium materials. *J. Lumin.* 40&41, 517-8.
- B. Jacquier, J.-C. Gâcon, Y. Salem, C. Linarès, and R. L. Cone. (1989) Analysis of the ⁸S_{7/2}→⁶P_{7/2} two-photon absorption transitions of Gd³⁺ in Gd(OH)₃ in an applied magnetic field. *J. Phys.: Cond. Matt.* 1, 7385-94.

- C. K. Jayasankar and F. S. Richardson. (1989) Spin-correlated crystal-field analyses of the 4^{f²} (Pr³⁺) energy levels in LiYF₄:Pr³⁺ and LiBiF₄:Pr³⁺. *Phys. Stat. Sol. B* **155**, 221-30.
- C. K. Jayasankar, F. S. Richardson, P. A. Tanner, and M. F. Reid. (1987a) Analysis and comparison of holmium 4f¹⁰ energy levels in Cs₂NaHoCl₆ and Cs₂NaHoBr₆. *Mol. Phys.* **61**, 635-44.
- C. K. Jayasankar, F. S. Richardson, M. F. Reid, P. Porcher, and P. Caro. (1987b) Spin-correlated crystal-field interactions in NdF₃, Nd³⁺:LaF₃, and Nd³⁺:LiYF₄. *Inorg. Chim. Acta* **139**, 287-90.
- C. K. Jayasankar, F. S. Richardson, M. F. Reid, P. Porcher, and P. Caro. (1987c) Re-examination of the 4*t*³ energy parameters for several systems with neodymium-oxygen atom coordination. *Inorg. Chim. Acta* 139, 291-4.
- C. K. Jayasankar, F. S. Richardson, P. Porcher, and J. Ostorero. (1988) Spincorrelated crystal-field analysis and temperature-dependent paramagnetic susceptibility of neodymium gallium garnet. J. Phys. Chem. Sol. 49, 975-80.
- C. K. Jayasankar, M. F. Reid, and F. S. Richardson. (1989a) Comparative crystal-field analyses of 4^{*P*} energy levels in LiYF₄:Ln³⁺ systems. *Phys. Stat. Sol. B* **155**, 559-69.

- C. K. Jayasankar, F. S. Richardson, and M. F. Reid. (1989b)
 Phenomenological spin-correlated crystal-field analyses of energy levels in Ln³⁺:LaCl₃ systems. *J. Less-Common Met.* 148, 289-96.
- C. K. Jayasankar, M. F. Reid, Th. Tröster, and W. B. Holzapfel. (1993) Analysis of correlation effects in the crystal-field splitting of Nd³⁺:LaCl₃ under pressure. *Phys. Rev. B* 48, 5919-21.

M. Jones. (1997) *Optical Spectroscopy of Europium Elpasolites*. Part II thesis, University of Oxford.

- C. K. Jfrgensen. (1973) The inner mechanism of rare earths by photoelectron spectra. *Struct. Bonding* **13**, 199-253.
- C. K. Jfrgensen and B. R. Judd. (1964) Hypersensitive pseudoquadrupole transitions in lanthanides. *Mol. Phys.* **8**, 281-90.
- A. P. Jucys (Yutsis), A. P. Levinson, and V. V. Vanaga. (1962) Mathematical Apparatus of the Theory of Angular Momentum. Israel Program for Scientific Translation, Jerusalem.

B. R. Judd. (1962) Optical absorption intensities of rare-earth ions. *Phys. Rev.* **127**, 750-61.

B. R. Judd. (1963) *Operator Techniques in Atomic Spectroscopy*. McGraw-Hill, New York.

B. R. Judd. (1966) Three-particle operators for equivalent electrons. *Phys. Rev.* **141**, 4-15.

B. R. Judd. (1967a) Zeeman effect as a prototype for intra-atomic interactions. *Physica* **33**, 174-82.

B. R. Judd. (1967b) Second Quantisation and Atomic Spectroscopy. John Hopkins Press, Baltimore.

B. R. Judd. (1975) *Angular Momentum Theory for Diatomic Molecules*. Academic Press, New York.

B. R. Judd. (1976) Modifications of Coulombic interactions by polarisable atoms. *Math. Proc. Camb. Phil. Soc.* **80**, 535-9.

B. R. Judd. (1977a) Ligand field theory for actinides. J. Chem. Phys. 66, 3163-70.

B. R. Judd. (1977b) Correlation crystal fields for lanthanide ions. *Phys. Rev. Lett.* **39**, 242-4.

B. R. Judd. (1978) Ligand polarisations and lanthanide ion spectra. Group Theoretical Methods in Physics. ed. P. Kramer and A. Rieckers. Lecture Notes in Physics 79, 417-9.

B. R. Judd. (1979) Correlation crystal fields for rare earths and actinides. *J. Lumin.* **18/19**, 604-14.

B. R. Judd. (1980) Charge transfer and crystal-field theory for rare-earth ions. *J. Phys. C* **13**, 2695-701.

- B. R. Judd. (1984) Operator averages and orthogonality. *Group Theoretical Methods in Physics*. ed. G. Denardo, G. Ghirardi, and T. Weber. *Lecture Notes in Physics* 201, 340-2.
- B. R. Judd. (1985) Complex atomic spectra. Rep. Prog. Phys. 48, 907-54.
- B. R. Judd. (1988) Atomic theory and optical spectroscopy. *Handbook on the Physics and Chemistry of Rare Earths*. ed. K. A. Gschneidner, Jr and L.
 Eyring. North-Holland, Amsterdam. Volume 11, Chapter 74, pp81-195.
- B. R. Judd. (1989) Early days in the spectroscopy of tripositive rare earth ions.*J. Less-Common Met.* 148, 1-6.

B. R. Judd and H. Crosswhite. (1984) Orthogonalised operators for the *f* shell. *J. Opt. Soc. Am. B* **1**, 255-60.

B. R. Judd and G. M. S. Lister. (1984) Laporte-Platt degeneracies and delta function interactions. *J. Phys. B* **17**, 3637-43.

B. R. Judd and D. R. Pooler. (1982) Two-photon absorption in gadolinium ions. *J. Phys. C* **15**, 591-8.

- B. R. Judd, H. M. Crosswhite, and H. Crosswhite. (1968) Intra-atomic magnetic interactions for *f* electrons. *Phys. Rev.* **169**, 130-8.
- B. R. Judd, J. E. Hansen, and A. J. J. Raassen. (1982) Parametric fits in the atomic *d* shell. *J. Phys. B* **15**, 1457-72.

W. Kaiser and C. G. B. Garrett. (1961) Two-photon excitation in CaF₂:Eu²⁺. *Phys. Rev. Lett.* **7**, 229-31.

- A. Karunathilake. (1998) *Optical Spectroscopy of Rare Earth Elpasolites*. Part II thesis, University of Oxford.
- A. J. Kassman. (1970) Relationship between the coefficients of the tensor operator and operator equivalent methods. *J. Chem. Phys.* **53**, 4118-9.

- L. E. Kholodenkov and A. G. Makhanek. (1982) Two-photon luminescence excitation of Eu³⁺ in fluorite. *Phys. Stat. Sol. B* **112**, K149-51.
- L. E. Kholodenkov, A. G. Makhanek, and A. A. Kaminskii. (1984) One- and two-photon luminescence excitation of Eu³⁺ in a LaF₃ monocrystal. *Phys. Stat. Sol. B* **126**, 659-67.
- N. H. Kiess. (1963) Preparation of anhydrous single crystals of rare earth halides. J. Res. Nat. Bur. St. 67A, 343-5.
- D. S. King, P. K. Schenck, K. C. Smyth, and J. C. Travis. (1977) Direct calibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps. *Appl. Opt.* **16**, 2617-9.
- G. P. Knudsen. (1984) Soft mode and structural phase transition in the cubic elpasolite Cs₂NaNdCl₆. *Sol. St. Comm.* **49**, 1045-7.
- G. P. Knudsen, F. W. Voss, R. Nevald, and H.-D. Amberger. (1982) Structural phase transitions in Cs₂NaLnCl₆. *The Rare Earths in Modern Science and Technology*. ed. G. J. McCarthy, H. B. Silber, and J. J. Rhyne. Plenum, New York. Vol. 3, pp335-8.

H. J. Kooy and M. F. Reid. (1993) Two-body operators for the *f* shell. *J. Alloys Comp.* **193**, 197-202.

- J. C. Krupa and M. Queffelec. (1997) UV and VUV excitations in wide band gap materials doped with rare earth ions: 4f-5d transitions. *J. Alloys Comp.* **250**, 287-92.
- J. C. Krupa, I. Gérard, A. Mayolet, and P. Martin. (1993) Electronic structure of *f*-element systems in the UV and VUV energy range. *Act. Phys. Pol. A* 84, 843-8.
- L. Kundu, A. K. Banerjee, and M. Chowdhury. (1991) Two-photon absorption spectrum of gadolinium elpasolite. *Chem. Phys. Lett.* **181**, 569-74.
- L. C. Lane. (1990) *The Preparation and Characterisation of some Inorganic Optical Storage Materials.* Part II thesis, University of Oxford.
- O. Laporte. (1924) Die Struktur des Eisenspektrums. Z. Phys. 23, 135-75.
- R. P. Leavitt. (1982) On the role of certain rotational invariants in crystal-field theory. J. Chem. Phys. 77, 1661-3.
- C.-L. Li and M. F. Reid. (1990) Correlation-crystal-field analysis of the ²H(2)_{11/2} multiplet of Nd³⁺. *Phys. Rev. B* **42**, 1903-9.
- I. Lindgren and J. Morrison. (1986) *Atomic Many-Body Theory*. 2nd Ed. Springer-Verlag, Berlin.

- M. G. Littman and H. J. Metcalf. (1978) Spectrally narrow pulsed dye laser without beam expander. *Appl. Opt.* **17**, 2224-7.
- G. K. Liu, W. T. Carnall, R. P. Jones, R. L. Cone, and J. Huang. (1994)
 Electronic energy level structure of Tb³⁺ in LiYF₄. *J. Alloys Comp.* 207/208, 69-73.
- T. S. Lo and M. F. Reid. (1993) Group theoretical analysis of correlation crystal field models. *J. Alloys Comp.* **193**, 180-2.

E. Loh. (1968) $4f^{n-1}5d$ spectra of rare earth ions in crystals. *Phys. Rev.* **175**, 533-6.

- A. G. Makhanek and G. A. Skripko. (1979) Application of two-photon spectroscopy in the study of trivalent rare earth ions in crystals. *Phys. Stat. Sol. A* 53, 243-52.
- A. G. Makhanek, R. I. Gintoft, L. A. Dzhuguryan, V. S. Korolkov, and L. E. Kholodenkov. (1984) Two-photon spectroscopy of rare earth ions in crystals. J. Appl. Spectr. (USSR) 40, 684-8.
- R. Mahiou, B. Jacquier, and R. L. Cone. (1985) Exciton dynamics following two-photon absorption in GdCl₃. *J. Phys. Paris Colloque* **C7**, 119-23.
- J. S. Margolis. (1961) Energy levels of PrCl₃. J. Chem. Phys. 35, 1367-73.
- M. C. Marignac. (1853) Recherches sur le didyme et sur ses principales combinaisons. Ann. Chim. Phys. 3^{me} série 38, 148-77.
- W. C. Martin. (1971) Energy differences between two spectroscopic systems in neutral, singly ionised, and doubly ionised lanthanide atoms. *J. Opt. Soc. Am.* 61, 1682-6.
- W. C. Martin, R. Zalubas, and L. Hagan. (1978) *Atomic Energy Levels- The Rare-Earth Elements*. National Bureau of Standards, Washington D. C.

H. H. Marvin. (1947) Mutual magnetic interactions of electrons. *Phys. Rev.* **71**, 102-10.

C. Matignon. (1901) Sur le chlorure de néodyme. Comptes Rendus **133**, 289-91.

L. F. McAven, M. F. Reid, and P. H. Butler. (1996) Transformation properties of the delta-function model of correlation crystal fields. *J. Phys. B* **29**, 1421-31.

W. M. McClain and R. A. Harris. (1977) Two-photon molecular spectroscopy in liquids and gases. *Excited States*. ed. E. C. Lim. Academic Press, New York. Volume 3, pp1-56.

T. J. Mckee, J. Lobin, and W. A. Young. (1982) Dye laser spectral purity. *Appl. Opt.* **21**, 725-8.

- A. Meijerink, C. de Mello Donegá, A. Ellens, J. Sytsma, and G. Blasse. (1994) Vibronic transitions of rare earth ions. *J. Lumin.* **58**, 26-32.
- G. Mermant and J. Primot. (1979) Preparation, cristallogenese et caracterisation des bromures mixtes de lanthanide, de sodium et de cesium Cs₂NaLn(III)Br₆. Mat. Res. Bull. **14**, 45-50.
- G. Meyer. (1980) Halo-elpasolites, VI [1] The first iodo-elpasolites $Cs_2B^IM^{III}I_6$ (B^I = Li, Na). *Z. Naturforsch.* **35b**, 394-6.
- G. Meyer. (1982a) The synthesis and structures of complex rare earth halides. *Prog. Sol. St. Chem.* **14**, 180-91.
- G. Meyer. (1982b) An analysis of the ammonium chloride route to anhydrous rare-earth metal chlorides. *Mat. Res. Bull.* **17**, 1447-55.

- G. Meyer. (1983) Quaternary chlorides and bromides of the rare earth elements: elpasolites $A_2^{I}B^{I}RE^{III}X_6$ (r(A^{I})>r(B^{I})). *Inorg. Synth.* **22**, 10-5.
- G. Meyer. (1989) The ammonium chloride route to the anhydrous rare earth chlorides- the example of YCl₃. *Inorg. Synth.* **25**, 146-50.
- G. Meyer and H.-C. Gaebell. (1978) Halo-elpasolites, IV [1] On bromoelpasolites $Cs_2B^iM^{iii}Br_6$ (B^i = Li, Na; M^{iii} = Sc, Y, La-Lu, In, V, Cr). *Z. Naturforsch.* **33b**, 1476-8.
- G. Meyer and P. Linzmeier. (1977) The first bromo-elpasolites: $Cs_2NaLn^{III}Br_6$ (B^I = Na, K; Ln^{III} = Sc, Tm, Sm). *Z. Naturforsch.* **32b**, 594.
- J. P. Morley, T. R. Faulkner, F. S. Richardson, and R. W. Schwartz. (1981) Optical absorption and emission spectra of Cs₂NaHoCl₆. *J. Chem. Phys.* **75**, 539-60.
- J. P. Morley, T. R. Faulkner, and F. S. Richardson. (1982) Optical emission spectra and crystal field analysis of Eu³⁺ in the cubic Cs₂NaYCl₆ host. *J. Chem. Phys.* 77, 1710-33.
- C. A. Morrison. (1976) Dipolar contributions to the crystal fields in ionic solids. *Sol. St. Comm.* **18**, 153-4.

- C. A. Morrison. (1980) Host dependence on the rare-earth ion separation $4f^{N-1}$ $4f^{N-1}$ *nl. J. Chem. Phys.* **72**, 1001-2.
- C. A. Morrison and R. P. Leavitt. (1982) Spectroscopic properties of triply ionised lanthanides in transparent host crystals. *Handbook on the Physics and Chemistry of Rare Earths*. ed. K. A. Gschneidner, Jr and L. Eyring. North-Holland, Amsterdam. Volume 5, Chapter 46, pp461-692.
- C. A. Morrison, R. P. Leavitt, and D. E. Wortman. (1980) Crystal-field analysis of triply ionized lanthanides in Cs₂NaLnCl₆. *J. Chem. Phys.* **73**, 2580-98.
- I. D. Morrison. (1992) *Two-Photon Spectroscopy of some Inorganic Systems*. D. Phil. thesis, University of Oxford.
- J. C. Morrison, P. R. Fields, and W. T. Carnall. (1970) Configuration interaction and the spectra of LaCl₃:Pr³⁺. *Phys. Rev. B* **2**, 3526-32.
- L. R. Morss. (1974) Crystal structure of dipotassium sodium fluoroaluminate (elpasolite). *J. Inorg. Nucl. Chem.* **36**, 3876-8.
- L. R. Morss, M. Siegal, L. Stenger, and N. Edelstein. (1970) Preparation of cubic chloro complex compounds of trivalent metals: Cs₂NaMCl₆. *Inorg. Chem.* 9, 1771-5.

- O. K. Moune and P. Caro. (1989) Computer simulation of the ⁵D_J levels of 4*f*⁶, Eu³⁺. *J. Less-Common Met.* **148**, 181-6.
- O. K. Moune, P. Caro, D. Garcia, and M. Faucher. (1990) Investigation of the ⁵D_J levels in europium (Eu³⁺) compounds: full *f*⁶ calculation. *J. Less-Common Met.* 163, 287-95.
- O. K. Moune, D. Garcia, and M. Faucher. (1991) Improvement of the parametric simulation of energy levels in erbium compounds. J. Phys. Chem. Sol. 52, 513-5.
- S. Mroczkowski. (1970) Preparation of single crystals of EuCl₃ and related polyvalent halides. *J. Crystal Growth* **6**, 147-50.
- K. M. Murdoch, A. D. Nguyen, N. M. Edelstein, S. Hubert, and J. C. Gâcon. (1997) Two-photon absorption spectroscopy of Cm³⁺ in LuPO₄. *Phys. Rev. B* 56, 3038-45.

D. J. Newman. (1970) Origin of the ground state splitting of Gd^{3+} in crystals. *Chem. Phys. Lett.* **6**, 288-90.

D. J. Newman. (1971) Theory of lanthanide crystal fields. *Adv. Phys.* **20**, 197-256.

- D. J. Newman. (1977a) Parametrisation of crystal induced correlation between *f* electrons. *J. Phys. C* **10**, 4753-64.
- D. J. Newman. (1977b) Calculation of the effect of spin-correlation on lanthanide crystal fields. J. Phys. C 10, L617-20.

D. J. Newman. (1978) Parametrisation schemes in solid state physics. *Aust. J. Phys.* **31**, 489-513.

D. J. Newman. (1982) Operator orthogonality and parameter uncertainty. *Phys. Lett.* **92A**, 167-9.

D. J. Newman and S. S. Bishton. (1968) Theory of the correlation crystal field. *Chem. Phys. Lett.* **1**, 616-8.

- D. J. Newman and B. Ng. (1985) Two-electron tensor operator expressions in crystal-field theory. J. Phys. C 18, L803-6.
- D. J. Newman and B. Ng. (1988) Spin-correlated crystal-field parameters for trivalent actinides. J. Phys. C 21, 3273-6.
- D. J. Newman and B. Ng. (1989) The superposition model of crystal fields. *Rep. Prog. Phys.* **52**, 699-763.

- D. J. Newman and G. G. Siu. (1983) A property of the spin-correlated crystal field. *J. Phys. C* **16**, L157-8.
- D. J. Newman, S. S. Bishton, M. M. Curtis, and C. D. Taylor. (1971) Configuration interaction and lanthanide crystal fields. J. Phys. C 4, 3234-48.
- D. J. Newman, G. G. Siu, and W. Y. P. Fung. (1982) Effect of spin-polarisation on the crystal field of lanthanide ions. *J. Phys. C* **15**, 3113-25.
- D. J. Newman, B. Ng, and C. Y. Pang. (1988) Operator orthogonality and subspace trees. *J. Phys. B* **21**, L173-7.
- B. Ng and D. J. Newman. (1985) Many-body perturbation theory for effective Hamiltonians using nonorthogonal basis sets. J. Chem. Phys. 83, 1758-68.
- B. Ng and D. J. Newman. (1987a) Many-body crystal field calculations. II. Results for the system Pr³⁺-Cl⁻. *J. Chem. Phys.* **87**, 7110-7.
- B. Ng and D. J. Newman. (1987b) Many-body crystal field calculations. I. Methods of computation and perturbation expansion. *J. Chem. Phys.* 87, 7096-109.

- B. Ng and D. J. Newman. (1989) Tensorial coupling and the correlation crystal field. *Phys. Stat. Sol. B* **134**, K51-3.
- C. W. Nielson and G. F. Koster. (1963) Spectroscopic Coefficients for the p^n , d^n , and f^n Configurations. MIT Press, Cambridge, MA.

E. W. Nuffield. (1966) X-Ray Diffraction Methods. John Wiley & Sons, New York.

L. A. O. Nunes, F. M. Matinaga, and J. C. Castro. (1985) Two-photon absorption spectroscopy of Eu²⁺ ions in KCI and KI. *Phys. Rev. B* 32, 8356-60.

G. S. Ofelt. (1962) Intensities of crystal spectra of rare-earth ions. *J. Chem. Phys.* **37**, 511-20.

R. D. Peacock. (1975) The intensities of lanthanide $f \leftrightarrow f$ transitions. *Struct. Bond.* **22**, 83-122.

Y. M. Poon. (1983) Accurate basis sets for atomic configuration interaction calculations. *Comp. Phys. Comm.* **29**, 113-6.

M. N. Popova. (1996) Private communication.

- V. J. Pugh, F. S. Richardson, J. B. Gruber, and M. D. Seltzer. (1997) Characterisation and analysis of the 4*f*-electronic states of trivalent holmium in yttrium scandium gallium garnet. *J. Phys. Chem. Sol.* 58, 85-101.
- J. R. Quagliano, F. S. Richardson, and M. F. Reid. (1992) Comparative analyses of Nd³⁺ (4f³) energy level structures in various crystalline hosts. J. Alloys Comp. 180, 131-9.
- J. R. Quagliano, G. W. Burdick, D. P. Glover-Fischer, and F. S. Richardson. (1995) Electronic absorption spectra, optical line strengths, and crystalfield energy-level structure of Nd³⁺ in hexagonal [Nd(H₂O)₉](CF₃SO₃)₃. *Chem. Phys.* 201, 321-42.
- J. R. Quagliano, N. J. Cockroft, K. E. Gunde, and F. S. Richardson. (1996) Optical characterisation and electronic energy-level structure of Er³⁺doped CsCdBr₃. J. Chem. Phys. **105**, 9812-22.
- G. Racah. (1942a) Theory of complex spectra. I. Phys. Rev. 61, 186-97.
- G. Racah. (1942b) Theory of complex spectra. II. Phys. Rev. 62, 438-62.
- G. Racah. (1943) Theory of complex spectra. III. Phys. Rev. 63, 367-82.

G. Racah. (1949) Theory of complex spectra. IV. Phys. Rev. 76, 1352-65.

- K. Rajnak and W. F. Krupke. (1967) Energy levels of Ho³⁺ in LaCl₃. J. Chem. *Phys.* **46**, 3532-42.
- K. Rajnak and B. G. Wybourne. (1963) Configuration interaction effects in *N* configurations. *Phys. Rev.* **132**, 280-90.
- K. Rajnak and B. G. Wybourne. (1964a) Electrostatically correlated spin-orbit interactions in *N*-type configurations. *Phys. Rev.* **134**, A596-600.
- K. Rajnak and B. G. Wybourne. (1964b) Configuration interaction in crystal field theory. J. Chem. Phys. 41, 565-9.
- R. S. Rana, C. D. Cordero-Montalvo, and N. Bloembergen. (1984) The ¹S₀ level of Pr³⁺ in LaCl₃. *J. Chem. Phys.* **81**, 2951-2.
- D. N. Rao, J. Prasad, and P. N. Prasad. (1983) Two-photon excitation of Ho³⁺ in the CaF₂, SrF₂, and CdF₂ lattices. *Phys. Rev. B* **28**, 20-3.

J. B. Reed, B. S. Hopkins, and L. F. Audrieth. (1939) Anhydrous rare earth chlorides. *Inorg. Synth.* **1**, 28-33.

M. F. Reid. (1987) Correlation crystal field analyses with orthogonal operators. *J. Chem. Phys.* **87**, 2875-84.

M. F. Reid. (1988) Manual for *f*-shell empirical programs. Unpublished.

- M. F. Reid. (1992) Recent extensions to crystal-field and transition-intensity models. J. Alloys Comp. 180, 93-103.
- M. F. Reid. (1993) Additional operators for crystal-field and transition-intensity models. J. Alloys Comp. 193, 160-4.
- M. F. Reid and C.-L. Li. (1991) Correlation crystal field analysis of Np³⁺:LaCl₃. *Eur. J. Sol. St. Inorg. Chem.* **28**, 171-4.
- M. F. Reid and F. S. Richardson. (1984) Lanthanide $4f \rightarrow 4f$ electric dipole intensity theory. J. Phys. Chem. **88**, 3579-86.
- M. F. Reid and F. S. Richardson. (1985) Free ion, crystal-field, and spincorrelated crystal-field parameters for lanthanide ions in Cs₂NaLnCl₆ and Cs₂NaYCl₆:Ln³⁺ systems. *J. Chem. Phys.* **83**, 3831-6.

- M. F. Reid, J. J. Dallara, and F. S. Richardson. (1983) Comparison of calculated and experimental 4*f*→4*f* intensity parameters for lanthanide complexes with isotropic ligands. *J. Chem. Phys.* **79**, 5743-51.
- M. F. Reid, F. S. Richardson, and P. A. Tanner. (1985) Comparison of $4t^2$ energy parameters for Pr^{3+} in cubic elpasolite crystals. *Mol. Phys.* **60**, 881-6.
- A. Renuka Devi, E. Rukmini, and C. K. Jayasankar. (1992) Crystal free-ion energy level analysis of Er^{3+} (4 f^{11}) in various crystal hosts. I. Halides and garnet systems. *Phys. Stat. Sol. A* **131**, 191-200.
- A. Renuka Devi, C. K. Jayasankar, and M. F. Reid. (1994a) Correlationcrystal-field analysis of Sm³⁺:Na₃[Sm(oxydiacetate)₃].2NaClO₄.6H₂O. *Phys. Rev. B* 49, 12551-5.
- A. Renuka Devi, C. K. Jayasankar, and M. F. Reid. (1994b) Comparative correlation-crystal-field analysis of Er³⁺ (4*f*¹¹) in garnet hosts. *J. Alloys Comp.* 207/208, 74-7.
- F. S. Richardson. (1982) On the calculation of electric dipole strengths of 4f→4f transitions in lanthanide complexes. *Chem. Phys. Lett.* 86, 47-50.

- F. S. Richardson, M. F. Reid, J. J. Dallara, and R. D. Smith. (1985) Energy levels of lanthanide ions in the cubic Cs₂NaLnCl₆ and Cs₂NaYCl₆:Ln³⁺ (doped) systems. *J. Chem. Phys.* 83, 3813-30.
- M. R. Roser, J. Xu, S. J. White, and L. R. Corruccini. (1992) Magnetic order in three rare earth elpasolite compounds Cs₂NaRCl₆. *Phys. Rev.* B 45, 12337-42.
- M. Rotenberg, R. Bivins, N. Metropolis, J. W. Wooten, Jr. (1959) *The 3-j and 6-j Symbols*. Technology Press, MIT, Cambridge, MA.
- E. Rukmini, C. K. Jayasankar, and M. F. Reid. (1994) Correlation-crystal-field analysis of Nd³⁺ (4 t^3) energy level structures in various crystal hosts. *J. Phys.*: *Cond. Matt.* **6**, 5919-36.
- C. E. Schäffer and C. K. Jørgensen. (1958) The nephelauxetic series of ligands corresponding to increasing tendency of partly covalent bonding. J. Inorg. Nucl. Chem. 8, 143-8.

R. W. Schwartz. (1975) The electronic structure of Cs₂NaEuCl₆. *Mol. Phys.* **30**, 81-95.

- R. W. Schwartz, S. F. Watkins, C. J. O'Connor, and R. L. Carlin. (1976) Low temperature crystalline phase transition in some elpasolite hexachlorides. *J. Chem. Soc. Faraday Trans.* 2 72, 565-70.
- R. W. Schwartz, H. G. Brittain, J. P. Riehl, W. Yeakel, and F. S. Richardson. (1977) Magnetic circularly polarised emission and magnetic circular dichroism study of the ⁷F_J↔⁵D₄ transitions in crystalline Cs₂NaTbCl₆. *Mol. Phys.* **34**, 361-79.
- K. Sefton. (1994) Optical and Magneto-Optical Properties of Lanthanide Ions. Part II thesis, University of Oxford.
- O. A. Serra and L. C. Thompson. (1976) Emission spectra of Cs₂NaEuCl₆ and Cs₂Na(Eu,Y)Cl₆. *Inorg. Chem.* **15**, 504-7.
- R. D. Shannon. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Cryst.* A 32, 751-67.
- I. Shoshan, N. N. Danon, and U. P. Oppenheim. (1977) Narrowband operation of a pulsed dye laser without intracavity beam expansion. *J. Appl. Phys.* 48, 4495-7.

- S. Singh and J. E. Geusic. (1966a) Observation and saturation of a multiphoton process in NdCl₃. *Phys. Rev. Lett.* **17**, 865-8.
- S. Singh and J. E. Geusic. (1966b) Excitation of visible fluorescence spectra of some rare earth ions with the 1.06μ c.w. Nd:YAIG laser. Optical Properties of Ions in Crystals. ed. H. M. Crosswhite and H. W. Moos. Interscience, New York. pp493-505.
- G. G. Siu. (1987) The magnetically correlated crystal field and correlation in crystal-field theory. J. Phys. C 20, 2097-108.
- G. G. Siu and D. J. Newman. (1983) Spin-correlation effects in lanthanide-ion spectroscopy. *J. Phys. C* **16**, 7019-25.
- G. A. Skripko, A. G. Makhanek, and R. I. Gintoft. (1976) Structure of the levels of the 4^f and 4^f configurations of Eu³⁺ and Tb³⁺ in the near-ultraviolet region. *J. Appl. Spectr. (USSR)* 24, 685-9.
- N. Spector and J. Sugar. (1976) Analysis of the fourth spectrum of terbium (TbIV). J. Opt. Soc. Am. 66, 436-8.
- B. Stewart. (1989) The ligand polarisation model for d-d and f-f intensities. Vibronic Processes in Inorganic Chemistry. ed. C. D. Flint. NATO ASI Series C 288. Kluwer, Dordrecht. pp327-345.

D. C. Stockbarger. (1938) The production of large single crystals of lithium fluoride. *Rev. Sci. Instr.* **7**, 133-6.

J. Sugar and V. Kaufman. (1972) Fourth spectrum of lutetium. J. Opt. Soc. Am. 62, 562-70.

- J. Sugar and J. Reader. (1973) Ionization energies of doubly and triply ionised rare earths. J. Chem. Phys. **59**, 2083-9.
- P. A. Tanner. (1985a) Vibronic spectra of TmX₆³⁻ in octahedral crystal fields III. Infrared luminescence spectrum of Cs₂NaTmCl₆ and crystal field analysis. *Mol. Phys.* **54**, 883-94.
- P. A. Tanner. (1985b) Luminescence and absorption spectra of TmBr₆³⁻. *J. Chem. Soc. Faraday Trans.* 2 **81**, 1285-1300.

P. A. Tanner. (1986a) Excitation and absorption spectra of Cs₂NaErCl₆. *Mol. Phys.* **57**, 737-54.

P. A. Tanner. (1986b) Electronic spectra of Yb³⁺ in elpasolite lattices. *Mol. Phys.* **58**, 317-28.

P. A. Tanner. (1986c) Electronic spectra of PrCl₆³⁻ *Mol. Phys.* **57**, 697-735.

P. A. Tanner. (1986d) Energy levels of $HoBr_6^{3-}$. *Chem. Phys. Lett.* **132**, 116-120.

P. A. Tanner. (1987) Energy levels of Ho^{3+} in HoCl_6^{3-} . J. Chem. Soc. Faraday Trans. 2 83, 1367-90.

- P. A. Tanner. (1989) Vibronic analysis of the $({}^{4}G_{5/2})\Gamma_{8} \rightarrow {}^{6}H_{5/2}$, ${}^{6}H_{7/2}$, ${}^{6}H_{9/2}$ luminescence transitions of Cs₂NaYCl₆:SmCl₆³⁻. *Chem. Phys. Lett.* **155**, 59-63.
- P. A. Tanner and Y.-L. Liu. (1994) Raman, electronic Raman, infrared absorption and visible luminescence spectrum of Cs₂NaEuCl₆. *J. Alloys Comp.* **204**, 93-100.
- P. A. Tanner and G. G. Siu. (1992) Electric quadrupole allowed transitions of lanthanide ions in octahedral symmetry. *Mol. Phys.* **75**, 233-42.
- P. A. Tanner, C. K. Jayasankar, and F. S. Richardson. (1988) Electronic spectra and crystal-field analysis of DyCl₆³⁻ in elpasolite lattices. *Mol. Phys.* 65, 49-63.
- P. A. Tanner, J. Quagliano, and F. S. Richardson. (1991) Luminescence and excitation spectra of Nd³⁺ in Cs₂NaGdCl₆ : NdCl₆³⁻. *J. Chem. Soc. Faraday Trans.* **87**, 1707-14.

- P. A. Tanner, T. K. Choi, and K. Hoffman. (1993) Energy transfer by ion-ion cross-relaxation in Cs₂NaTmCl₆. *Appl. Spectr.* **47**, 1084-6.
- P. A. Tanner, Y.-L. Liu, M. Chua, and M. F. Reid. (1994a) Non-resonant energy transfer from the ⁵D₄ level of Tb³⁺ to the ⁵D₀ level of Eu³⁺. *J. Alloys Comp.* 207/8, 83-6.
- P. A. Tanner, V. V. R. K. Kumar, C. K. Jayasankar, and M. F. Reid. (1994b) Analysis of spectral data and comparative energy level parametrizations for Ln³⁺ in cubic elpasolite crystals. *J. Alloys Comp.* 215, 349-70.
- P. A. Tanner, V. V. R. K. Kumar, C. K. Jayasankar, and M. F. Reid. (1995) Comparative energy level parametrizations for lanthanide ions in octahedral symmetry environments. *J. Alloys Comp.* 225, 85-88.
- P. A. Tanner, L. Yulong, N. M. Edelstein, K. M. Murdoch, and N. M. Khaidukov. (1997) Vibrational and electronic spectra of EuF₆³⁻. *J. Phys.: Cond. Matt.* 9, 7817-36.
- M. D. Taylor and C. P. Carter. (1962) Preparation of anhydrous lanthanide halides, especially iodides. J. Inorg. Nucl. Chem. 24, 387-91.

- L. C. Thompson, O. A. Serra, J. P. Riehl, F. S. Richardson, and R. W. Schwartz. (1977) Emission spectra of Cs₂NaTbCl₆ and Cs₂NaYCl₆: Tb³⁺. *Chem. Phys.* 26, 393-401.
- L. C. Thompson, S. C. Kuo, and H.-D. Amberger. (1991) Fluorescence spectrum of Rb₂NaEuF₆. *Eur. J. Sol. St. Inorg. Chem.* **28**, 187-90.
- J. R. G. Thorne, R. G. Denning, and I. D. Morrison. (1988) Two-photon excitation spectroscopy of Mn²⁺. *J. Lumin.* **40&41**, 519-20.

R. E. Trees. (1951a) Configuration interaction in Mn II. Phys. Rev. 83, 756-60.

R. E. Trees. (1951b) Term values in the $3d^54s$ configuration of Fe III. *Phys. Rev.* **84**, 1089-91.

- J. A. Tuszynski and J. M. Dixon. (1985) Tensorial coupling and the reduced matrix elements of one- and two-body operators. *Phys. Stat. Sol. B* 127, 549-55.
- J. A. Tuszynski and J. M. Dixon. (1986) Comments on tensorial coupling and matrix elements of the correlation crystal field. *Phys. Stat. Sol. B* 134, K55-7.

C. De W. Van Siclen. (1982) Term-dependent contributions to crystal-field splittings by polarisable ligands. *J. Phys. C* **15**, 4117-30.

J. H. Van Vleck. (1937) The puzzle of rare-earth spectra in solids. *J. Phys. Chem.* **41**, 67-80.

- S. O. Vasquez and C. D. Flint. (1995) A shell model for cross relaxation in elpasolite crystals: application to the ³P₀ and ¹G₄ states of Cs₂NaY₁₋ _xPr_xCl₆. *Chem. Phys. Lett.* **238**, 378-86.
- A. Védrine, J.-P. Besse, G. Baud, and M. Capestan. (1970) Fluorures triples de structure perovskite, de sodium-potassium-rubidium ou césium, de calcium et d'yttrium-lanthane ou gallium. Substitutions diverses entre ces éléments. Rev. Chim. Min. 7, 593-610.
- E. J. Veenandaal and H. B. Bron. (1982) Hyperfine splitting in the elpasolite Cs₂NaHoF₆, measured by enhanced 165Ho NMR. *Physica* B **113**, 118-20.
- F. W. Voss, R. Nevald, I. Laursen, and H.-D. Amberger. (1983) Magnetic properties of the rare earth elpasolite Cs₂NaNdCl₆. *J. Less-Common Met.* 94, 233-41.

- R. T. Wegh, H. Donker, A. Meijerink, R. J. Lamminmäki, and J. Hölsä. (1997)
 Vacuum-ultraviolet spectroscopy and quantum cutting for Gd³⁺ in LiYF₄.
 Phys. Rev. 56, 13841-8.
- H. Weyl. (1931) *The Theory of Groups and Quantum Mechanics*. Dover, New York. [Translated from the German by H. P. Robertson.]
- B. G. Wybourne. (1961a) Electrostatic energy matrices of the f⁵ and f⁶ configurations. *J. Chem. Phys.* **35**, 340-52.

B. G. Wybourne. (1961b) Spin-orbit interactions in f^n electron configurations. *J. Chem. Phys.* **35**, 334-9.

- B. G. Wybourne. (1962a) Erratum: electrostatic energy matrices of the *f*⁵ and *f*⁶ configurations. *J. Chem. Phys.* **37**, 450-1.
- B. G. Wybourne. (1962b) Structure of fⁿ configurations. I. Calculation of the energy levels. J. Chem. Phys. 36, 2295-300.

B. G. Wybourne. (1965a) *Spectroscopic Properties of Rare Earths*. Wiley-Interscience, New York.

B. G. Wybourne. (1965b) Use of relativistic wavefunctions in crystal-field theory. J. Chem. Phys. 43, 4506-7.

B. G. Wybourne. (1966) Energy levels of trivalent gadolinium and ionic contributions to the ground-state splitting. *Phys. Rev.* **148**, 317-27.

B. G. Wybourne. (1968) Effective operators and spectroscopic properties. *J. Chem. Phys.* **48**, 2596-611.

B. G. Wybourne. (1970) *Symmetry Principles and Atomic Spectroscopy*. Wiley-Interscience, New York.

- B. Q. Xie, Y. M. Cheung, and S. K. Gayen. Intra-4 ℓ two-photon transition in Pr^{3+} :LiYF₄. *J. Lumin.* **60&61**, 661-3.
- Y. Y. Yeung and D. J. Newman. (1985) Angular overlap and superposition models of the orbit-lattice interaction. *Chem. Phys. Lett.* **122**, 415-7.
- Y. Y. Yeung and D. J. Newman. (1986) A new approach to the determination of lanthanide spin-correlated crystal-field parameters. *J. Phys. C* **19**, 3877-84.
- Y. Y. Yeung and D. J. Newman. (1987) Orbitally-correlated crystal-field parametrisation for lanthanide ions. J. Chem. Phys. 86, 6717-21.
- H.-Y. Zhang, X. He, and S. H. Tang. (1990) Two-photon transitions from ${}^{3}H_{6}$ to ${}^{1}I_{6}$ of Tm³⁺ in LaF₃ single crystal. *Chem. Phys. Lett.* **171**, 119-21.

Anexo VI

Artículos al 26 de Enero de 2006.

Publicación 1.

REVISIÓN

REVISTA MEXICANA DE FÍSICA 51 (4) 330-348

AGOSTO 2005

Métodos vibrónicos generalizados aplicaciones a sistemas del tipo elpasolitas estequiométricas Cs₂NaErCl₆

R.Acevedo y A.Soto-Bubert Departamento de Ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Casilla 2777, Santiago-Chile

T.Meruane

Departamento de Química, Universidad Metropolitana de Ciencias de la Educación, Av. J.P. Alesandri 774, Casilla 147-C, Santiago-Chile

G. Navarro

Instituto de Ciencias Básicas, Facultad de Ingeniería, Universidad Diego Portales, Av.Ejército 441, Casilla 298-V, Santiago-Chile

Recibido el 7 de junio de 2004; aceptado el 12 de abril de 2005

En este trabajo de revisión analizaremos, desde un punto de vista experimental y teórico, las fortalezas y debilidades de los modelos vibrónicos para estimar intensidades de espectros de luminiscencia de alta resolución a bajas temperaturas, para sistemas del tipo elpasolitas. Esto es realizado con referencia a sistemas del tipo $Cs_2NaErCl_6$. Se entregan resultados experimentales de fuerzas del oscilador y de las distribuciones relativas de intensidades para algunas transiciones vibrónicas del tipo $\Gamma_1 \rightarrow \Gamma_2 + v_k$ y estos son confrontados con los obtenidos, empleando el método vibrónico generalizado de campo cristalinos-polarización de ligandos y el modelo de superposición de Newman. Se efectúa un análisis crítico de las consecuencias de utilizar modelos simplificados con desprecio de las interacciones entre las vibraciones in ternas y externas. Las excitaciones electrónicas estudiadas corresponden a las emisiones $\{|(^4S_{3/2}) \Gamma_8\rangle, |(^4I_{13/2}) \Gamma_l\rangle \rightarrow |(^4I_{15/2}) \Gamma_k\rangle\}$. Es interesante observar las bondades del método *VCF-LP*, el cual está basado en un número mínimo de parámetros ratiales y de campos de fuerzas del tipo velencial generalizado para modelar interacciones de corto alcance, observándose que el modelo es de gran flexibilidad y utilidad para el tratamiento de sistemas complejos. De igual forma, se analizan las bases teóricas en dinámica de cristales en el caso de elpasolitas puras, área de desarrollo en nuestro laboratorio.

Descriptores: Intensidades vibrónicas; niveles de energías e intensidades espectrales.

In this review, we study from an experimental and theoretical viewpoint, the advantages and disadvantages of the current vibronic models so as to estimate the spectral intensities associated with luminescence spectra of high resolution excitations at low temperature. This work is carried out with reference to the elpasolite type system $Cs_2NaErCl_6$. Experimental data is reported in the current research work, regarding oscillator strengths and relative vibronic intensity distributions for some selected electronic excitations such as $\Gamma_1 \rightarrow \Gamma_2 + v_k$. These values are compared with those of that obtained by means of generalized vibronic theoretical methods such as the vibronic crystal field-ligand polarization and the superposition models due to Newman. A careful analysis is performed so as to estimate the role played when neglecting the coupling between the internal and the external vibrations for this system. The emissions considered throughout the course of this work are $\{|(^4S_{3/2}) \Gamma_8\rangle, |(^4I_{13/2}) \Gamma_l\rangle \rightarrow |(^4I_{15/2}) \Gamma_k\rangle\}$. It is interesting to observe the quality of the results given when the vibronic crystal field-ligand polarization model is employed (*VCF-LP*). Our calculation method is based upon a minimum set of radial parameters and a generalized version of the valence force field to modulate the short range interactions. It is shown that this appoach is both flexible and useful to deal with these complex systems. We also analyze the theoretical and the experimental basis for a more realistic model and calculation method to carry out calculations for the lattice dynamics of these the stoichiometric elpasolite systems.

Keywords: Vibronic intensities; energy levels and spectral intensities.

PACS: 32.70.Cs

1. Palabras preliminares

Este trabajo de investigación, tiene como objetivo central el estudio de materiales luminiscentes, con referencia a sistemas estequiométricos del tipo elpasolitas, en el grupo espacial *Fm3m*. Procederemos a examinar diversas aplicaciones de los modelos y estrategias de cálculo de intensidades espectrales con referencia a la elpasolita Cs₂NaErCl₆, para la cual disponemos de una masa importante de datos experimentales de orígen estructural y espectroscópico. Estos cristales exhiben espectros de luminiscencia caracterizados por cientos de líneas y son diversos los grupos de investigación que han dedicado esfuerzos tendientes a la asignación e identificación de un conjunto importante de transiciones electrónicas, en absorción y en emisión.

El sistema correspondiente a la elpasolita clorada de erbio (III), es particularmente complejo de ser análizado, tanto a nivel experimental como teórico. Para este sistema, el ion erbio (III) en fase gaseosa presenta una configuración de la capa de valencia del tipo f^{11} con niveles energéticos caracterizados por términos espectroscópicos del tipo que se indica: ${}^{4}I_{15/2}$ (basal), ${}^{4}I_{13/2}$, ${}^{4}I_{11/2}$, ${}^{4}I_{9/2}$, ${}^{4}F_{9/2}$, ${}^{4}S_{3/2}$ y en consideración a la gran variedad de términos espectroscópicos existentes, es posible anticipar que la asignación e identificación de los diversos picos de los espectros será, sin lugar a dudas, una tarea formidable. Adicionalmente es posible sospechar situaciones prácticas, correspondientes a superposiciones de excitaciones electrónicas, con reforzamientos y/o debilitamientos, lo cual incide directamente en las intensidades espectrales observadas. En virtud de lo señalado anteriormente, nuestro objetivo en este artículo será el analizar con el máximo de rigur los métodos de cálculo a ser utilizados en la evaluación de las intensidades espectrales y la confrontación de estos resultados con las observaciones experimentales.

2. Introducción

Los espectros electrónicos asociados a iones lantánidos en cristales cúbicos del tipo elpasolitas [1-4], exhiben picos de absorción o emisión, permitidos por reglas de selección estáticas, de origen y naturaleza del tipo dipolo magnético, cuadrupolo eléctrico y dipolo eléctrico. En simetría cúbica, el experimento indica que estos sistemas exhiben excitaciones electrónicas, las cuales son permitidas por medio de un mecanismo vibrónico.

De esta forma, en la aproximación de 7-átomos (molecular), excitaciones del tipo $\Gamma_1 \rightarrow \Gamma_2 + v_k$ (k = 3, 4, 6) corresponden a los picos más intensos del espectro. Se han reportado, en la literatura una variedad de estudios espectroscópicos, provenientes de la utilización de técnicas en óptica lineal como no lineal. De igual forma, se han reportado en la literarura, una variedad de cálculos explícitos de intensidades espectrales, con mecanismos asociados de origen dipolar eléctrico y magnético, para "clusters" del tipo LnX_6^{3-} ; en compuestos centrosimétricos y no centrosimétricos [1-3,5-18].

Estos cálculos, se basan en una serie de supuestos

- (a) acoplamiento de orden cero, es decir, desprecio de la interaccion entre los modos normales de igual simetría del "cluster" y de los contra-iones del cristal,
- (b) las superficies de energía potencial, asociadas a los estados terminales de las transiciones electrónicas, en estudio, presentan formas muy parecidas y sus mínimos globales de energía, se encuentran ligeramente desplazados entre sí, todo lo anterior con respecto de la coordenada totalmente simétrica,
- (c) los estados vibrónicos son representados utilizando la aproximación de adiabática de Born-Oppenheimer (B-O), es decir, utilizando funciones del tipo:

$$\Psi = \chi_{t,v}\left(\overrightarrow{Q}\right)\psi_t\left(\overrightarrow{r},\overrightarrow{Q}
ight)$$

Estas funciones dependen paramétricamente de las coordenadas nucleares, \overrightarrow{Q} y

(d) para el caso no degenerado y para una configuración nuclear de equilibrio del sistema Q⁰, se emplea la aproximación adiabática cruda (C-B-O). Lo señalado anteriormente, sugiere utilizar funciones de ondas de orden cero, de la forma:

$$\Psi^{0} = \chi_{t,v} \left(\vec{Q}^{(0)} \right) \psi_{t} \left(\vec{r}, \vec{Q}^{(0)} \right).$$

También y en lo relacionado con los formalismos de cálculo, tendientes a la racionalización de las intensidades vibrónicas observadas, resulta significativo mencionar los trabajos de Richardson y colaboradores [1,5-7,19-21]. En los cálculos realizados por estos autores, se hizo uso de las aproximaciones (a), (b), (c), (e) y en función de estas, procedieron a la formulación de un modelo parametrizado. Este esquema de cálculo fue especialmente diseñado para la estimación de intensidades en el caso de iones complejos del tipo LnX_6^{3-} (en entomos centrosimétricos y no centrosimétricos, con ligandos del tipo Cloruro). Para este tipo de ligandos, se esperan, en primer orden efectos de dispersión de los modos normales de simetria, τ_{1u} , relativamente pequeños, pero no despreciables.

De igual forma, cuando el ligando es remplazado por iones fluoruro, entonces los efectos de dispersión son notablemente marcados y es preciso cambiar la estrategia y modelos de cálculos, en forma significativa (debido al hecho experimental que nos indica la existencia de una dispersión apreciable para los modos de simetria τ_{1u}). Este efecto, es esencialmente dominado por interacciones coulómbicas de largo alcance. En el caso de estos cristales fluorados, la experiencia nos sugiere el abandono definitivo del modelo de 7átomos y en consecuencia será preciso realizar cálculos más completos en dinámica de cristales. En estos cálculos se incorporan las diversas combinaciones lineales (estados mezclas) de los modos normales internos y externos para lo cual se utiliza un campo de fuerzas generalizado e incluimos las interacciones de largo alcance (básicamente Coulómbicas en carácter). En cálculos realizados por Richardson y colaboradores [7,15,19-25], el énfasis ha sido puesto en el desarrollo y aplicación de modelos semi-empíricos, para los cuales el número de parámetros a ser optimizado (de modo de disminuir la desviación cuadrática media, entre las energías observadas y las calculadas), supera con creces el número de datos experimentales disponibles. No obstante, los esfuerzos realizados, observamos la existencia de una restricción en nuestra capacidad de generar modelos y estrategias razonables de cálculo. Adicionalmente a las limitaciones señaladas anteriormente, para sistemas de varios cuerpos, existen otros elementos que es necesario considerar, desde un punto de vista matemático y físico. En física del sólido y a pesar de los avances tecnológicos logrados a la fecha, sabemos que es practicamente imposible generar bases de datos experimentales lo suficientemente completas.

Lo anterior constituye una razón poderosa, la cual nos obliga a calibrar con precisión, el tipo de cálculos dependiendo de los sistemas a ser estudiados y de la calidad y completitud de la base disponible. En consecuencia, el objetivo maestro consiste, en generar, un modelo aproximado de cálculo, el cual goce simultáneamente de utilidad y flexibilidad para

racionalizar en base de modelos y métodos simples, los resultados experimentales.

La idea central que determinará nuestra estrategia de trabajo consistirá en el desarrollo de modelos, basados en un conjunto razonable de parámetros a ser ajustados de los datos experimentales. El esquema semi-empírico a desarrollar, debe ser lo suficientemente riguroso y preciso, compatible con los datos experimentales existentes y de gran flexibilidad. Lo anterior de modo de que se nos facilite el explicar las tendencias generales observadas en las distribuciones relativas de intensidades espectrales y que seamos capaces de reproducir el orden de magnitud de las fuerzas del oscilador, para las diversas transiciones electrónicas estudiadas.

En este sentido, los parámetros obtenidos, deben poseer un sentido físico claro e inequívoco, el cual sea compatible con las tendencias observadas para las intensidades espectrales en el caso de familias de sistemas cristalinos de propiedades físicas y químicas semejantes. Nuestros esfuerzos en investigación, han sido enfocados a incrementar nuestro conocimiento en la física de procesos radiativos y no radiativos, para sistemas complejos de varios cuerpos con marcados efectos relativistas. Para el caso de iones complejos de las tierras raras, en entornos cúbicos, hemos generado modelos vibrónicos, introduciendo nuevos criterios de convergencia y otras modificaciones no menores, en el esquema vibrónico de campo cristalino - polarización de ligandos (VCF-LP). Algunas aplicaciones de este formalismo, han sido realizados con referencia a sistemas del tipo: PrCl₆³⁻, UBr₆²⁻, YbCl₆³⁻, TmCl_6^{3-} y ErCl_6^{3-} en entornos cúbicos [2,9,10,26,27]. De igual forma, por razones de completitud, resulta interesante realizar el análisis de las bases fisicas del modelo de superposición de Newman y colaboradores [22-25]. Esto lo haremos a la luz de los cálculos realizados por Richardson y Reid [7], los cuales emplearon el modelo de superposicion vibrónico con el proposito de ajustar las intensidades asociadas con transiciones del tipo $\Gamma_1 \rightarrow \Gamma_2 + v_3$ para el ion complejo UBr₆²⁻. En los cálculos desarrollados por estos autores, con base en el modelo vibrónico de superposición, se observa que el número de parámetros electrónicos a ser ajustados excede con creces los datos experimentales disponibles. En un artículo posterior, Acevedo y colaboradores [26] realizaron un estudio formal para las intensidades asociadas a las transiciones electrónicas; $\Gamma_1 \rightarrow \Gamma_2 + v_k$ (k = 3, 4, 6), en el caso de los sistemas clorados de Uranio (+4) y de Prasidinio (+3), en la aproximación de 7-átomos. En dicho trabajo, se realizó un estudio crítico de los factores, tanto electrónicos como vibracionales, determinantes de las fuerzas dipolares electricas del tipo general:

$$D_{1\to 2} \approx \sum_{t=1\to 3} |(EF)_{1\to 2}^{v_t}|^2$$

donde v_t : t = 3, 4, 6 designan los modos normales impares, frente al centro de inversión en la simetría de sitio al cual pertenece el ion complejo. Los factores electrónicos y vibracionales fueron racionalizados y estimados, empleando un modelo vibrónico generalizado del tipo (VCF- LP). Este esquema de cálculo fue, posteriormente aplicado al ion complejo $YbCl_6^{3-}$ con referencia a las absorciones $\Gamma_6({}^2F_{7/2}) \rightarrow (\Gamma_7, \Gamma_8)({}^2F_{5/2}) + v_k : (k = 3, 4, 6)$ [2]. La contribución de campo cristalino al momento de transición del tipo dipolo-eléctrico fue estimada, utilizando un esquema vibrónico general, en conformidad con la estrategia que se indica:

- (a) empleo de una base truncada de estados electrónicos del ion metálico central y
- (b) utilización de la aproximación de clausura para los estados permitidos de paridad distinta a las de los electrones, f (l = 3).

En este último caso, suponemos que los estados simétricos, frente a la inversión, por ejemplo: d (l = 2) y/o g (l = 4), aparecen a la misma energía y forman un conjunto biortonormal completo en el espacio funcional.

De igual forma, la contribución de campo cristalino en las aproximaciónes (a) y (b), señaladas anteriormente y la de polarización de ligandos, proporcionan el momento de transición dipolar eléctrico total (aproximación de orden uno). La próxima etapa del cálculo consiste en la evolución explícita de la fuerza dipolar eléctrica, asociada a cada una de las excitaciones del tipo $\Gamma_1 \rightarrow \Gamma_2 + v_k \ (k = 3, 4, 6)$. Los resultados obtenidos, utilizando este modelo, sugieren que el método de cálculo aplicado es apropiado, lo cual permite avanzar nuestra comprensión de estos complejos fenómenos en el caso de sistemas como los señalados anteriormente. En esta misma línea de argumentación, podemos indicar que en un artículo posterior [27], reportamos un estudio preliminar del cálculo de intensidades vibrónicas para las emisiones $({}^{4}I_{13/2})\Gamma_{l}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma_{k}\rangle + v_{m}$, correspondientes al ión Erbio (+3) en la elpasolita, Cs2NaErCl6.

Con relación a la diagonalización de la matriz de energías, Richardson y colaboradores [17,21], emplearon un hamiltoniano modelo del tipo

$$\begin{aligned} \widehat{H} &= E_{avg} + \sum_{k} F^{k} \widehat{f}_{k} + \xi_{so} \widehat{A}_{so} + \alpha L(L+1) \\ &+ \beta \widehat{G}(G_{2}) + \gamma \widehat{G}(R_{7}) + \sum_{l} T^{l} \widehat{t}_{t} + \sum_{k} P^{k} \widehat{p}_{k} \\ &+ \sum_{l} M^{l} \widehat{m}_{l} + V_{CF}(O_{h}) \quad (1 \end{aligned}$$

correspondiente a un operador electrónico que incorpora, la parte isotrópica (incluyendo la interacción de campo cristalino de los electrones f, en el ion aislado; simetría esférica) y las componentes no esféricamente simétricas, de las contribuciones del campo cristalino correspondiente a las armónicas esféricas pares.

El hamiltoniano electrónico modelo de la Ec. (1), ha sido utilizado como base para el desarrollo de modelos semiempíricos, en la determinación de los parámetros radiales involucrados, a partir de conjuntos actualizados, no obstante, necesariamente incompletos de datos experimentales para elpasolitas estequiométricas puras del tipo Cs_2MLnX_6 y dopadas Cs_2MLnX_6 :Ln' X_6 . La diagonalización de la matriz

de energías, requiere del ajuste de una serie de parámetros atómicos, tales como:

- (a) seis parámetros de dos particulas: los parámetros de Slater F^k (k = 2, 4, 6) y los correspondientes a la interacción de configuraciones α, β, γ "correcciones TREES",
- (b) seis parámetros electrostáticos en carácter, que involucran las coordenadas de tres partículas T^l (l = 2, 3, 4, 6, 7, 8),
- (c) interacción espín electrónico con su propia órbita ξ_{so},
- (d) tres parámetros correspondientes a la interacción del espín electrónico con otras órbitas M^k (k = 0, 2, 4) y (e) tres parámetros de espín órbita, correlacionados electro-estáticamente P^k (k = 2, 4, 6).

Adicionalmente, el parámetro Eavy es utilizado como un parámetro adicional de ajuste para el conjunto completo de energías del sistema. Finalmente, existen dos parámetros de ajuste adicionales, no relativistas correspondientes a la contribución del campo cristalino: $B_0^{(4)} = 1,128B_0^4$ y $B_0^{(6)} = -1,1277B_0^6$ [3,7,12,15]. En función de lo señalado anteriormente, el total de parámetros a ser ajustados de los datos experimentales es a lo menos igual a 20, lo cual representa un desafio de envergadura. En esta línea de investigación, Reid [4,7,15,17] desarrolló un conjunto de programa computacionales aplicables a configuraciones de valencia del tipo f^N. El paquete computacional desarrollado por Reid, se conoce como "DOCUMENTATION" y consiste esencialmente de 4 rutinas y 5 programas, el cual transforma el conjunto de parámetros iniciales, funciones base, elementos de matriz reducidos y niveles energéticos en conjuntos optimizados, los cuales se caracterizan por presentar una desviación cuadrática media lo menor posible. (para estos efectos, se escoge alguna prueba de convergencia apropiada).

El procedimiento computacional debe ser llevado a cabo con precaución, por cuanto los parámetros resultantes deben satisfacer en forma simultánea las siguientes condiciones: (a)sentido físico y (b)sus valores deben corresponder a mínimos globales de energías para la configuración nuclear de referencia del sistema cristalino. Las rutinas básicas desarrolladas por M.Reid, son las que se indican a continuación: (1)Runner: examina y ejecuta instrucciones, utilizando los archivos de entrada a través de un conjunto de funciones, procedimientos y declaraciones globales, (2)Complex: contiene un conjunto de rutinas aritméticas en el espacio complejo, (3)Gensort: rutina de chequeo rápido y (d)Diag: conjunto de rutinas de diagonalización. Los programas básicos, son (1)Readcross, (2)Sljcal, (3)Jmcal, (4)cfit y (5)paramcal.

En función del hamiltoniano modelo [ver Ec. (1)] Richardson y colaboradores [17,21], llevaron a cabo un cálculo de intensidades para el sistema Clorado de Erbio(+3), con un modelo de cálculo con una parametrización, a nuestro juicio excesiva, obteniendo una desviación cuadrática media aceptable, para lo cual emplearon un conjunto de niveles de energias en el rango: $0 < \Delta E < 26.500 (\text{cm}^{-1})$. Haciendo uso de un conjunto de vectores propios, resultantes del proceso de diagonalización de la mátriz de energías en un formalismo de interacción de configuraciones, estos autores procedieron al cálculo de momenta de transición dipolares magnéticos (los resultados obtenidos muestran un acuerdo razonable con los datos experimentales). Un trabajo de investigación reciente de Crooks y colaboradores [28], muestra una revisión de un conjunto de 60 absorciones a la temperatura de 10 K para el sistema Cs2NaErCl6. En el trabajo de estos autores, se reportan las intensidades absolutas observadas para los diversos picos de absorción, entre diversos estados permitidos y adicionalmente se procedió a la estimación de valores para las fuerzas del oscilador, en función de un conjunto de parámetros intrínsicos de intensidad $A_i^{-\lambda}$ [28]. En este artículo, emplearon una versión adaptada del modelo de superposición de Newman y colaboradores [22-25].

A modo de resumen, estos autores concluyeron que cuando este modelo es utilizado, en la aproximación de 7-átomos para esta elpasolita (ión complejo ErCl_6^{3-}), es posible obtener un acuerdo satisfactorio entre las intensidades espectrales observadas y las calculadas. No obstante, el signo de los parámetros $A_i^{-\lambda}$ está en concordancia con todos los modos normales de vibración, con la notable excepción del signo del parámetro intrínseco de intensidad A_5^{-6} para el modo correspondiente a la deformación del ángulo; Cl-Er-Cl (simetria; τ_{2u} (v_6)). Este resultado es, no obstante desalentador y requiere de precisiones más finas, de modo de explicar las intensidades espectrales observadas en función de un conjunto mínimo, pero consistente de parámetros.

El sistema clorado de Er(+3), exhibe propiedades ópticas interesantes, siendo el primer up converter reportado, en la literatura [13,29-32]. A modo ilustrativo, analizaremos en este artículo, las emisiones $|({}^{4}I_{13/2})\Gamma_{k}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma_{l}\rangle$ $y | ({}^{4}S_{3/2}) \Gamma_{8} \rangle \rightarrow | ({}^{4}I_{15/2}) \Gamma \rangle$, empleando para estos efectos un modelo vibrónico generalizado con la inclusión de un conjunto mínimo de parámetros, a ser ajustados de los datos experimentales. Nuestro modelo de cálculo (VCF-LP), no está diseñado como tampoco pensado para forzar un ajuste de intensidades, entre las observadas y las calculadas, sino que más bien, nuestro énfasis reside en el análisis de la incidencia de los factores; tanto electrónicos como vibracionales, los cuales determinan las velocidades de decaimiento radiativo para las emisiones, sujeto de este estudio. Introduciremos una generalización adicional de la aproximación de clausura, en el cálculo de la componente vibrónica de campo cristalino, proponiendo un mecanismo de decaimiento radiativo para las emisiones $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle$, en el caso de esta elpasolita clorada de erbio (III).

Este tipo de generalizaciones, es a nuestro juicio un aporte real y novel a la teoría de las transiciones radiativas en el caso de estos iones complejos en cristales huéspedes del tipo elpasolitas y nos abre una serie de posibilidades para encontrar explicaciones, en algunos casos alternativas y en otras, complementarias para espectros tanto de emisión como de absorción en este tipo de sistemas.

Rev. Mex. Fis. 51 (4) (2005) 330-348

333

3. Antecedentes adicionales del sistema

En el caso de iones complejos del tipo ErCl₆³⁻, en cristales anfitriones del tipo elpasolitas cúbicas, se observa experimentalmente que transiciónes del tipo $\Gamma_1 \rightarrow \Gamma_2 + v_k \ (k = 3, 4, 6)$, resultan ser los picos de absorción o emisión más intensos de los espectros y de igual forma la estructura debida a los modos de vibración del cristal aparece notablemente débil. Esta afirmación no debe ser interpretada como consecuencia de una acoplamiento débil entre los modos internos ("clusters") y del cristal ("fonones"), para especies correspondientes a modos normales de igual simetría. Al respecto, resulta importante modelar un campo de fuerzas que origine un conjunto efectivo y consistente de constantes de fuerzas en algún modelo físico razonable, basado en la representación de la celda unitaria del cristal. El modelo debe considerar en forma explícita las limitaciones existentes, tanto de un punto de vista teórico como experimental. Con relación a la síntesis y determinación estructural de esta elpasolita Cs2NaErCl6, hemos procedido a la actualización de la base de datos experimentales, procediendo a la síntesis y caracterización estructural de ésta. La muestra se obtuvo por medio de una reacción de estado sólido, en atmósfera de nitrógeno, mezclando cantidades estequiométricas, de los reactivos CsCl, NaCl y ErCl3. Antes del proceso de tratamiento térmico de la muestra, ésta fue secada a la temperatura de 105°C, con el propósito de eliminar residuos de $n - C_6 H_6$. En el análisis térmico se utilizó la técnica convencional (DTA/TGA), obteniendo una indicación bastante precisa de las temperaturas apropiadas para los tratamientos térmicos y la cristalización del sistema. Para la elpasolita estequiométrica de erbio(III), se obtuvo para la temperatura critica de cristalización el valor de 837,9° C. De igual forma, la determinación de la estructura y el análisis de las impurezas se realizó, empleando la técnica de fluorescencia de rayos X. Con lo cual se procedió a la determinación de la densidad, cuyo valor es: $3,62 \pm 0,01$ (picnómetro, LAN-GER 450 en vacío). La determinación de la estructura de esta elpasolita se realizó, utilizando difracción de rayos-X para polvos y los perfiles obtenidos fueron refinados, utilizando el procedimiento de Rietveld [35-37]. Las condiciones operacionales para el generador de rayos-X, son las que se indican a continuación: 20 mA y 40 kW, con ánodo de Cu y filtro de Ni, correspondiente a la longitud de ondas: $\lambda = 1,5444$ Å. El rango del barrido fue de 12-72° (2 θ) a temperatura ambiente. Las posiciones promedios para los núcleos del sistema, son las que se indican a continuación:

$$\begin{split} & 4\mathrm{Er}^{3+}\left(0,0,0\right), \quad 4\mathrm{Na}^{1+}\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right), \\ & 8\mathrm{Cs}^{1+}\left(\frac{1}{4},\frac{1}{4},\frac{1}{4}\right) \quad \mathrm{y} \quad 24Cl^{1-}\left(\frac{1}{4},0,0\right). \end{split}$$

El parámetro de red es: $a_0 = 10,7089$ Å. Con relación al modelo teórico y estrategia de cálculo, sabemos que para sistemas del tipo M_2 NLnX₆, como los que estamos considerando en este estudio, estos precipitan a temperatura ambiente, dando origen a cristales pertenecientes al grupo espacial Fm3m. Los cationes Ln^{3+} y N^{1+} presentan un índice de coordinación igual a seis con relación a los aniones X^{1-} , en sitios de simetria (O_h) . De igual forma, los cationes M^{1+} , presentan con respecto de los iones haluros un índice de coordinación 12, y se localizan en sitios de simetria tetraedricos (T_d) . Una descripción de estas elpasolitas se muestra en la Fig. 1, en la cual las densidades de cargas nucleares se rotulan en conformidad con los índices que se indican a continuación: $X^{1-}:1-6$, $Ln^{3+}:7$, $N^{1+}:8$, $M^{1+}:9-10$ [37,39,40].

Con relación al acoplamiento entre las vibraciones internas ("cluster") con las de los contra-iones M^{1+} y N^{1+} , es importante señalar que en el grupo de sitio octaédrico, los movimientos vibracionales de los núcleos se transforman de acuerdo al esquema de representaciones y combinaciones de éstas, como se indica a continuación: $M^{1+}(\tau_{2g} + \tau_{1u})$, $N^{1+}(\tau_{1u})$ y para el ion complejo, "cluster" obtenemos: $LnX_6^{3-}(\alpha_{1g} + \varepsilon_g + 2\tau_{1u} + \tau_{2g} + \tau_u)$.

En estos términos, se observa que se precisan 10 núcleos para la descripción de la celda primitiva para estos cristales. Recordemos que el modo de simetría τ_{1g} corresponde a una rotación del sistema como un todo a lo largo de los ejes cartesianos X, Y y Z y por lo tanto no lo consideraremos en este estudio. De esta forma, en el grupo factor correspondiente al grupo puntal molecular O_h y en la aproximación $\vec{k} = \vec{0}$, la representación vibracional se expresa como se indica a continuación:

$$\Gamma = \alpha_{1g}(R) + \varepsilon_g(R) + 2\tau_{2g}(R) + 4\tau_{1u}(IR) + \tau_{2u}(-).$$

En estos términos, para una campo de fuerzas dado, digamos F, podemos escribir la identidad S = LQ, la cual relaciona las coordenadas de simetría con las coordenadas normales del sistema. La elección de la matriz de transformación L, no es trivial, por cuanto es una función del campo de fuerzas, es decir: L = L(F). En un trabajo reciente, Ning y colaboradores [40], realizaron un cálculo de coordenadas normales para estructuras del tipo: M_2NLnX_6 con

FIGURA 1. Estructura de cristales del tipo elpasolitas estequiometicas.

X = I, Br, Cl, F; M = Cs, Rb; N = K, Na, Li y Ln correspondiente a un lantánido, utilizando un campo de fuerzas del tipo valencial modificado, en base a un conjunto de 9 constantes de fuerzas. Las frecuencias vibracionales utilizadas en un modelo de 10 núcleos (Fig. 1), fueron obtenidas de técnicas, tales como: espectroscopia Raman y espectros electrónicos de absorción y de emisión, a temperaturas inferiores a 10 K. El programa de optimización utilizado por estos autores, sugiere la necesidad de introducir un número mayor de constantes de fuerzas, de modo de asegurar una descripción fisica más razonable para el sistema. Este procedimiento, no obstante aproximado sugiere que este tipo de cálculos puede ser mejorado en forma sustantiva, levantando algunas de las restricciones utilizadas y privilegiando la fisica sobre consideraciones estadísticas, con relación a la minimización de la desviación cuadrática media (entre las frecuencias observadas y las calculadas). No obstante, la crudeza de algunas aproximaciones, vemos que el acoplamiento entre las vibraciones internas y externas debe ser considerado en forma explícita. Los resultados indican acoplamientos tanto para las coordenadas de simetrías τ_{1u} como para las de simetría τ_{2u} , los cuales no son necesariamente despreciables. Para estas especies de simetrías, las transformaciones S = LQ adoptan la forma general [37,39,40]: $\tau_{1u}(S_{6t}, S_{7t}, S_{8t}, S_{9t}) \neq \tau_{2u}(S_{10t})$, en términos generales se observa que, para una serie de elpasolitas, las modos normales de vibración exhiben una mezcla importante, todo lo cual refuerza la idea que la obtención explícita de las transformaciones del tipo:

$$S_{k,t} = \sum_{i} L_{k,i} Q_{i,t},$$

resulta ser de vital importancia, si se desea avanzar en una descripción más realista del sistema. Lo anterior, no solamente desde un punto de vista teórico sino que más bien del proceso de identificación y asignación espectroscópica para los espectros de luminiscencia, tanto en absorción como en emisión.

Por razones de completitud, es conveniente indicar que las coordenadas de simetria son combinaciones lineales de los conjuntos de coordenadas internas que se indican a continuación:

- (a) tensiones de los enlaces: $Ln X(\Delta r_i)$,
- (b) tensiones de los enlaces: $N X(\Delta R_i)$,
- (c) deformación de los ángulos de enlace: $X-Ln-X(\Delta \alpha_{ij})$ y
- (d) deformaciones de los ángulos: X N X (Δβ_{ij}). Para el caso de interacciones entre átomos no directamente enlazados, se observan las siguientes interacciones:
- (e) entre átomos de $X(\Delta q_i)$ y
- (f) entre átomos de Cesio y del halogeno: $\Delta D_{i,j}$.

Un listado completo de las coordenadas de simetría; $S_{i,t}$: i = 1 - 10, se entrega en la Ref. 37 y de igual forma mayores detalles pueden ser solicitados directamente de RA.

De esta forma, el acoplamiento de coordenadas impares frente a la inversión, puede ser representado en forma matricial de la forma que se indica a continuación:

$$\begin{pmatrix} S_{6t} \\ S_{7t} \\ S_{8t} \\ S_{9t} \\ S_{10t} \end{pmatrix} = \begin{pmatrix} L_{66} & L_{67} & L_{68} & L_{69} & 0 \\ L_{76} & L_{77} & L_{78} & L_{79} & 0 \\ L_{86} & L_{87} & L_{88} & L_{89} & 0 \\ L_{96} & L_{97} & L_{98} & L_{99} & 0 \\ 0 & 0 & 0 & 0 & L_{10,10} \end{pmatrix} \begin{pmatrix} Q_{6t} \\ Q_{7t} \\ Q_{8t} \\ Q_{9t} \\ Q_{10t} \end{pmatrix}. (2)$$

La matriz de transformación, la cual conecta las coordenadas de simetría impares, $S_{k,t}$: k = 6 - 9; t = a, b, c, con las coordenadas normales $Q_{k,t}$ depende en forma crítica de la modelación del campo de fuerzas vibracional y de la masa de datos experimentales que se disponga para realizar el ajuste y consecuente minización de la desviación cuadrática media. Es interesante, argumentar en este punto de la discusión, que los valores óptimos a ser utilizados en cualquier cálculo de coordenadas normales debe contemplar en forma explícita el concepto de distribución natural de la energia potencial (NPED).

El concepto asociado a la NPED, proporciona otra restricción física razonable para ser utilizada en el procedimiento de optimización del campo de fuerzas vibracional y consiste, básicamente en lo siguiente: Las ecuaciones vibracionales, en forma matricial adoptan la forma: $GFL = L\Lambda$ y la condición de normalización es: G = LL', por lo tanto al remplazar obtenemos:

$$\lambda_i = \sum_k L_{ki}^2 F_{kk} + \sum_{k,l} L_{ki} L_{li} F_{kl}$$

Es corriente, en la literatura suponer que el término diagonal es lejos la contribución más importante a la longitud de ondas asociada al modo normal vibracional i-ésimo. De esta forma, se define la distribución de energía potencial (**PED**), simplemente por medio de la aproximación:

$$\lambda_i \approx \sum_k L_{ki}^2 F_{kk}$$

- y por lo tanto se procede a despreciar el término no-diagonal. Nuestra estrategía de trabajo es la siguiente:
 - (a) las amplitudes de vibración, representadas por los elementos de la matriz L, dependen críticamente del campo de fuerzas vibracional que se adopte para la descripción de los modos normales, es decir: L = L(F) y

(b) elección de un campo de fuerzas vibracional generalizado, el cual sea lo suficientemente flexible y general de modo de minimizar, el término cruzado, al que hemos hecho referencia en los párrafos anteriores.

En estas circunstancias, es posible encontrar una distribución natural para la energía potencial y muy probablemente una descripción más razonable para los modos normales de vibración del "cluster" en el cristal anfitrion. El bloque de simetría τ_{1u} (4 × 4) es de gran importancia, por lo tanto requiere de algunas precisiones adicionales, las cuales procedemos a mencionar en esta sección. Una estrategia adecuada de trabajo, consiste en realizar un cálculo en dinámica de cristales para avanzar el estado del arte, incorporando para estos efectos, tanto las fuerzas de corto como las de largo alcance y de esta forma generar la matriz dinámica [33-35,40,41]. Esto conduce a la resolución de las ecuaciones de la dinámica de cristales:

$$D\left(\overrightarrow{k}\right)E\left(\overrightarrow{k}\right)=E\left(\overrightarrow{k}\right)\Omega^{2}\left(\overrightarrow{k}\right), \text{ donde } \Omega^{2}\left(\overrightarrow{k}\right)$$

es a una matriz diagonal, cuyos elementos corresponden a los valores propios $\omega_{p, k}^2$ asociados a los vectores propios

$$e\left(\mu i | p \vec{k}\right).$$

Una discusión exhaustiva y actualizada con relación a cálculos en dinámica de cristales para sistemas del tipo M_2XY_6 , en el grupo espacial Fm3m, puede ser obtenida de las Refs. 33, 36 y 41. De igual forma, resulta importante mencionar que para sistemas de esta naturaleza, existe una masa de datos experimentales incompleta, lo cual exige de gran imaginación para la modelación de campos de fuerzas y desarrollos de criterios adicionales de convergencia que posibiliten la obtención de parámetros, a nivel de estados de oxidación de los núcleos constituyentes del sistema y de los parámetros (constantes de fuerzas) de los campos vibracionales.

Para el ión complejo $\operatorname{ErCl}_{6}^{3-}$, los 15-grados de libertad, obedecen la descomposición que se indica a continuación: $\Gamma = \alpha_{1g} (\nu_1) + \varepsilon_g (\nu_2) + 2\tau_{1u} (\nu_3, \nu_4) + \tau_{2g} (\nu_5) + \tau_{2u} (\nu_6)$. En este enfoque, se acepta que el acoplamiento con los modos normales de vibración de los contra-iones Na¹⁺y Cs¹⁺, es lo suficientemente pequeño como para despreciarlo. Es preciso ser cuidadoso con relación a las asignaciones: $S_6 (\tau_{1u}) \leftrightarrow \nu_3$ y $S_7 (\tau_{1u}) \leftrightarrow \nu_4$, con relación a las coordenadas de simetría en la base de las coordenadas cartesianas nucleares. Resulta indispensable disponer de una evidencia sólida con relación al acoplamiento entre las vibraciones internas y externas, sí se desea avanzar hacia una representación más realista de los modos normales de vibración [36-38,40-44].

A continuación, procederemos a sentar las bases y estrategias de cálculo sobre la base de modelos aproximados, pero simples con el propósito de racionalizar las intensidades espectrales observadas para este sistema [28]. Disponemos de un conjunto de datos interesantes a nivel experimental que dice relación con medidas de los espectros de absorción a temperaturas del orden de 10 K, en el rango de 6.000 a 26.000 cm⁻¹. Estos datos se refieren, a un conjunto del orden de 60 valores de fuerzas del oscilador del tipo dipolo eléctrico en los cuales aparecen valores reportados para absorciones generales del tipo: $\Gamma_1 \rightarrow \Gamma_2 + v_k$ (k = 3, 4, 6). Podemos anticipar que los resultados a ser obtenidos dependeran críticamente de los supuestos del modelo, no obstante que debemos reconocer que estos resultados preliminares servirán como base para la elaboración de modelos de mayor sofisticación, simplicidad y utilidad en la interpretación y racionalización de los tanteresante referir al lector a los trabajos de Richardson y colaboradores [1,7,19-21], los cuales, utilizando modelos vibrónicos con diversos ordenes de aproximación procedieron a la parametrización de las intensidades espectrales observada para este tipo de cristales.

Es útil para efectos ilustrativos comparar los esquemas de Richardson y colaboradores [5-7,15,19-21] con los desarrollos efectuados en nuestro grupo de investigación para el sistema clorado de erbio(III) [2,9,26,27,41,42,45,46]

No obstante, la simplicidad de nuestro modelo y considerando las diversas aplicaciones de éste a sistemas relativistas de las tierras raras y lantánidos, podemos señalar que nuestro esquema de cálculo, caracterizado por un conjunto mínimo de parámetros semi-empíricos, es de gran flexibilidad y utilidad para enfrentar la racionalización de la física de procesos radiativos y no radiativos en estos y otros cristales relacionados.

A modo de ejemplo, señalemos que en base a una generalización del modelo de Newman y colaboradores [22-25], Richardson y colaboradores [7], utilizaron este formalismo y procedieron a estimar cuantitativamente las intensidades vibrónicas asociadas a transiciones en las cuales participa en forma explícita el modo normal correspondiente a la tensión del enlace U-Cl(ν_3). Los resultados obtenidos por estos autores, presentan limitaciones, por cuanto los datos experimentales disponobles para ajustar un conjunto de parámetros intrinsicos de intensidades $A_t^{-\lambda}$ son insuficiente, lo cual representa una limitación importante en la validez de los resultados. Acevedo y colaboradores [26], reportaron un cálculo de intensidades vibrónicas para los sistemas PrCl₆³⁻ y UCl63-, utilizando una generalización del modelo vibrónico y evaluando la contribución de campo cristalino con uso de la aproximación de clausura y alternativamente con la introducción de un conjunto explícito de intermediarios del ión metálico central. Los resultados son alentadores y se logró con un mínimo de parámetros semi-empíricos reproducir con notable precisión la fuerza del oscilador total y a nivel de las distribuciónes relativas de intensidades vibrónicas se observó, en algunos casos una desviación de los datos experimentales. Estas imprecisiones del cálculo pueden ser, razonablemente explicadas en términos de dos elementos centrales:

 (a) desviación de la aproximación adiabática cruda de Born-Oppenheimer y (b) acoplamiento de vibraciones impares pertenecientes a las mismas especies de simetría.

El sistema Cs2NaErCl6, es atractivo desde un punto de vista de la modelación de las intensidades espectrales, por cuanto existe una gran riqueza en la información que es posible extraer de los espectros de luminiscencia. Para este sistema, el estudio de los niveles de energías [3,11,12,14,21,47] y el hamiltoniano modelo ha sido particionado en dos contribuciones; H_A y H_{CF} (1). Trabajos pioneros en esta área fueron realizados en el grupo de investigación de Richardson y colaboradores [6,15,17,19,20], en los cuales se estableció una metodologia para realizar el ajuste a los datos experimentales de los parámetros radiales, tanto relativistas como no relativistas, utilizando un esquema de cálculo sobre parametrizado. Así para un modelo de 7-átomos, se requiere para el ajuste de los niveles energéticos de a lo menos 22 parámetros y al avanzar al ajuste de las intensidades vibronicas de los modos internos del ión complejo se precisa de 24 parámetros intrínsicos de intensidades (9-parámetros de intensidades para cada uno de los modos de simetria τ_{1u} y 6-parámetros para el modo de simetria τ_{2u}). Lo anterior no considera el número de parámetros que se requiere para modelar los modos normales de vibración para el sistema de 7-átomos. Resulta evidente la complejidad asociada a estos cálculos de intensidades, cuando se utiliza el modelo vibrónico generalizado de Newman y colabaradores y, de igual forma estas consideraciones nos dan una buena idea de la base de datos experimentales necesaria para que los cálculos sean realistas y sustentables desde un punto de vista físico. Resulta de interés examinar, las consecuencias de modelos de cálculo de niveles energéticos como los señalados anteriormente, para la serie de los iones lantánidos trivalentes en cristales del tipo elpasolitas [3,28] y referencias incluidas.

La primera consecuencia de estos valores ajustados, indica que los valores para éstos, dependen del número de niveles de energías utilizados en el cálculo de optimización (minimización de la desviación cuadrática media).

Resulta, en consecuencia directo afirmar que dada la base de datos experimentales, (incompleta por definición), los valores de los parámetros cálculados son necesariamente aproximados y deben ser tratados con precaución en cálculos de valores de esperanza de momenta magnético, cuadrupolar eléctrico y dipolar eléctrico-vibrónico. La inclusión de parámetros adicionales, tales como espín correlacionados de campo cristalino (SCCF) y otros de interacción de configuraciones, requieren de ajustes "engorrosos". Para una serie de cálculos de niveles energías en sistemas del tipo elpasolitas estequiométricas, la desviación cuadrática media se mueve en el rango de 0 cm⁻¹ a 40 cm⁻¹. De igual forma, en general se aprecia que la ordenación relativa de los niveles de energías para distintos iones en cristales del tipo elpasolitas se reproducen razonablemente, con excepción de aquellos niveles caracterizados por términos espectroscópicos del tipo $[\nu^{(2S+1)}L_J]$, para valores altos del número cuántico de momentum angular total J. Nuestro esquema de trabajo, es

distinto al utilizado por estos autores, en el sentido que privilegiamos un modelo físico con un número relativamente pequeño de parámetros a ser ajustados de los datos experimentales, sacrificando la "aparente precisión del modelo", en cuanto al ajuste de la desviación cuadrática media. De esta forma, aceptamos como razonable un modelo en el cual el orden relativo de los niveles de energías se reproduzca en términos generales, optimizando las diferencias de energías entre niveles consecutivos. Nuestro criterio consiste simplemente en privilegiar el sentido físico de los parámetros y sus tendencias en una familia de cristales estequiométricos a lo largo de la primera serie de transición interna, más que el enfoque de una minización forzada de la desviación cuadrática media.

Nuestro esquema sufre de una serie de imprecisiones que es preciso levantar, incorporando modelos y métodos de cálculo que consideren interacciones de largo alcance (básicamente responsables de la dispersión de los modos de simetria τ_{1u}) y de corto alcance (modelo mixto del tipo valencial generalizado y del tipo Urey-Bradley). Para este sistema, los cálculos realizados por Richardson y colaboradores[1,14,15,19-21], dan origen a un conjunto de niveles energéticos, caracterizados por desviación cuadrática media pequeña, para el rango de energías comprendido entre el estado fundamental y estados excitados hasta 26.500 cm⁻¹. Utilizando las funciones propias derivadas de este proceso de optimización, estos autores procedieron a la determinación de momenta magnéticos, obteniendo un acuerdo bastante razonable con los valores experimentales. Esta elpasolita clorada de Er(+3) es interesante, por cuanto es probablemente el primero de los upconverter estequiométrico, reportado en la literatura [13,30,48]. Adicionalmente, existen valores experimentales para las llamadas "spin-lattice relaxation rates"[32].

El método vibrónico combinado de campo cristalinopolarización de ligandos (VCF-LP) y sus aplicaciones a este sistema de Er(+3) será ilustrado, en esta sección con el proposito de introducir al lector a cálculos explícitos en sistemas complejos y de esta forma, explicitar las fortalezas y debilidades del modelo. Algunas aproximaciones a este problema han sido publicadas y para estos efectos, el lector es invitado a revisar las referencias [2,10,26,27,37,42,49]. En trabajos previos, hemos estudiado las emisiones

$$\left| \begin{pmatrix} 4 I_{13/2} \end{pmatrix} \Gamma_k \right\rangle \rightarrow \left| \begin{pmatrix} 4 I_{15/2} \end{pmatrix} \Gamma_l \right\rangle.$$

De igual forma, existe una cantidad importante de datos experimentales recientes, para este sistema con referencia también a las emisiones

$$\left| \left({}^{4}S_{3/2}
ight) \Gamma_8 \right\rangle
ightarrow \left| \left({}^{4}I_{15/2}
ight) \Gamma_n
ight
angle$$

$$\left({}^{4}F_{9/2} \right) \Gamma_{k} \right\rangle \rightarrow \left| \left({}^{4}I_{15/2} \right) \Gamma_{l} \right\rangle$$

y en sistemas del tipo $Cs_2NaErCl_6$ y $Cs_2LiErCl_6$ a temperaturas inferiores a 10 K [10,18]. En unos trabajos previos,

Rev. Mex. Fis. 51 (4) (2005) 330-348

y

realizados en nuestro grupo, hemos publicado estudios teóricos exploratorios con relación a las emisiones

$$|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma_{n}\rangle$$

y en el cristal puro de Er(+3), en los cuales hemos propuesto una cascada para el decaimiento radiativo, la cual es capaz de explicar razonablemente los valores observados de las fuerzas del oscilador global para estas emisiones [37]. Estas emisiones son notables desde un punto de vista científico, por cuanto las intensidades espectrales observadas, en principio corresponden a superposiciones de varias excitaciones y en consecuencia la validación del modelo y de la estrategia de cálculo es fundamental.

Los resultados experimentales y sus asignaciones deben ser consideradas con cautela [28]. Al pasar, realicemos algunos comentarios adicionales con relación a la teoría del acoplamiento vibrónico y sus aplicaciones a estos sistemas complejos. Cálculos realistas significan introducir nuevos modelos en dinámica de cristales acompañados de trabajos experimentales ambiciosos, de modo de agrandar la base de datos experimentales.

Si consideramos, una aproximación de 7-átomos para el sistema, despreciando acoplamientos entre las vibraciones internas y externas, concluimos que los 15-grados de libertad vibracionales para los "clusters" del tipo se transforman de acuerdo a la representación :

$$\Gamma = \alpha_{1g} (\nu_1) + \varepsilon_g (\nu_2) + 2\tau_{1u} (\nu_3, \nu_4) + \tau_{2g} (\nu_5) + \tau_{2u} (\nu_6).$$

A esta altura de la discusión es preciso aclarar algunos conceptos y para tales efectos, referimos al lector a los articulos de Lent [39], Ning y colaboradores [40] en los cuales se lleva a cabo una discusión con relación a las coordenadas de simetría para estructuras que, basicamente pueden a nivel de una celda de rerpesentación mínima del sistema ser representadas por la Fig. 1.

En particular, el artículo de Lentz [39], se refiere a estructuras del tipo $A_3B'X_6$ y $A_2BB'X_6$. En este modelo se introdujeron un total de 10-constantes de fuerzas de modo de obtener una representación, muy aproximada de los diversos modos normales de vibración.

Para una estructura del tipo Cs₂NaErCl₆ y con la información de la Fig. 1, concluimos que las dimensiones de los distintos bloques de simetria son: $\alpha_{1g} (1 \times 1)$, $\varepsilon_g (1 \times 1)$, $\tau_{1g} (1 \times 1)$, $\tau_{1u} (4 \times 4)$, $\tau_{2g} (2 \times 2)$ y $\tau_{2u} (1 \times 1)$.

La próxima etapa del cálculo consiste en la obtención de los modos normales de vibración para un campo de fuerzas de corto alcance dado. Con esta modelación del campo de fuerzas vibracional [50,51], se procede a resolver las ecuaciones de movimiento $|GF - \lambda E| = 0$. En esta ecuación secular, Grepresenta la matriz de energía cinética, F es la correspondiente a la energia potencial y los valores de

$$\lambda_i = \left(\frac{\overline{\nu}_i}{1.303, 16}\right)^2$$

se relacionan con los valores experimentales de las frecuencias de vibración. En nuestro caso, ver Fig.1, la celda unitaria presenta 10 núcleos, por lo tanto el número de grados de libertad vibracionales es 24, lo cual en nuestro caso corresponde a los modos normales asociados a combinaciones lineales de las coordenadas de simetría $S_i : i = 1 - 10$, ver Apéndice 1. De acuerdo a la Ec. (2), las coordenadas de simetría impares frente a la inversión son para las especies de simetria τ_{1u} (S_6, S_7, S_8, S_9) y τ_{2u} (S_{10}). En este punto de la discusión, es importante señalar que el modelo de 7-átomos sugiere, por definición que el acoplamiento entre las vibraciones internas y las externas es marcadamente pequeño o despreciable.

En conformidad con el trabajo de Lentz [39], esta aproximación sugiere las siguientes correspondencias:

$$\begin{split} S_6 &\leftrightarrow S \mbox{ (streching, } \tau_{1u}, \nu_3) \ , \ S_7 &\leftrightarrow S \mbox{ (bending, } \tau_{1u}, \nu_4) \\ & \mbox{ y } \quad S_{10} \leftrightarrow S \mbox{ (bending, } \tau_{2u}, \nu_6) \ . \end{split}$$

En el modelo aproximado, es costumbre en la literatura, realizar nuevas re-asignaciones en los sub-índices de las coordenadas de simetría de modo de preservar la convención de los espectroscopistas. En efecto, utilizaremos la nomenclatura siguiente: $S_{6t} \rightarrow S_{3t}, S_{7t} \rightarrow S_{4t}$ y $S_{10t} \rightarrow S_{6t}$ con lo cual las transformaciones adoptan la forma: $S_{3t} = L_{33}Q_{3t} + L_{34}Q_{4t}$, $S_{4t} = L_{34}Q_{3t} + L_{44}Q_{4t}$ y finalmente, $S_{6t} = L_{66}Q_{6t}$, donde: t = a, b, c.

Aplicación a mecanismos de intensidades en el sistema Cs₂NaErCl₆

En trabajos recientes, realizados en nuestro laboratorio [10,26,27,37,41,42], hemos continuado con nuestros esfuerzos tendientes a la comprensión y racionalización de intensidades espectrales para sistemas cúbicos, involucrando iones pesados y en consecuencia, con correcciones relativistas importantes. Son diversos los sistemas estudiados y éstos análisis nos han permitido realizar trabajos exhaustivos, observando con cuidado las ventajas y limitaciones de diversos modelos y métodos de cálculo.

Un trabajo reciente de Navarro [37] fue dedicado a sistemas del tipo elpasolitas, estequiométricas y cloradas de Er(+3), en el grupo espacial Fm3m. Estos cálculos fueron realizados en la aproximación de 7-átomos y, nuestra atención se focalizó en el espectro de emisión de esta elpasolita y en particular con referencia a las emisiones

$$\begin{split} \left| \begin{pmatrix} ^{4}I_{13/2} \end{pmatrix} \Gamma_{l} \right\rangle & \rightarrow \left| \begin{pmatrix} ^{4}I_{15/2} \end{pmatrix} \Gamma_{k} \right\rangle + \nu_{m} \\ & \mathbf{y} \quad \left| \begin{pmatrix} ^{4}S_{3/2} \end{pmatrix} \Gamma_{8} \right\rangle \rightarrow \left| \begin{pmatrix} ^{4}I_{15/2} \end{pmatrix} \Gamma \right\rangle + \nu_{m}, \end{split}$$

en el cristal Cs2NaErCl6.

La riqueza de los datos experimentales, obtenidos de los espectros de absorción y de emisión permitiron, entre otros autores a Tanner y colaboradores [4], llevar a cabo una identificación y asignación, relativamente razonable para un con-

junto de alrededor de 43 niveles energéticos correspondientes a los estados permitidos de más baja energía. Una reinvestigación de los espectros de absorción para estos cristales, permitió la asignación espectroscópica de a lo menos siete niveles adicionales de energías, al igual que tres asignaciones adicionales tentativas para niveles excitados. Mayores detalles han sido acumulados, comparando los espectros Raman y de luminiscencia para sistemas del tipo Cs2NaErCl6 y Cs2LiErCl6, a temperaturas inferiores a los 10 k. Es interesante señalar que el valor del parámetro de red a0, para el sistema Cs2LiErCl6, es a lo menos un 2,4 % menor que el correspondiente a la elpasolita Cs2NaErCl6. De igual forma, sabemos que el comportamiento vibracional para estos dos sistemas difiere considerablemente [52], lo cual nos conduce a preguntarnos sí el campo estático de campo cristalino que experimentan los iones Er(+3), en estos dos cristales anfitriones es similar o distinto?. Para efectos ilustrativos y de completitud, el lector es referido a los espectros de luminiscencia a 20 K en el rango de energías entre 18.280 y 17.660 en cm-1, correspondiente a la transición $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle + \nu_{m}$ para los sistemas Cs2NaErCl₆ y Cs2LiErCl₆ [4]. Para estos sistemas, el ajuste de parámetros ha sido realizado por estos autores, siguiendo la estrategia que se indica a continuación: (1)Para los dos cristales los siguientes parámetros; $\alpha = 15,90$, $\beta = -632, \gamma = 2017, T^2 = 300, T^3 = 48, T^6 = -342,$ $T^7 = 214, T^8 = 449, M^0 = 4,5 \text{ y } P^2 = 667, \text{ en unida-}$ des cm-1, se han mantenido constantes. (2) En ambos cristales, indica el número de niveles de energías utilizados en el procedimiento de optimización matemática y σ es la desviación cuadrática media.

El ajuste realizado por estos autores indica que los valores optimizados de los parámetros de campo cristalino, con interacción de configuraciones para estas elpasolitas conducen a valores muy parecidos entre sí. El lector es invitado a revisar la Tabla 15 del trabajo de Tanner y colaboradores [4] si se desea analizar las bondades y limitaciones de estos enfoques y modelos que utilizan una sobre-parametrización, la cual a nuestro juicio oscurece tanto la fisica como la quimica del problema que se desea entender.

TABLA I. Parámetros optimizados para Er(+3) en las elpasolitas de

Cs2NaErCl6 y Cs2LiErCl6				
Parámetro	$Cs_2NaErCl_6$ N1	$Cs_2NaErCl_6$ N2	$Cs_2NaErCl_6$ L1	
E_{avg}	35.268 (19)	35.282 (29)	35.279 (27)	
F^2	97.273 (55)	97.417 (79)	97.390 (74)	
F^4	69.131 (60)	69.161 (65)	69.198 (61)	
F^6	48.340 (69)	48.889 (101)	48.810 (94)	
ξ	2.362 (8)	2.358 (7)	2.359(7)	
B_{0}^{4}	1.492 (36)	1.374 (34)	1.348(32)	
B_{0}^{6}	163 (21)	174(18)	165 (17)	
N	41	26	26	

14,9

18,4

σ

En un trabajo posterior, Crooks y colaboradores [28], utilizaron mediciones de los espectros de absorcion a 10 K, para la elpasolita, Cs2NaErCl6, en el rango de energías comprendido entre los 6.000 y 26.000 cm⁻¹. De acuerdo a estos autores, empleando intensidades absolutas de líneas asociadas a diversas excitaciones electrónicas sería posible hacer predicciones con relación a las fuerzas del oscilador del tipo dipolo eléctrico (mecanismo vibrónico) y de los parámetros intrínsicos de intensidades $A_t^{-\lambda}$ [7], para lo cual emplearon un conjunto de 60 excitaciones electrónicas permitidas por un mecanismo vibrónico. Del análisis de los espectros electrónicos para estos sistemas, es posible inferir que, el así llamado "efecto, Jahn-Teller" no juega un rol de importancia para estos sistemas cristalinos. Recordemos que este cálculo, tiene como sustento el modelo de superposición de Newman [22-25] y su generalización a un modelo vibrónico, fue realizada pioneramente por Richardson y Reid [3], con referencia al sistema UCl6⁻. Algunas conclusiones de esta aplicación a la elpasolita Cs2NaErCl6, derivadas del trabajo de Crooks y colaboradores, se pueden resumir de la forma que se indica:

- a) La correlación resultante entre los valores observados y los ajustados para las intensidades vibrónicas de las diversas lineas del espectro de absorción, sugiere que resulta imposible ajustar todos los "picos de absorcion" del espectro como también es preciso reconocer que asignaciones únicas y no ambiguas de estos son ciertamente impracticables.
- b) Los parámetros del modelo vibrónico generalizado de Newman; A_t^{-λ}, obtenidos por este procedimiento de ajuste para las transiciones vibrónicas estudiadas, son en términos generales "consistentes", con la notable excepción del parámetro A₅⁻⁶, asociado a la deformación del ángulo α(Cl-Er-Cl) de simetria τ_{2u}. Los signos son opuestos a los correspondientes a los modos ν₃ y ν₄ del "cluster" ErCl₃⁻⁶.
- c) No obstante que los valores estimados para estos parámetros son "inconsistentes", sus signos asociados, los cuales suministran información con relación a la contribución dominante en el acoplamiento vibrónico, puden ser "solo determinados" con algún grado de precisión.
- d) Con relación al momento de transición dipolar eléctrico: La contribución estática (campo cristalino) proporciona signos negativos para los parámetros A₁⁻², A₅⁻⁴ y A₅⁻⁶ y signos positivos para A₃⁻², A₃⁻⁴ y A₇⁻⁶. En cambio, para la contribución dinámica al momento de transición dipolar eléctrico total (polarización de ligandos), los signos de A₃⁻²y A₇⁻⁶ e seperan que tengan signos negativos y en cambio con signo positivo para A₅⁻⁴. Adicionalmente, obedecen la regla empírica, la cual nos sugiere que los parámetros A_{λ+1}⁻¹, deben estar de acuerdo con los correspondientes al modelo de

Rev. Mex. Fis. 51 (4) (2005) 330-348

13,9

polarización de ligandos, en cambio para los parámetros $A_{\lambda+1}^{-\lambda}$ deben seguir las tendencias observadas en campo cristalino.

e) El modelo de superposición de Newman, predice que los parámetros de intensidades caracterizados por t = λ son nulos. En todo caso, cuando son incluidos en el procedimiento de ajuste numérico, se concluye que sus valores son a lo menos dos ordenes de magnitud menores que los parámetros para los cuales t = γ ± 1 y, en consecuencia son generalmente ignorados.

A modo de conclusión, Ning y colaboradores [40], concluyen que la aplicación de este modelo generalizado de Newman al sistema ErCl_6^{3-} en el cristal anfitrión $\text{Cs}_2\text{NaErCl}_6$, produce para los parámetros de intensidades un ajuste razonable, para los tres falsos orígenes del "cluster" ErCl_6^{3-} . Los signos de los parámetros de intensidades $A_{t=\gamma\pm1}^{-\lambda}$, están de acuerdo con las predicciones con la notable excepcion del signo correspondiente al parámetro A_5^{-6} asociado al modo normal de vibración ν_6 . De acuerdo a estos autores, el "éxito" del modelo sugiere que los modos de vibracion del "cluster" son los que efectivamente juegan un rol decisivo en la estimación de intensidades, reportados por estos autores se indican en la Tabla II.

Como señalamos anteriormente, una situación de gran interés para nuestro grupo, dice relación con la emisión $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle$, en el cristal puro, Cs₂NaErCl₆. Al respecto, el estudio experimental realizado por Crooks y colaboradores [28], entrega valores para las fuerzas del oscilador en absorción a temperaturas de 20 K. Para los modos normales ν_3 y ν_4 del "cluster", se entrega la frecuencia correspondiente al modo transversal (TO-mode) en cada uno los casos. En el caso del modo ν_6 , el valor corresponde al modo zone boundary (ZB). Con relación al análisis vibracional y detalles experimentales, sabemos que en la aproximación de 7-núcleos, la representación vibracional es expresable de la forma que se indica: $\Gamma = \alpha_{1g} (\nu_1) + \varepsilon_g (\nu_2) + 2\tau_{1u} (\nu_3, \nu_4) +$ $\tau_{2g}(\nu_5) + \tau_{2u}(\nu_6)$. Es directo observar que los modos normales impares son promotores, en carácter en los mecanismos vibrónicos de inten-

TABLA II. Parámetros intrínsicos de intensidades para el ión complejo ErCl₆³⁻. (Cada uno de los modos normales de vibración ha sido ajustado individualmente. Los valores se entregan en unidades de 10⁻¹¹cm⁻¹. El signo "+" se usa, cuando no existe valor observado).

Parámetro	ν_3	ν_1	ν_6
A_{1}^{-2}	-10.9	-8.23	+
A_{3}^{-2}	-27.0	-1.0	-52.6
A_{3}^{-4}	62.8	77.1	16.7
A_{5}^{-4}	11.0	11.57	25
A_{5}^{-6}	-6.7	-20.9	6.9
A_{7}^{-6}	-16.4	-4.9	-9.9

Compuesto	ν_1	ν_2	ν_3	ν_{4}	ν_5	ν_6
Cs ₂ NaErCl ₆ (300 K)	287	-	<mark>253</mark> , 5	118	129, 5	-
Cs ₂ NaErCl ₆ (10-40 K)	298	236	268	116	126	86
Cs ₂ LiErCl ₆ (300 K)	282	(219 <i>t</i>)	-	-	140(4)	-
Cs ₂ LiErCl ₆ (10 K)	-	-	261	124	-	102
Rb ₂ LiErCl ₆ (10 K)	-	-	266	125	-	104

TABLA IV. Cocientes de absorbancias integradas para la estructura vibrónica de las transiciones electrónicas en la elpasolita

Modo	Número de onda	% de la absorbancias total Integrada y	N
		desviación estándar	
$\nu_3(LO)$	286	15.6 (3,3)	
$\nu_3(TO)$	259	49.4 (4,5)	35
$\nu_3(ZO)$	244	35.0 (4,8)	
$\nu_1(LO)$	131	17.6 (2,7)	
$\nu_4(TO)$	108	66.4 (9,3)	29
$\nu_4(ZB)$	116	16.0 (5,3)	
$\nu_{6}(ZC)$	86	67.3 (4,2)	
$\nu_6(ZB)$	78	32.7 (4,2)	25

N: número de transiciones vibrónicas distintas para las cuales se realizan mediciones experimentales

sidades espectrales. Los números de ondas de modos normales internos del ión complejo ErCl_6^{3-} , determinados de mediciones en espectroscopía Raman e Infrarrojo, a temperatura ambiente se reportan en la Tabla III, a continuación. En esta misma tabla, las frecuencias determinadas por espectroscopía Raman para ν_1, ν_2 y ν_5 , son también reportadas.

El experimento indica que cada uno de los orígenes vibrónicos del espectro electrónico está constituido por varios picos y en consecuencia la forma de asignarlos está abierta al debate académico. Así, en la región de los orígenes vibrónicos ν_3 y ν_4 , en cada uno de los casos aparecen tres bandas, en cambio en la región en la cual aparece ν_6 se manifiestan dos bandas. De esta forma, las absorbancias integradas relativas de las componentes de cada uno de los orígenes vibrónicos son muy similares para transiciones que involucran distintos multipletes y estados electrónicos terminales de distinta simetría.

De la Tabla III, es posible apreciar lo siguiente: el número de ondas para la vibración totalmente simétrica ν_1 aumenta, para la elpasolita Cs₂NaErCl₆, para una contracción del cristal, Δa estimada entre 5 y 10 pm. Un comportamiento similar se aprecia para el modo ν_3 , sin embargo una disminución en

el número de ondas debería apreciarse para un descenso de la temperatura desde 300 K a 40 K, sí escogiésemos las dos componentes vibrónicas de menor energía para asignarlas a los modos ν_3 , de las ramas del tipo TO y LO.

Acá lo realizado para la confección de la Tabla III, es asignar los *peaks* en las vecindades de 259 cm⁻¹ y 268 cm⁻¹ a las componentes TO y LO del modo ν_3 respectivamente y, adicionalmente aceptamos algún grado de contribución a la intensidad proveniente del "zone boundary" - ZB- modo normal de vibración totalmente simétrico ν_1 . La componente TO es más intensa que la LO y esta última presenta una forma característica de una banda triangular. Adicionalmente, las componentes TO y LO de ν_4 se asignan a las frecuencias 108 cm⁻¹ y 131 cm⁻¹, respectivamente con una contribución del modo ZO de ν_5 . Las frecuencias asociadas a los números de ondas ν_3 y ν_4 son calculadas a partir de la relación:

$$\nu_i^2 = \frac{1}{3} \left[2 \left\{ \nu_i^2 \left(TO \right) \right\} + \nu_i^2 \left(LO \right) \right].$$

La tercera componente observada en la región del origen vibrónico, en la vecindad de 244 cm⁻¹ se asigna al modo ZB, el cual aparece muy cercano al número de ondas del modo normal ν_2 , activo en Raman. Dos componentes son observadas en la región del modo ν_6 , en el espectro electrónico de la elpasolita Cs₂NaErCl₆. El más intenso es asignado al llamado modo ν_6 , "zone center mode". De igual forma, al observar las frecuencias informadas en la Tabla III, apreciamos que los números de ondas asociados a los modos normales de frecuencias ν_4 y ν_6 , aumentan desde la elpasolita Cs₂NaErCl₆ a la correspondiente a la estructura Cs_2 LiErCl₆.

341

La correcta asignación de los falsos orígenes es de importancia para esquemas parametrizados, por cuanto siguiendo este procedimiento se determinan las absorbancias integradas para estos modos normales impares del ión complejo ErCl₆³⁻. Los valores de los cuocientes de las absorbancias integradas para la estructura electrónica de las transiciones de la elpasolita Cs₂NaErCl₆, se entregan para efectos ilustrativos en la Tabla IV, a continuación.

Para efectos ilustrativos de los aspectos mecanísticos, que deseamos enfatizar en este artículo, entregamos las fuerzas del oscilador para una serie de transiciones vibrónicas en los cuales participan distintos estados terminales y los respectivos modos normales impares de vibración del *cluster*, $ErCl_6^{3-}$. Los valores entregados en esta tabla, fueron reportados por Crooks y colaboradores [28] y corresponden a absorciones medidas a la temperatura de 20 K.

TABLA V. Fuerza del oscilador (Cs₂NaErCl₆). Absorciones desde el estado $\left| \begin{pmatrix} 4 I_{15/2} \end{pmatrix}^{\alpha} \Gamma_8 \right\rangle$

No. de Onda (cm ⁻¹)	Nivel vibrónico Final	Fuerza del	Osc. $f_{ij}/10^{-8}$	
		Observado	Cálculado	
6579	$({}^{4}I_{13/2})\Gamma_{6} + \nu_{6}$	0.0274	0.043	
6600	$\Gamma_6 + u_4$	0.083	0.076	
6788, 6792	$b\Gamma_8, b\Gamma_7 + \nu_1$	< 0.0246	(0, 14)	
6942, 6946	$b\Gamma_8, b\Gamma_7 + \nu_6$	0.240	(0.14)	
10250	$({}^{4}I_{11/2})\Gamma_{6} + \nu_{6}$	0.216	0,13	
10271	$\Gamma_6 + \nu_4$	< 0.17	0.1	
10318	$b\Gamma_8, b\Gamma_7 + \nu_6$	0.152	0.11	
10340	$b\Gamma_8, b\Gamma_7 + \nu_4$	0.0990	0.079	
10493	$b\Gamma_8, b\Gamma_7 + \nu_3$	0.620	1.01	
12440	$({}^{4}I_{11/2}) a\Gamma_{8} + \nu_{6}$	0.156	0.12	
12463	$a\Gamma_8 + \nu_4$	0.082	0.063	
12507	$\Gamma_6 + \nu_6$	0.013	0.007	
12527	$\Gamma_6 + \nu_4$	0.0054	0.0091	
12585	$b\Gamma_8 + \nu_6$	0.058	0.063	
12606	$b\Gamma_8 + \nu_4$	0.121	0.10	
12680	$\Gamma_6 + \nu_3$	0.042	0.090	
12759	$b\Gamma_8 + \nu_3$	0.068	0.24	
15236	$({}^4F_{9/2}) a\Gamma_8 + u_6$	0.411	0.19	
15259	$a\Gamma_8 + \nu_4$	0.040	0.0042	
15330	$b\Gamma_8 + \nu_6$	0.562	0.548	
15332	$b\Gamma_8 + \nu_4$	0.722	0.61	
15412	$a\Gamma_8 + \nu_3$	0.049	0.0016	
15422	$\Gamma_6 + \nu_6$	< 0.025	0.39	
15443	$\Gamma_6 + \nu_1$	0.307	0.21	

R. ACEVEDO, A. SOTO-BUBERT, T. MERUANE Y G. NAVARRO

15505	$b\Gamma_8 + \nu_3$	0.609	0.65							
15596	$\Gamma_6 + u_3$	0.454	0.36							
18348	$({}^4S_{3/2})\Gamma_8+ u_6$	0.279	0.81							
18370	$\Gamma_8 + u_4$	0.929	0.848							
18522	$\Gamma_8 + \nu_3$	0.519	0.49							
19092	$({}^{2}H_{11/2}) a\Gamma_{8} + \nu_{6}$	3.86	5.9							
19153	$\Gamma_7 + \nu_4$	0.68	1.1							
19216	$b\Gamma_8 + \nu_6$	14.33	17.0							
19276	$\Gamma_6 + \nu_4$	6.94	7.63							
19390	$b\Gamma_8 + \nu_3$	4.94	5.49							
19428	$\Gamma_6 + \nu_3$	4.37	4.21							
20459	$({}^4F_{7/2})\Gamma_6 + u_6$	0.47	0.29							
20480	$\Gamma_6 + \nu_4$	0.44	0.51							
20529	$\Gamma_8 + \nu_6$	0.85	0.44							
20551	$\Gamma_8 + \nu_4$	0.38	0.59							
20570	$\Gamma_7 + \nu_4$	0.059	0.075							
20632	$\Gamma_6 + \nu_3$	0.766	0.68							
20703	$\Gamma_8 + \nu_3$	0.233	0.12							
20703	$\Gamma_7 + \nu_3$	0.085	0.097							
22139	$({}^4F_{5/2})$ $\Gamma_8 + u_6$	0.175	0.13							
22160	$\Gamma_8 + \nu_4$	0.068	0.017							
22219	$\Gamma_7 + \nu_6$	0.013	0.018							
22240	$\Gamma_7 + \nu_4$	< 0.007	0.002							
22312	$\Gamma_8 + u_3$	0.150	0.059							
22392	$\Gamma_7 + \nu_3$	0.016	0.0073							
22527	$({}^4F_{3/2})$ $\Gamma_8 + u_6$	0.078	0.041							
22250	$\Gamma_8 + \nu_4$	0.185	0.11							
22701	$\Gamma_8 + \nu_3$	0.264	0.24							
24513	$({}^{4}G_{9/2}) a\Gamma_{8} + \nu_{6}$	0.18	0.41							
24546	$\Gamma_6 + \nu_6$	0.22	0.23							
24565	$\Gamma_6 + \nu_4$	0.28	0.67							
24605	$b\Gamma_8 + \nu_6$	0.16	0.06							
24627	$b\Gamma_8 + \nu_4$	0.20	0.10							
24686	$a\Gamma_8 + \nu_3$	0.11	0.118							
24720	$\Gamma_6 + \nu_3$	0.054	0.052							
24779	$b\Gamma_8 + \nu_3$	0.53	0.42							
26185	$(^{2}H_{11/2}) a\Gamma_{8} + \nu_{6}$	6.27	9.50							
26206	$a\Gamma_8 + \nu_4$	7.80	8.00							
26272	$\Gamma_7 + \nu_6$	7.74	10.0							
26292	$\Gamma_7 + \nu_4$	0.49	0.32							
26358	$b\Gamma_8 + \nu_3$	2.90	2.95							
26443	$b\Gamma_8 + \nu_6$, $\Gamma_7 + \nu_1$	20.70	(23, 7)							
26465	$b\Gamma_8 + \nu_4$	9.90	9.96							
26498	$\Gamma_6 + \nu_6$	38.16	34.00							
26521	$\Gamma_6 + u_4$	10.60	9.84							
26617	$b\Gamma_8 + \nu_3$	7.26	6.60							
26672	$\Gamma_6 + \nu_3$	8.19	8.48							
ABLA VI. Datos de energia vibracional (cm-1) para a 300-10 K. Modo de energia grupo de celda unitaria (S _i ,i=1-10;cm ⁻¹)										
--	------------------	------------------	-------	-----------	-----------------	------------------	------------------	------------------	-----------------	-----------------
Ln	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}
Pr	-		2	20	48 ^a	262ª	111ª	219ª	59 ^a	89 ^a
Eu	288 ^b	212 ^b	(20)	132^{b}	(50)	263ª	119 ^a	(215)	(59)	95 ^a
Calc.	274	194	20	145	57	293	105	178	59	101
Er	285	219	-	140	52	261 ^b	124 ^b	209 ^b	-	102^{b}
Yb	288	-	-	144	56	259ª	129^{a}	215^{a}	-	109^{a}
Tm	289	220	-	146	-	-	-		-	-

TABLA VII. Datos de energia vibracional (cm⁻¹) para M_2ALnF_6 puro y $M_2AYF_6:Ln^{3+}$ a 300-10 K. Modo de energia grupo de celda unitaria ($S_{t,i}$ =1-10;cm⁻¹)

M, A, Ln	Referencia	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}
Cs, K, Pr	[38]	456 ^a	352^a	(50)	174ª	53ª	(370)	(137)	(170)	72ª	98ª
Cal		457	355	49	172	52	376	154	201	63	91
Cs, K, Y:Eu	[18]		100	-	-	-	372ª	139ª	174ª	-	99ª
Cs, K, Gd	[8]	473	380	1	185	-	372	140	165	72	5
Cs, K, Yb	T,[32]	490 ^a	370	-	195	54ª	413 ^a	153 ^a	174^{a}	72^{a}	115ª
Cs, K, La	[8]	443	334	122	123		357	130	170	65	
Cs, K, Y	[8]	476	382	-	194	-	412	160	200	75	-
Rb, K, Y	[39]	470	-	~	210	60	-	7 <u>-</u> 5			
Cs, Na, Tm	Т	473	373	(50)	203	65 ^{a,b}	401ª	173ª	249ª	92 ^{a,b}	137ª
Cal		468	362	49	218	68	397	178	238	79	134
Cs, Na, Y:Eu	[40]	-	-	-	-	65 ^a	373ª	162^a	252^{a}	55 ^{a,b}	123^{a}
Cs, Na, Y	[40]	467	363	-	200	69	-	-	220	-	
Cs, Na, Tb	[41]	468	362								
Rb, Na, Eu	[42]	-	-	-	127	-	388	150	140 ^b	72	110
Rb, Na, Ho	[43]	498 ^a	396ª	50	205ª	75ª	-	$\sim - 2$	-	-	-
Rb, Na, Tm	[43, 44]	500	404	(50)	210	76	420	161	222	87	125
Cal		500	402	50	213	76	423	158	227	84	124

Con relación a estos sistemas del tipo elpasolitas estequiométricas del tipo Cs₂NaLnCl₆, entregamos datos de frecuencias vibracionales, ver Tabla VI, correspondientes a las coordenadas de simetría ($S_i : i = 1 - 10$), en los cuales hemos remplazado el contra-ión Sodio(+1) por Litio(+1).

En este trabajo excepto para Ln = Tm, los valores que se reportan entre paréntesis fueron supuestos, para llevar a cabo el ajuste. Adicionalmente, los valores calculados (cal) han sido redondeados al entero más próximo. Los valores a temperatura ambiente excepto ^a20K, ^b85K.

De igual forma en la Tabla VII, entregamos una serie bastante completa de datos experimentales para una serie importantes de compuestos del tipo elpasolitas estequiométricas.

Los valores entre paréntesis, fueron supuestos para el refinamiento del cálculo. Los valores calculados (calc.) están redondeados al entero más próximo ^a120 - 10 K, ^bdato exprimental incierto. En un número importante de ocasiones, hemos desarrollado ideas con relación a modelos vibrónicos en la aproximación de 7-núcleos, todo lo cual significa despreciar el acoplamiento entre las vibraciones internas y las externas. En todo caso por razones de completitud en un modelo de campo de fuerzas aproximado de 10-parámetros, es posible adelantar desde un punto de vista cualitativo la relevancia de este acoplamiento. Al mismo tiempo, es preciso señalar en forma enfática que estas modelaciones realizadas por Ning *et al.* [40], siguiendo el trabajo pionero de Lentz [39], en el caso de la elpasolita Cs₂Na Pr Z₆, donde Z=F¹⁻, Cl¹⁻, Br¹⁻, las interacciones de corto alcance conducen a una matriz L (matriz de las amplitudes de vibración: S = LQ, para los modos normales impares del bloque de simetría τ_{1u} de la forma que se indica en la Tabla VIII, que se entrega a continuación:

	S_6	S_7	S_8	S_9
Cs2NaPrCl6 (300 K)				
$S_6 (249 \text{ cm}^{-1})$	0,8745	0,338	0,4839	0,0075
$S_7 \ (104 \ {\rm cm}^{-1})$	-0,0731	0,9169	0, 326	0,2186
$S_8 (168 \text{ cm}^{-1})$	-0,076	-0,1848	0,9387	0,281
$S_9 (53 \text{ cm}^{-1})$	-0,0273	0,0562	0,0922	0,9938
Cs2NaPrBr6 (300-20 K)				
$S_6 (183 \text{ cm}^{-1})$	0,7072	0, 1897	0,6516	0,1982
$S_7 (72 \text{ cm}^{-1})$	-0,1484	0,9111	0,2891	0,2537
$S_8 (150 \text{ cm}^{-1})$	-0,2834	-0,1543	0,9382	0,1249
$S_9 (44 \text{ cm}^{-1})$	-0,0368	-0,122	0,0668	0,9896
$Cs_2NaTmF_6(300-10 \ K)$				
$S_6 (401 \text{ cm}^{-1})$	0,93	-0,144	0,263	-0,214

A esta altura de la discusión, es relevante señalar que los elementos de la matriz de amplitudes de vibración, reportados en la Tabla VIII, tienen un valor cualitativo importante, pero de validez restringida. Se previene al lector que las contribuciones de tipo coulómbico a la matriz dinámica no han sido consideradas y en consecuencia, será preciso realizar modificaciones importantes en futuros trabajos en dinámica de cristales para estos sistemas. Recordemos, al pasar que la dispersión observada para los modos de simetría impares de esta simetría se debe esencialmente a estas interacciones de largo alcance.

En cálculos vibrónicos previos, realizados en este laboratorio examinamos con detalle los espectros de emisión para la elpasolita clorada de Er(+3) en ambiente cúbico.

Las emisiones estudiadas, ver Refs. 27, 37 y 49 comprenden las emisiones $| ({}^{4}I_{13/2}) \Gamma_l \rangle \rightarrow | ({}^{4}I_{15/2}) \Gamma_k \rangle + \nu_m$ y $| ({}^{4}S_{3/2}) \Gamma_8 \rangle \rightarrow | ({}^{4}I_{15/2}) \Gamma \rangle + \nu_m$ para m = 3, 4, 6. Los resultados obtenidos, en el modelo de 7-átomos se indican a continuación en la Tabla IX.

En el caso de las emisiones:

$$|({}^{4}I_{13/2})\Gamma_{l}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma_{k}\rangle + \nu_{m},$$

los resultados obtenidos en el modelo de 7-núcleos es el que se indica a en la Tabla IX.

Los valores de intensidades espectrales observados son escasos [28] y se refieren a las siguientes transiciones vibrónicas (absorciones), que se indican en la Tabla X.

Es interesante comparar los valores de las Tablas IX y X. Adicionalmente, parece ser, poco sostenible, el que estos autores sean capaces de asignar e identificar transiciones electrónicas, tan cercanas en energías. Todo lo anterior, debe en consecuencia ser observado por el lector con cautela por cuanto las superposiciones de transiciones es altamente probable para este cristal. No obstante, nuestras predicciones teóricas, ver Tabla XI, indican que las fuerzas del oscilador globales son esencialmente correctas y con cautela podemos argumentar que el modelo de 7-núcleos que utilizamos en las Refs. 27, 37 y 49 goza de utilidad y es lo suficientemente flexible como para acomodar intensidades en este tipo de materiales de alta complejidad. Existe información experimental con relación a la absorción

$$|(^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |(^{4}I_{15/2})\Gamma\rangle + \nu_{m}$$

donde: m = 3, 4, 6. Del trabajo de Crooks y colaboradores [28], los valores experimentales se indican en la Tabla XI.

Para esta excitación electrónica, los espectros de luminiscencia para las elpasolitas $Cs_2NaErCl_6$ y $Cs_2LiErCl_6$, en la región de energías entre 17.660 y 18.280 cm^{-1} a la temperatura de 20 K, se entregan en la Ref [4]. Para este tipo de sistemas, existe evidencia empírica sólida, la cual indica que las transiciones electrónicas

$$|(^{4}I_{15/2}) a\Gamma_{8}\rangle \rightarrow |(^{4}S_{3/2})\Gamma\rangle + \nu_{m},$$

donde: $\Gamma = \Gamma_6, \Gamma_7, \ {}^{a}\Gamma_8, \ {}^{b}\Gamma_8, \ {}^{c}\Gamma_8$ corresponden a los "picos más intensos" de los espectros. Un análisis directo de los estados de multiplete involucrados (*SLJ*), nos conduce a una regla de selección estática del tipo: $\Delta J = 6$, lo cual en un cálculo directo como los realizados a la fecha nos entregaría una predicción de intensidad espectral asociada a esta excitación, en el rango de $10^{-10} - 10^{-12}$, es decir a lo menos dos órdenes de magnitud menores que el valor observado ($1, 73 \times 10^{-8}$). Para intentar la racionalización de estas intensidades espectrales, hemos sugerido que la emisión ocurre por medio de una cascada radiativa de la forma que se indica: $|(^4S_{3/2}) \Gamma_8 \rangle \rightarrow |(^4I_{11/2}) \Gamma' \rangle \rightarrow |(^4I_{15/2}) \Gamma \rangle$. Los resultados de nuestros cálculos, basados en este mecanismo de decaimiento radiativo se entregan en la Tabla XII.

TABLA IX. Distribución de intensidades vibrónicas relativas y fuerzas del oscilador completa para algunas transiciones vibrónicas seleccionadas

Transición Electrónica	$f(\nu_3): f(\nu_4): f(\nu_6)$	$f_{ij}/10^{-9}$
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow \Gamma_6\left(\frac{13}{2}\right)$	0.50 : 0.80 : 1.00	0.03
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow {}^b\Gamma_8\left(\frac{13}{2}\right)$	3.20:1.00:0.50	1.07
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow {}^b\Gamma_7\left(\frac{13}{2}\right)$	5.40:1.00:0.01	0.08
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow {}^a\Gamma_7\left(\frac{13}{2}\right)$	1.00:0.02:1.03	3.71
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow {}^a\Gamma_8\left(\frac{13}{2}\right)$	4.44 : 1.00 : 0.00	0.30
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow \Gamma_{6}\left(\frac{13}{2}\right)$	1.00:8.10:0.20	1.26
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow {}^{b}\Gamma_{8}\left(\frac{13}{2}\right)$	9.80 : 1.00 : 0.20	1.11
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow {}^{b}\Gamma_{7}\left(\frac{13}{2}\right)$	1.00:0.04:1.30	2.88
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow {}^{a}\Gamma_{7}\left(\frac{13}{2}\right)$	1.00:0.06:0.30	1.31
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow {}^{a}\Gamma_{8}\left(\frac{13}{2}\right)$	1.00:0.08:0.00	6.25
$\Gamma_7\left(\frac{15}{2}\right) \leftarrow \Gamma_6\left(\frac{13}{2}\right)$	1.00:0.01:0.01	0.16
$\Gamma_7\left(\frac{15}{2}\right) \leftarrow {}^b\Gamma_8\left(\frac{13}{2}\right)$	1.00 : 1.00 : 0.80	2.07
$\Gamma_7\left(\frac{15}{2}\right) \leftarrow {}^b\Gamma_7\left(\frac{13}{2}\right)$	0.01 : 1.00 : 0.01	0.05
$\Gamma_7\left(\frac{15}{2}\right) \leftarrow {}^a\Gamma_7\left(\frac{13}{2}\right)$	1.00: 2.40: 1.50	0.01
$\Gamma_7\left(\frac{15}{2}\right) \leftarrow {}^a\Gamma_8\left(\frac{13}{2}\right)$	7.50 : 0.00 : 1.00	4.10
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow \Gamma_6\left(\frac{13}{2}\right)$	0.50:0.80:1.00	0.03
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow {}^b\Gamma_8\left(\frac{13}{2}\right)$	3.20:1.00:0.50	1.07
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow {}^b\Gamma_7\left(\frac{13}{2}\right)$	5.40:1.00:0.01	0.08
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow {}^a\Gamma_7\left(\frac{13}{2}\right)$	1.00:0.02:1.03	3.71
$\Gamma_6\left(\frac{15}{2}\right) \leftarrow {}^a\Gamma_8\left(\frac{13}{2}\right)$	4.44:1.00:0.00	0.30
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow \Gamma_{6}\left(\frac{13}{2}\right)$	1.00 : 8.10 : 0.20	1.26
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow {}^{b}\Gamma_{8}\left(\frac{13}{2}\right)$	9.80 : 1.00 : 0.20	1.11
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow {}^{b}\Gamma_{7}\left(\frac{13}{2}\right)$	1.00:0.04:1.30	2.88
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow {}^{a}\Gamma_{7}\left(\frac{13}{2}\right)$	1.00:0.06:0.30	1.31
${}^{a}\Gamma_{8}\left(\frac{15}{2}\right) \leftarrow {}^{a}\Gamma_{8}\left(\frac{13}{2}\right)$	1.00:0.08:0.00	6.25
$\Gamma_7\left(\frac{15}{2}\right) \leftarrow \Gamma_6\left(\frac{13}{2}\right)$	1.00:0.01:0.01	0.16
$\Gamma_7\left(\frac{15}{2}\right) \leftarrow {}^b\Gamma_8\left(\frac{13}{2}\right)$	1.00 : 1.00 : 0.80	2.07
$\Gamma_7\left(\frac{15}{2}\right) \leftarrow {}^b\Gamma_7\left(\frac{13}{2}\right)$	0.01:1.00:0.01	0.05
$\Gamma_7\left(\frac{15}{2} ight) \leftarrow \ \ ^a\Gamma_7\left(\frac{13}{2} ight)$	1.00: 2.40: 1.50	0.01
$\Gamma_7\left(\frac{15}{2}\right) \leftarrow {}^{a}\Gamma_8\left(\frac{13}{2}\right)$	7.50 : 0.00 : 1.00	4.10

TABLE X.	Intensidades	vibrónicas	(*)	experimentales	a temper	a-
tura de 20	K					

Energia	Excitación	exp	calc
6579	$ a\Gamma_8 angle ightarrow \Gamma_6 angle+ u_6$	0.0274	0.043
6600	$ a\Gamma_8 angle ightarrow \Gamma_6 angle+ u_4$	0.0830	0.076
6788	$ a\Gamma_8 angle ightarrow b\Gamma_8 angle+ u_4$	< 0.246	(0, 14)
6792	$ a\Gamma_8 angle ightarrow b\Gamma_7 angle + u_4$	< 0.246	(0, 14)
6942	$ a\Gamma_8 angle ightarrow b\Gamma_8 angle + u_6$	0.240	(0, 14)
6946	$ a\Gamma_8 angle ightarrow b\Gamma_7 angle + u_6$	0.240	(0, 14)

(*): los valores indicados entre paréntesis no han sido utilizados en el ajuste numérico [28]

TABLA XI.

Energia	Excitación	exp	calc
18348	$ a\Gamma_8 angle ightarrow \Gamma_8 angle+ u_6$	0.279	0.81
18370	$ a\Gamma_8 angle ightarrow \Gamma_8 angle+ u_4$	0.929	0.,848
18522	$ a\Gamma_8 angle ightarrow \Gamma_8 angle + u_3$	0.519	0.49

-los valores de las fuerzas del oscilador deben ser multiplicadas por $1\times10^{-8}.$ -Intensidades vibrónicas (exp): 1.75 : 3.33 : 1.00

TABLA XII. Fuerza del oscilador e intensidad vibrónica relativa.

Para la emisión $\left|\binom{4}{3}S_{\frac{3}{2}}\right)\Gamma_8 \rightarrow \left|\binom{4}{1\frac{15}{3}}\Gamma\right\rangle$ en el cristal $Cs_2NaErCl_6$

 Expresión general para la fuerza del oscilador de cada origen individual vibrónico:

f_3	=1,085	i × 10	$^{11}\langle Q(\nu_3)\rangle$	$\rangle^2 \Delta \nu_{i,j}$	$(U_3L_{33} + U_4L_{43})^2$	
f_4	=1,085	× 10	$^{11}\langle Q\left(u _{4} ight)$	$\rangle^2 \Delta \nu_{i,j}$	$_{j}\left(U_{3}L_{43}+U_{4}L_{44}\right)^{2}$	2
f_5	=1,085	5 × 10	$^{11}\langle Q(\nu_6)\rangle$	$\rangle^2 \Delta \nu_{i,j}$	$(U_6L_{66})^2$	

b. Transiciones electrónicas: (Las representaciones irreductibles Γ_6 , Γ_7 , Γ_8 pueden ser etiquetadas como E', E'', U' de acuerdo a la notación de Millikan).

b.1 La emisión
$${}^4S_{\frac{3}{2}}U' \rightarrow {}^4I_{\frac{15}{2}}E'$$

Fuerza del oscilador:

$1.085 \times 10^{11} \langle Q(\nu_t) \rangle^2 \Delta \nu_t$:	t = 3	0,01269
	t = 4	0,02873
	t = 6	0.03948

Intermediario	f_3	f_4	f_6
$E'_{\frac{11}{2}}$	0.0007665	0.0006091	0.0000553
$E_{\frac{11}{2}}''$	0.0005926	0.0012842	0.0012199
$U_{rac{11}{2}}^{\prime a}$	0.0006510	0.0000804	0.0004896
$U_{\frac{11}{2}}^{\prime b}$	0.0005419	0.0010084	0.0008646
	0.0025520	0.0029821	0.0026294

$$f_3: f_4: f_6 = 1.00: 1.17: 1.03$$

Fuerza total del oscilador:

$$f = 1,566 \times 10^{-9}$$
. (en unidades de $(A_4)^2$
con $(A_4 = 0,000438e)$)

Rev. Mex. Fis. 51 (4) (2005) 330-348

b.2 La emisión ${}^{4}S_{3}U' \rightarrow {}^{4}I_{15}E''$

Fuerza del oscilador:

$$\begin{array}{ccccccc} 1,085\times 10^{11} \left< Q\left(\nu_t\right) \right>^2 \Delta\nu_t: t=3 & 0,01286 \\ & t=4 & 0.02911 \\ & t=6 & 0.03999 \end{array}$$
 Intermediario $f_3 & f_4 & f_6 \\ \hline E_{11}' & 0.0005414 & 0.0014992 & 0.0013997 \\ \hline E_{11}'' & 0.0016769 & 0.0014002 & 0.0022554 \\ U_{11}'' & 0.0034336 & 0.0308100 & 0.0141085 \\ U_{11}'' & 0.0016834 & 0.0530646 & 0.0057426 \\ & 0.0073353 & 0.0867740 & 0.0235062 \end{array}$

$$f_3: f_4: f_6 = 1,00:11,83:3,20$$

Fuerza total del oscilador:

$$f = 2,256 \times 10^{-8}$$
. (en unidades de $(A_4)^2$
con $(A_4 = 0,000438e)$).

b.3 La emisión ${}^4S_{\frac{3}{2}}U' \rightarrow {}^4I_{\frac{15}{2}}U'^a$

Fuerza del oscilador:

$$\begin{array}{cccc} 1,085\times 10^{11} \left< Q\left(\nu_t\right) \right>^2 \Delta \nu_t: & t=3 & 0,01288 \\ & t=4 & 0,02915 \\ & t=6 & 0,04005 \end{array}$$
 Intermediario $f_3 & f_4 & f_6 \\ & E_{11}' & 0.0016242 & 0.0000466 & 0.0007730 \end{array}$

 E'_{11} E''_{11} 0.0062545 0.0113627 0.0007730 $U_{11}^{\prime a}$ 0.0059531 0.0029733 0.0012936 U'b 0.01681100.00177520.0086588 0.0306428 0.0161578 0.0107254

$$f_3: f_4: f_6 = 1,00:0,53:0,35$$

Fuerza total del oscilador:

 $f=1,104\times 10^{-8}.~~$ (en unidades de $\Big(A_4\Big)^2$ $\cos~(A_4=0,000438e)~\Big).$

b.4 La emisión ${}^4S_{3}U' \rightarrow {}^4I_{45}U'^{b}$

Fuerza del oscilador: $1.085 \times 10^{11} \left\langle Q\left(\nu_t\right) \right\rangle^2 \Delta \nu_t : t = 3$ 0.01284 t = 40,02906 0,04005 t = 6Intermediario f_3 f_4 f_6 0.0041532 $E'_{\frac{11}{2}}$ 0.0191483 0.0088604 $E''_{\frac{11}{2}}$ 0.0002273 0.0007612 0.0017422 U'^{a}_{11} 0.0097482 0.0196953 0.0150938 U'b 0.0013187 0.00862500.0010944 0.0333404 0.0403896 0.0079380 $f_3: f_4: f_6 = 1.00: 0.83: 0.20$

Fuerza total del oscilador:

 $f = 1,567 \times 10^{-8}$. (en unidades de $(A_4)^2$

con $(A_4 = 0,000438e)$).

b.5 La emisión ${}^4S_{\frac{3}{2}}U' \rightarrow {}^4I_{\frac{15}{2}}U'^c$

Fuerza del Oscilador :

 $\begin{array}{ll} 1,085\times 10^{11}\left< Q\left(\nu_t\right) \right>^2 \Delta \nu_t: & t=3 & 0,01267 \\ & t=4 & 0,02869 \end{array}$

Intermediario	f_3	f_4	f_6
$E'_{\frac{11}{2}}$	0.0766383	0.0200457	0.0169231
$E_{\frac{11}{2}}''$	0.0006234	0.0004935	0.0011314
$U_{\frac{11}{2}}^{\prime a}$	0.0024846	0.0003672	0.0000197
$U_{\frac{11}{2}}^{\prime b}$	0.0015052	0.0054913	0.0010052
	0.0812515	0.0263977	0.0190794

$$f_3: f_4: f_6 = 1.00: 0.32: 10.23$$

Fuerza total del oscilador:

 $f = 2,432 \times 10^{-8}$. (en unidades de $(A_4)^2$

con
$$(A_4 = 0.000438e)$$
).

Un resumen de los resultados anteriores, nos conduce a la Tabla XIII, en lo que dice relación con la excitación electrónica $|({}^4S_{3/2})\Gamma_8\rangle \rightarrow |({}^4I_{15/2})a\Gamma_8\rangle + \nu_3$. Observamos que nuestro modelo es capaz de reproducir bastante bien la fuerza total del oscilador y en forma razonable la distribución de intensidades espectrales. Nuestro modelo no se basa en un ajuste forzado de las intensidades y considera que la superposición de transiciones es altamente probable de contaminar los resultados.

Rev. Mex. Fis. 51 (4) (2005) 330-348

$ ({}^4S_{3/2})\Gamma_8\rangle \rightarrow ({}^4I_{15/2})a\Gamma_8\rangle$	$f(\nu_3): f(\nu_4): f(\nu_6)$	$f \times 10^{-8}$
idem	2.85:1.15:1.00	1.104
idem	1.00: 1.73: 1.65	2.148
idem	1.86: 3.30: 1.00	1.730
	$ ({}^{4}S_{3/2})\Gamma_{8} angle ightarrow ({}^{4}I_{15/2})a\Gamma_{8} angle$ idem idem idem	$\begin{split} ({}^{4}S_{3/2}) \Gamma_{8}\rangle &\to ({}^{4}I_{15/2}) a \Gamma_{8}\rangle & f(\nu_{3}) : f(\nu_{4}) : f(\nu_{6}) \\ & \text{idem} & 2.85 : 1.15 : 1.00 \\ & \text{idem} & 1.00 : 1.73 : 1.65 \\ & \text{idem} & 1.86 : 3.30 : 1.00 \end{split}$

-(a)este trabajo -(b)Crooks y colaboradores -(c) valores experimentales

5. Conclusión

En este trabajo de revisión, hemos examinado el método vibrónico de campo cristalino-polarización de ligandos (VCF-LP) para sistemas del tipo elpasolitas estequiométricas y en particular con referencia al sistema $Cs_2NaErCl_6$ en el grupo espacial Fm3m. Nuestras predicciones teóricas han sido comparadas con cálculos en absorción realizados utilizando una adaptación vibrónica del método de superposición de Newman.

Resulta directo inferir que para estos sistemas, una forma de avanzar en la compresión de los múltiples y complejos procesos, tanto radiativos como no radiativos nos conduce a obtener un modelo general en dinámica de cristales, con la inclusión explícita de las interacciones de corto y de largo alcance. De igual forma, para una de las emisiones reportadas en este estudio, a saber: $|{}^{4}S_{3/2}\rangle \Gamma_{8}\rangle \rightarrow |{}^{4}I_{15/2}\rangle \Gamma\rangle$, hemos propuesto "a two jump" mecanismo de modo de avanzar en la compresión de la intensidad observada. La estrategia y el modelo presentado en esta revisión, demuestran a nuestro juicio la importancia de desarrollar esquemas de cálculos novedosos, incorporando nuevas aproximaciones y relajando algunos supuestos. Observamos que los resultados obtenidos son tan buenos como es de esperar, considerando la complejidad del problema abordado y a su vez las limitaciones de nuestros modelos y estrategia de cálculo.

Agradecimientos

RA desea expresar su gratitud a la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile por el apoyo prestado durante el transcurso de esta investigación. A S-B desea agradecer a Conicyt por una beca de Doctorado por el período 2002-2004, la cual le ha posibilitado estudios conducentes al grado académico de Doctor en Ciencias de la Ingeniería con mención en Ciencias de los Materiales en la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile.

- 1. Z. Hazan y F.S. Richardson, Molec. Phys. 45 (1982) 1299.
- R. Acevedo, P.A. Tanner, T. Meruane y V. Poblete, *Phys. Rev.* B 54 (1996) 3976.
- P.A. Tanner, V.V.K. Kumar, C.K. Jayasanjar y M.F. Reid J.Alloys. Comp. 225 (1995) 85.
- P.A. Tanner, V.V.K. Kumar, C.K. Jayasanjar y M.F. Reid, J.Alloys. Comp. 215 (1994) 349.
- J.P. Morley, T.R. Faulkner y F.S. Richardson, J. Chem. Phys. 77 (1982) 1710.
- 6. T.R. Faulkner y F.S. Richardson, Molec. Phys. 36 (1978) 193.
- 7. M.F. Reid y F.S. Richardson, Molec. Phys. 51 (1984) 1077.
- 8. R. Acevedo et al., Rev. Mex. Fis. 44 S1 (1988) 41.
- O. Hurtado, R. Acevedo y T. Meruane, *Rev. Mex. Fis.* 44 S1 (1988) 44.
- P.A. Tanner, R. Acevedo, O. Hurtado y T. Meruane, J.Alloys. Comp. 323-324 (2001) 718
- 11. P.A. Tanner, Molec. Phys. 57 (1986) 837.
- P.A. Tanner, A. De Piante, F.S. Richardson y M.F. Reid, *Molec. Phys.* 60 (1987) 1037.
- 13. P.A. Tanner, Molec. Phys (1988) 63 365.

- C.A. Morrison, R.P. Leavitt y C.E. Wortman, J. Chem. Phys. 73 (1980) 2580.
- F.S. Richardson, M.F. Reid, J.J. Dallara y R.D. Smith, J. Chem. Phys. 83 (1985) 3813.
- B.G. Wybourne, Spectroscopic Properties of Rare Earths (Inter-Science, N.Y. 1965).
- M.F. Reid, F.S. Richardson y P.A. Tanner, *Molec. Phys.*, 60 (1978) 881.
- C.K. Jayakansar, F.S. Richardson y P.A. Tanner, *Molec. Phys.*, 61 (1987) 635.
- D.R. Foster, F.S. Richardson y R.W. Schwartz, *Molec. Phys.*, 82 (1985) 618.
- 20. D.R. Foster y F.S. Richardson, J. Chem. Phys. 82 (1985) 1085.
- A. De Piante, F.S. Richardson y Z. Hasan, J. Chem. Phys. 82 (1985) 1102.
- D.J. Newman, G.G. Sui y W.Y. Fung, J. Chem. Phys. 15 (1982) 3113.
- 23. G.G. Sui y D.J. Newman, J. Chem. Phys. 81 (1984) 4959.
- 24. D.J. Newman, Adv. Phys. 20 (1971) 197.
- 25. D.J. Newman y N.G. Betty, Rep. Prog. Phys. 52 (1981) 699.

Rev. Mex. Fis. 51 (4) (2005) 330-348

347

- 26. R. Acevedo et al., J. Mol. Struct (Theochem) 390 (1997) 109.
- R. Acevedo, G. Navarro, T. Meruane, P.A. Tanner y Y.Y. Zhao, *Rev. Mex. Fls.* 47 (2001) 245.
- S.M. Crooks, M.F. Reid, P.A. Tanner y Y.Y. Zhao, J. Alloys. Comp. 250 (1997) 297.
- W. Ryba-Romanowski, Z. Mazurak y B. Jezowska-Trzebiatowska, J. Lumin. 27 (1982) 177.
- Z. Mazurak, E. Lukowiak, B. Jezowska-Trzebiatowska y W. Ryba-Romanowski, J. Lumin. 29 (1984) 47.
- Z. Muzarak, E. Lukowiake, B. Jezowaska-Trezbiatowska, J. Lumin. (1985) 33 159.
- G.E. Fish, M.H. North y H.J. Stapleton, J. Chem. Phys. 73 (1980) 4807.
- 33. E. Cortés, DSc. Thesis (Universidad de Chile, 1992)
- M. Born y K. Huang, Dynamical Theory of Crystal Lattices (Oxford. University Press, 1945).
- 35. V. Poblete, DSc. Thesis (Universidad de Chile, 1998).
- A.D. Craknell, Group Theory in Solid State Physics (Taylor and Francis, Ltd, London. Halsted, 1975).
- 37. G. Navarro, DSc. Thesis (Universidad de Chile, 2002).
- Califano, V. Schettino y N. Neto, *Lattice Dynamics of Molecular Crsytals* (Springer-Verlag. Berlin. Heidelberg. New York, 1981).
- 39. A. Lentz, J. Phys. Chem. Solids 35 (1974) 827.

- L. Ning, P.A. Tanner y X. Shangda, Vibrational Spectroscopy 31 (2003) 51.
- R. Acevedo y E. Cortés, *Theoretical Chemistry Accounts*. 107 (2002) 187.
- R. Acevedo, T. Meruane y G. Navarro, Acta Physica Polonica A. 99 (2001) 233.
- 43. C. Clark, Phys. Rev. 109 (1958) 1133.
- W. Cochran y R. Cowley, Handbuch der Physik. B 25 (1967) 59.
- R. Acevedo, E. Cortés, T. Meruane, S.O. Vásquez y C.D. Flint, An. Quím. 90 (1994) 334.
- R. Acevedo, E. Cortés, T. Meruane, S.O. Vásquez yC.D. Flint, An. Quím. 90 (1994) 339.
- G.P. Knudsen, F.W. Voss y R. Nevald, In Rare Earths in Mod.Sci and Technol (Plenum Press, N.Y, 1982) vol.3.
- W.T. Carnal, P.R. Fields y K. Rajnak, J. Chem. Phys. 49 (1961) 4412.
- R. Acevedo, Elementos Introductorios en Espectroscopia Atómica y Molecular. Aplicaciones a Sistemas de Interés Espectroscópico (Red Internacional del Libro. ISBN:956-284-146-4, 2000)
- E.B. Wilson Jr., J.C. Decius y P.C. Cross, *Molecular Vibrations* (A Wiley Interscience Publication, 1976).
- 51. S. Califano, Vibrational States (Interscience. N.Y, 1976)
- 52. P.A. Tanner y Y.Y. Shen, Spectrochimica Acta A 50 (1994) 997.

Rev. Mex. Fis. 51 (4) (2005) 330-348

Publicación 2.

INVESTIGACIÓN

REVISTA MEXICANA DE FÍSICA 51 (1) 5-13

FEBRERO 2005

Síntesis y caracterización estructural de las elpasolitas estequiométricas de Dy³⁺ y Ho³⁺

R.Acevedo^a, A.Soto-Bubert^a,G.Navarro^b y V.Martín^c ^aFacultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Casilla 2777, Santiago-Chile, ^bInstituto de Ciencias Básicas, Facultad de Ingenieria, Universidad Diego Portales, Av.Ejército 441, Casilla 298-V, Santiago-Chile ^cGrupo de Materiales Nucleares, Comisión Chilena de Energía Nuclear, La Reina, Casilla 188-D, Santiago-Chile

Recibido el 5 de noviembre de 2002; aceptado el 2 de junio de 2004

En este artículo se reporta un conjunto actualizado de datos experimentales, básicamente estructurales, de alta precisión para elpasolitas puras del tipo $Cs_2NaLnCl_6$; donde $Ln^{3+} = Dy^{3+}(f^9)$, $Ho(f^{10})$, caracterizadas por sitios de simetría octaédricos para los iones lantánidos trivalentes positivos. Existe, un conjunto importante de datos espectroscópicos para este tipo de sistemas, puros y dopados, al igual que diversos intentos tendientes a la identificación y asignación de los diversos picos de los espectros asociados. La interpretación de los datos experimentales es, un tema central y de gran relevancia, considerando las múltiples complejidades observadas en los espectros de absorción y de emisión, al igual que superposiciones de excitaciones electrónicas, dificultando la identificación y asignación de las transiciones electrónicas y haciendo evidente la necesidad de contar con modelos más generales y flexibles en dinámica de cristales. Estos deben ser capaces de acomodar las interacciones de largo y de corto alcance, dando cuenta de los acoplamientos entre las vibraciones internas y externas del sistema. Modelos generalizados y cálculos, a lo largo de esta línea son formidables y raramente contamos con una masa importante de datos experimentales; tanto estructurales como espectroscópicos, que nos permitan lograr estas generalizaciones. En este artículo, reportamos datos experimentales are se reporta nhan sido sinteizados por medio de una reacción de estado sólido y caracterizados por difracción de rayos X en polvos. Se reporta un espectrograma de difracción de navor se, de caracter exploratorio, para el sistema Cs₂NAHoCl₆.

Descriptores: Parametros estructurales; elpasolitas Cs2NaLnCl6; Ln3+-Dy(f9); Ho(f10)

In this research paper, we report an updated set of experimental data, mainly structural in character, accurately determined for pure elpasolite systems such as $Cs_2NaLnCl_6$; $M^{3+} = Dy^{3+}(f^9)$, $Ho(f^{10})$, where the trivalent lanthanide ions occupy sites of octahedral symmetries. There is a vast amount of experimental data from spectroscopic techniques for this type of systems both, pure and doped as well as several attempts leading to the identification and assignment of the various peaks for the associated spectra. The understanding of the experimental data, is central and most relevant, when the many complexities observed in both, the absorption and emission spectra are taken into account showing up the need for carrying out new experiments and developing more general physical models in the spectroscopy of solid state physics. These models should be able to accommodate both the long and short range interactions as well as to include, in an explicit form, the coupling between the internal and the external vibrations for these systems. A further reason to preclude more comprehensive theoretical studies in this area is the well known fact that, for these systems the experimental data available obtained from X-ray and spectroscopic studies is both scaree and incomplete. In the current research paper, we report updated experimental data, essentially structural in character, obtained in our laboratory utilizing X rays diffraction for powders and we also report a neutron diffraction pattern for the $Cs_2NaHoCl_6$.

Keywords: Structural parameters; elpasolites Cs₂NaLnCl₆; Ln³⁺-Dy(f⁹); Ho(f¹⁰).

PACS: 32.70.Cs

1. Palabras preliminares

En las últimas dos décadas, se ha publicado una serie de artículos en física de procesos radiativos (absorción y emisión) y no radiativos(emisión del calor al cristal), con referencia a sistemas del tipo elpasolitas cúbicas del tipo A_2BLnZ_6 , A_2BLn_1 . $_XLn'_XZ_6$ y $A_2BLnZ_6:Ln'Z_6^3-$. En nuestra notación A^+ , B^+ , Ln^{3+} , Ln'^{3+} y Z^{-1} , corresponden a metales alcalinos, lantánidos trivalentes positivos (Ln,Ln') e iones halogenuros, respectivamente. El análisis de los datos espectroscópicos, en absorción y en emisión para los sistemas señalados anteriormente, ha sido realizado por una serie de autores [1-14]. El trabajo realizado por estos investigadores fue diseñado a la identificación y asignación de los diversos picos de los espectros asociados. En función de esta información, existe una serie de esfuerzos realizados tendientes a la obtención de conjuntos de parámetros, capaces de acomodar efectos no relativistas y relativistas asociados a un hamiltoniano electrónico modelo [1].

A partir de conjuntos, actualizados pero necesariamente incompletos de datos experimentales derivados de técnicas instrumentales en óptica lineal y no lineal y con la utilización de métodos semi-empíricos, se han reportados cálculos de niveles de energías con distintos grados de precisión. De esta forma, en el trabajo de la Ref. 1, se observa que el ajuste entre los datos observados y los niveles calculados produce desviaciones cuadráticas medias en el intervalo entre los 0 y los 39 cm⁻¹. En estos procedimientos de optimización y, en particular para la serie de las elpasolitas estequiométricas (A₂BLnZ₆), el número de niveles de energías utilizados varía entre 5 y 61.

Como el lector podrá apreciar, en estos cálculos y ajustes se utiliza un hamiltoniamo electrónico modelo (\hat{H}) , correspondiente a una partición en dos términos: $\hat{H} = \hat{H}_A + \hat{H}_{CF}$. En esta notación, el primer término del miembro de la derecha, incorpora las componentes isotrópicas del hamiltoniano (incluye la contribución esféricamente simétrica de las interacciones de campo cristalino asociadas a los electrones 4f), en cambio el segundo operador representa las contribuciones de simetría distinta a la esféricamente simétrica del campo cristalino (CF), términos pares frente a la inversión. Con relación al procedimiento de optimización de parámetros, podemos anticipar que a nivel del hamiltoniano atómico \hat{H}_A , estos son los que indicamos:

- (a) tres del tipo Slater: $F^k(k = 2, 4, 6)$,
- (b) tres de interacción de configuraciones (Trees corrections): α, β, γ;
- (c) seis electrostáticos, dependientes de las coordenadas de tres cuerpos: Tⁱ(i = 2, 3, 4, 6, 7, 8);
- (d) interacción espín electrónico-órbita propia: ζ_{s0} ;
- (e) espín electrónico-otras órbitas: $M^{j}(j = 0, 2, 4)$ y
- f) tres parámetros espín-órbita, electrostáticamente correlacionados: P^k(k = 2, 4, 6).

Adicionalmente, se incluye la energía efectiva media Eave, con el propósito de acomodar el ordenamiento energético global (translación del orígen de energías). Por otra parte, el término correspondiente a la contribución de campo cristalino HCF, introduce naturalmente dos parámetros no relativistas adicionales; a saber: $B_0^{(4)}$ y $B_0^{(6)}$. Cuando un modelo de esta naturaleza es empleado, observamos que, en principio el número de parámetros a ser ajustado de los datos experimentales es igual a 22. Se trata, en consecuencia de un problema de envergadura y, un análisis de la bibliografía nos sugiere utilizar relaciones semi-empíricas del tipo: $M^2 = 0.56 M^\circ$, $M^4 = 0.38 M^\circ$, $P^4 = 0.75 P^2$ y $P^6 = 0.80 P^2$, con lo cual el número de parámetros se reduce a 18. Un cálculo de esta naturaleza requiere de una masa de datos experimentales formidable y muy completa, lo cual es con muy escasas excepciones impracticable. En la práctica, es necesario conformarnos con aproximaciones relativamente gruesas en los modelos y estrategias de cálculo y avanzar en la creación de nuevos experimentos diseñados a la obtención de nuevos datos, tanto a nivel estructural como espectroscópico. Trabajos recientes realizados en nuestro grupo de investigación para sistemas tales como Cs2UBr6 [15], Cs2NaSmCl6 y Cs2NaEuCl6 [16], han enfatizado la necesidad de diseñar nuevos experimentos en espectroscopía de uno y de dos fotones con el propósito de enriquecer nuestras bases de datos y de esta forma lograr cálculos en dinámica de cristales, con inclusión explícita de

las interacciones de corto y de largo alcance. Nuestros trabajos en curso en este laboratorio, apuntan en esta dirección y adicionalmente a los datos espectroscópicos necesitamos de datos estructurales derivados de técnicas de difracción de rayos X y de neutrones. En nuestra experiencia estos datos, de difracción de rayos X y de neutrones son relevantes, complementándose entre sí y de esta forma, nos permiten estudiar la dispersión de los modos τ_{1u} (LO,TO). Con relación a la elpasolita Cs2NaDyCl6 [2], se reportaron los espectros de luminiscencia del sistema diluido Cs2NaGdCl6:DyCl6- y los espectros de absorción para el sistema puro Cs2NaDyCl6, en el intervalo de temperaturas entre 5-300 K, los ajustes de los parámetros se han realizado empleando un conjunto de 40 niveles de energías, con una desviación cuadrática media de 4, 60 cm⁻¹ [1,2]. Con relación a sistemas con Ho³⁺, se dispone del conocimiento de 61 niveles de energías, lo cual arroja una desviación cuadrática media de 13, 20 cm⁻¹ [1,3-13].

En este artículo abordaremos algunos aspectos estructurales de las elpasolitas estequiométricas cloradas de Dy³⁺ y Ho³⁺, para las cuales los iones lantánidos trivalentes positivos, ocupan sitios escencialmente octaédricos y los espectros, a nivel de intensidades están, básicamente dominados por transiciones vibrónicas del tipo $\Gamma_1 \rightarrow \Gamma_2 + \nu_k (k = 3, 4, 6)$, donde las frecuencias se refieren a los modos normales impares frente a la inversión en el grupo octaédrico.

En este artículo centraremos nuestra discusión en una revisión actualizada de aspectos tales como: síntesis, análisis térmicos, caracterización elemental densidades y caracterización estructural por difracción de rayos X y reportamos, para efectos ilustrativos, el espectro de difracción de neutrones para el cristal Cs₂NaHoCl₆. Estos datos serán utilizados en estudios posteriores en dinámica de cristales para estos sistemas y para la formulación de modelos teóricos con relación al acoplamiento ión-fonón y mecanismos de intensidades espectrales.

2. Introducción y sección experimental

Existen una gran variedad de estudios experimentales reportados en la literatura en relación con la síntesis de compuestos del tipo hexaclorometalados, que responden a fórmulas empíricas del tipo general: Cs2NaLnCl6 [17-22]. El trabajo de Morss y colaboradores [21,22], se refiere básicamente a la síntesis y determinación de algunos parámetros estructurales para una variedad de cationes del tipo M(III), ubicados en sitios de simetría octaédricos, con un índice de coordinación 6, con respecto de los iones cloruro. Un número importante de estos compuestos, al ser comparados con los tricloruros anhídridos, poseen una serie de propiedades interesantes desde un punto de vista experimental, tales como: son isoestructurales, solubles en agua o en ácidos diluidos, presentan una estabilidad térmica y química importante y, por lo tanto es posible prepararlos por una variedad de métodos, lo cual en una gran cantidad de casos conduce a la obtención de cristales de buena calidad. De esta forma, la preparación de Cs₂NaAmCl₆ [18] consiste de la evaporación de

Rev. Mex. Fis. 51 (1) (2005) 5-13

una solución de $2Cs^+$, Na^+ y $AmCl_3$ en ácido clorhídrico a sequedad. También, en el caso de $Cs_2NaBkCl_6$ [20], éste es precipitado a partir de una solución diluida de HCl, burbujeando gas de este ácido sobre la solución y posteriormente enfriando. Una situación, notablemente distinta aparece en el caso de algunos cristales del tipo elpasolitas estequiométricas $Cs_2NaLnCl_6$, cuya síntesis y caracterización estructural no es trivial, en particular en el caso de los iones lantánidos trivalente positivos más livianos.

En las situaciones anteriores, las estructuras cristalinas asociadas se caracterizan por exhibir una marcada higroscopicidad y, deben en consecuencia ser sintetizadas y preservadas en condiciones especiales. Lo señalado sugiere que estos cristales sean sintetizados por medio de reacciones de estado sólido en vacio o atmósfera controlada, a temperaturas elevadas del orden de 800°C y utilizando reactivos químicos de alta pureza. El proceso químico, en sí mismo, es controlado empleando análisis térmico (DTA/TGA), con el propósito de analizar los eventuales cambios de fases y proceder a establecer los intervalos óptimos de temperatura asociados a los procesos de cristalización. El proceso global consiste de las siguientes etapas: síntesis, análisis térmicos, caracterización elemental y estructural, caracterización espectroscópica y proposición de modelos y estategías de cálculo de intensidades y de mecanismos de decaimiento tanto radiativo como no radiativo.

En términos generales los procedimientos de síntesis fueron realizados considerando reacciones químicas en estado sólido. Lo anterior, considerando que los métodos, reportados en la literatura [20,21], producen cantidades muy pequeñas del producto que nos interesa estudiar, lo cual es una limitante importante. Adicionalmente, este producto tan poco abundante, aparece mezclado con una cantidad importante de cristales correspondientes a los reactivos iniciales y otras fases, que en la mayoría de los casos no han sido identificadas. En la Fig. 1, se entrega para efectos ilustrativos un diagrama

FIGURA 1. Diagrama de Flujo.

Rev. Mex. Fis. 51 (1) (2005) 5-13

642

de flujo, asociado al proceso de síntesis y caracterización para las elpasolitas. De igual forma, se entrega la celda primitiva correspondiente a los sistemas estequiométricas en la Fig. 2. Nuestro grupo de investigación, ha dedicado parte de sus esfuerzos a la caracterización estructural, espectroscópica y al desarrollo de modelos de cálculo para sistemas altamente relativistas del tipo Cs₂UBr₆ [15], Cs₂NaSmCl₆ y Cs₂NaEuCl₆ [16], Cs₂NaCeCl₆ [23], Cs₂NaErCl₆ y Cs₂NaYbCl₆ [24,26,27,30,33], Cs₂NaSmCl₆ [25] y, Cs₂NaTmCl₆ [28,29,31]. Un trabajo de revisión con relación a estos sistemas, ha sido recientemente publicado y el lector puede consultar la Referencia [32].

2.1. Síntesis

En la síntesis de Cs2NaDyCl6 y Cs2NaHoCl6, se utilizaron reactivos clorados; CsCl, NaCl y LnCl₃Ln = (Dy,Ho) con una pureza del orden de un 99, 9%. Se procedió a secar los reactivos en atmósfera inerte de nitrógeno a una temperatura de 60°C por 24 horas. Se procede a pesar cantidades estequiométricas de los reactivos clorados, los cuales se disuelven en ácido clorhídrico diluido a 60°C hasta obtener un líquido transparente, lo cual se resume en las reacciones químicas que se indican: 2CsCl+NaCl+LnCl3 → Cs2NaLnCl6. A continuación, se procede a elevar la temperatura hasta alcanzar la ebullición, se filtra en caliente (filtro de membrana de 0.22 mm "Millipore"). Se procede a determinar la masa del producto obtenido y se envasa en atmósfera inerte de nitrógeno (dada su alta higroscopicidad, por 24 horas a 60°C). A partir de esta etapa en el proceso de síntesis, se destinan distintas fracciones del producto obtenido, para analizarlo. Con la primera fracción (muestra 1) se determina la temperatura óptima a ser aplicada durante el tratamiento térmico, empleando para estos efectos; análisis térmico diferencial (DTA) y térmico gravimétrico (TGA). Esta técnica permite la obtención de la temperatura de cristalización y la observación de eventuales cambios de fases. La segunda fracción (muestra 2), es empleada para la caracterización elemental del producto forma-

FIGURA 2. Celda Primitiva.

do, presencia de impurezas y estequiometría, mediante la técnica de fluorescencia de rayos-X. La tercera fracción (muestra 3), se escoge como la de mayor abundancia y se procede a almacenar, de modo que una vez conocida la temperatura de cristalización, se lleven a cabo los tratamientos térmicos. Finalmente, se procede a la caracterización estructural y espectroscópica de la muestra.

2.2. Análisis térmico

2.2.1. Elpasolita Cs₂NaHoCl₆

Las técnicas DTA y TGA se llevaron a cabo usando un equipo DTA/TGA, marca NETZSCH (modelo 414/2). Para ambos compuestos se utilizaron las mismas condiciones experimentales, en atmósfera de nitrógeno para evitar al máximo la oxidación. Para este sistema, el diagrama (DTA/TGA) se entrega en la Fig. 3. El análisis DTA exhibe una transformación de la estructura amorfa a cristalina; la etapa de cristalización se inicia a la temperatura de 798°C, mediante una reacción exotérmica, estabilizándose a la temperatura de 833.5°C, con una pérdida de masa del 19.2 %, lo cual se puede apreciar en el diagrama TGA. De los resultados experimentales se concluye que la temperatura óptima de cristalización es de 798.0°C. De igual forma, de este mismo diagrama se concluye que en la curva de enfriamiento no se produce cambio de fase como tampoco pérdida de masa (evidencia óptima la cual sugiere una cristalización óptima para el compuesto en estudio). Adicionalmente a la tercera fracción (muestra 3), se le realiza un tratamiento térmico de modo de obtener cristales puros. Para estos efectos, se introduce la fracción deseada de compuesto en una ampolla de cuarzo (en la cual se ha hecho el vacio), y que posteriormente es llenada con nitrógeno a una presión ligeramente superior a la ambiente (evitando en la medida de lo posible, el ingreso de impurezas al sistema) y, posteriormente se procede a sellar la ampolla de cuarzo. De igual forma, el tratamiento térmico comienza a los 20°C, y en un período de 2.5 horas se incrementa la temperatura al valor 798°C (temperatura óptima de cristalización), que corresponde a la temperatura de trabajo. Una vez alcanzada esta temperatura, se mantiene constante por un período de tiempo equivalente al anterior, procediendo posteriormente a la desenergización del sistema, y llevando la muestra por enfriamiento convectivo a la temperatura ambiente.

2.2.2. Elpasolita Cs2NaDyCl6

La Fig. 4, muestra el diagrama DTA/TGA de esta elpasolita. El análisis DTA exhibe la presencia de una transformación amorfa a cristalina. La etapa de cristalización se inicia a los 761°C, alcanzando un valor máximo a los 780°C, y estabilizándose a los 802°C, con una pérdida de masa de un 5%, ver diagrama TGA. En conformidad con los termogramas obtenidos, se concluye que el tratamiento térmico debiera llevarse a cabo a los 780°C para lograr obtener la muestra cristalina. La curva de enfriamiento no exhibe cambio de fase alguno, concluyéndose que la cristalización fue óptima,

Rev. Mex. Fis. 51 (1) (2005) 5-13

FIGURA 3. Diagrama DTA/TGA de la elpasolita Cs2NaHoCl6.

FIGURA 4. Diagrama DTA/TGA de la elpasolita Cs2NaDyCl6.

indicación de un compuesto estable. En cuanto al tratamiento térmico, se siguió para esta elpasolita el mismo procedimiento que en el caso de la Sec. 2.2.1. La única diferencia es la temperatura de trabajo, que en este caso es de 780°C, con la posterior desenergización del sistema por el usual enfriamiento convectivo a temperatura ambiente. El diagrama DTA/TGA para esta elpasolita, se entrega a continuación.

3. Caracterización estructural

3.1. Especificaciones técnicas

La caracterización de estas elpasolitas se realizó por medio de difracción de rayos X de polvo y, dado la naturaleza policristalina de las muestras se procedió a utilizar el programa de refinamiento de perfiles de Rietveld [34,35]. En cada una de las mediciones se empleó una difractómetro de rayos X (Siemens D5000, geometría theta-theta, el cual tiene en su arquitectura incorporado un monocromador de grafito, diagrama de divergencia y dispersión (*scatter*) variable. Las condiciones experimentales de medición de este equipo son de 30 mA y 40 kV y las muestras fueron analizadas utilizando como fuente de radiación un ánodo de cobre y un filtro de niquel, para las longitudes de ondas: $\lambda_{k_{\alpha 1}} = 1.5406$ Åy $\lambda_{k_{\alpha 2}} = 1.5444$ Å. Adicionalmente, la superficie irradiada fue de 20 mm, con precisión absoluta $\leq 0.005^{\circ}(\theta \ y \ 2\theta)$ y reproducibilidad ($\theta \ y \ 2\theta$) de 0.0005°.

3.2. Resultados para las elapasolitas Cs₂NaHoCl₆ y Cs₂NaDyCl₆

9

3.3. Análisis DRX y refinamiento de perfiles

Para estas elpasolitas, los difractogramas de polvos (Figs. 5 y 6), se muestra en un intervalo entre los $12^{\circ}-130^{\circ}(2\theta)$, para 5901 puntos en el caso de Ho(+3) y, [5819 para Dy(+3)], medidos en pasos de $0.02^{\circ}(2\theta)$, por 8 segundos en cada paso y a la temperatura ambiente. El difractograma de polvos fué refinado, utilizando el método de Rietveld, cuyos resultados se muestran en la Tabla I. Los resultados del ajuste por Rietveld, se incluyen la Tabla II, incorporando los valores calculados para la longitud de onda $\lambda_{k_{\alpha 1}} = 1.5406$ Å.

3.3.1. Densidades

Por razones de completitud se llevaron a cabo mediciones de densidades para estas elpasolitas, utilizando un picnómetro Langer 450 (en vacio) a la temperatura de 18°C. Los valores se indican a continuación (Tabla III).

FIGURA 5. Difractograma de polvo DRX de la Elpasolita Cs₂NaHoCl₆.

FIGURA 6. Difractograma de polvo DRX de la Elpasolita $Cs_2NaDyCl_6$.

Rev. Mex. Fis. 51 (1) (2005) 5-13

		Cs2NaHoCle			CsoNaDvCL	
h k l	d(Å) Rietveld	$\frac{I}{2}$ Rietveld	$2(\theta)$ Rietveld	d(Å) Rietveld	- Rietveld	$2(\theta)$ Rietveld
111	6.2174	18	14.2337	6.2117	19	14.2486
002	5.3881	1	16.4597	5.3785	1	16.4683
022	3.8008	100	23.3859	3.8017	100	23,3802
113	3.2400	14	27.5070	3.2417	15	27.4962
222	3.1018	41	28.7588	3.1036	36	28,7418
004	2.6854	82	33.3387	2.6875	72	33.3118
133	2.4639	8	36.4364	2.4661	8	36.4027
024	2.4014	1	37.4194	2.4036	< 1	37.3835
224	2.1918	50	41.1515	2.1941	50	41.1071
115	2.01663	3	43.7767	2.0685	4	43.7263
333	2.0663	2	43.7767	2.0685	2	43.7263
044	1.8977	49	47.8957	1.8999	51	47.8356
135	1.8145	4	50.2423	1.8167	6	50.1765
026	1.6929	23	54.1310	1.6993	24	53.9116
335	1.6365	2	56.5165	1.6389	2	56.0689
226	1.6180	14	56.8582	1.6202	12	56.7756
444	1.5491	18	56.1595	1.5512	17	59.5491
117	1.5028	2	61.6732	1.5048	2	61.5780
246	1.4340	26	64.9813	1.4361	29	64.8770
137	1.3970	2	66.9235	1.3991	2	66.8136
008	1.3413	8	70.1007	1.3433	8	69.9815
337	1.3109	1	71.9762	1.3128	1	71.8514
066	1.2645	4	75.0596	1.2664	5	74,9251
228	1.2645	9	75.0596	1.2664	10	74.9251
157	1.2389	1	76.8881	1.2408	2	76.7477
555	1.2389	$\ll 1$	76.8881	1.2408	≪1	76.7477
266	1.2307	5	77.4945	1.2326	5	77.3521
048	1.1995	21	79.6067	1.2014	24	79.7563
119	1.1776	< 1	81.7039	1.1795	1	81.5473
357	1.1776	1	81,7039	1.1795	2	81.5473
248	1.1706	< 1	82.3011	1.1725	≪1	82.1424
466	1.1437	6	84.6821	1.1455	8	84.5148
139	1.1246	< 1	86.4617	1.1264	2	86.2878
448	1.0949	17	89.4211	1.0967	20	89.2358
177	1.0782	< 1	91.1955	1.0800	< 1	91.0031
339	1.0782	< 1	91.1955	1.0800	< 1	91.0031
557	1.0782	< 1	91.1955	1.0800	< 1	91.0031
0 2 10	1.0519	6	94.1565	1.0537	7	93.9517
268	1.0519	10	94.1565	1.0537	13	93.9517
2 2 10	1.0322	4	96.5331	1.0340	3	96.3178
666	1.0322	1	96.5331	1.0340	1	96.3178
2 4 10	0.9792	10	103.7494	0.9809	13	103,4990
088	0.9481	7	108.6801	0.9497	9	108,4024

Rev. Mex. Fls. 51 (1) (2005) 5-13

579	0.8614	1	126.8098	0.8630	2	126.3945
3 5 11	0.8614	1	126.8098	0.8630	4	126.3945
<mark>46</mark> 10	0.8699	11	124.6225	0.8715	15	124.2281
2 2 1 2	0.8699	5	124.6225	0.8715	8	124.2281
448	0.8938	15	119.0471	0.8954	19	118.6997
0 0 12	0.8938	4	119.0471	0.8954	5	118.6997
2610	0.9065	6	116.3730	0.9081	6	116.0455
668	0.9197	5	113.7597	0.9214	7	113.4502
0610	0.9197	5	113.7597	0.9214	7	113.4502
1311	0.9371	1	110.5647	0.9388	2	110.2757

TABLA II. Resultados de ajuste por el método de Rietveld para las elpasolitas de Cs₂NaHoCl₆ y Cs₂NaDyCl₆

		Cs2NaHoCl6	Cs ₂ NaDyCl ₆		
Factor	Valor	Posiciones	Valor	Posiciones	
Rp	11.05	Ho: (0, 0, 0)	11.89	Dy: (0, 0, 0)	
Rwp	14.57	Na: (0.5, 0.5, 0.5)	15.34	Na: (0.5, 0.5, 0.5)	
Rexp	4.62	Cs:(0.25,0.25,0.25)	4.62	Cs:(0.25,0.25,0.25)	
$\frac{R_{wp}}{R_{exp}}$	3.16	Cl: (0.2552, 0, 0)	3.33	Cl: (0.2554, 0, 0)	
σ	0.21	$a=10.7220{\rm \AA}$	0.20	a = 10.7435 Å	

TABLA III. Determinación de densidades

Compuesto	Densidad experimental	Densidad teórica
Cs ₂ NaHoCl ₆	3.61 ± 0.01	3.59
Cs ₂ NaDyCl ₆	3.55 ± 0.01	3.53

3.3.2. Caracterización espectroscópica

Hemos realizado una serie de mediciones a 300 K, tanto en infrarrojo como en Raman para estas elpasolitas. Los modos normales de vibración activos en Raman y sus respectivas frecuencias se indican a continuación: Dy^{3+} : $\nu_1(\alpha_{1g})$; 288 [286], $\nu_2(\varepsilon_q)$; 226 [224], $\nu_5(\tau_{2q})$; 126 [126] y Ho³⁺ $\nu_1(\alpha_{1g})$; 287 [287], $\nu_2(\varepsilon_g)$; 227 [226], $\nu_5(\tau_{2g})$; 128 [128]. En nuestra notación, los valores de este trabajo se entregan entre paréntesis cuadrados y éstos son confrontados con los reportados por P.A.Tanner y Meng-Yan Shen [36,37]. Nuestros datos experimentales están en excelente acuerdo con los reportados por otros grupos de investigación. Estos modos normales pares frente a la inversión son determinantes en procesos no radiativos y en espectroscopía de dos fotones (experimentos de uno y de dos colores) para el caso de compuestos centrosimétricos en entornos cúbicos. Los espectros obtenidos no son, particularmente iluminadores en consecuencia preferimos no publicarlos y pueden ser obtenidos por petición a RA.

3.3.3. Estudios exploratorios en difracción de neutrones para el sistema Cs₂NaHoCl₆

En esta sección, reportamos a modo de ejemplo el difractograma de polvos, obtenido por difracción de neutrones para el sistema clorado de $\mathrm{Ho^{3+}}$, para lo cual utilizamos un difractómetro de neutrones que consiste en un detector, capaz de barrer el haz de neutrones difractado, registrando las intensidades en función del ángulo 2 θ , entre el haz directo y la posición del detector. Hemos utilizado el instrumento disponible en el Centro de Energía Nuclear de la Reina-Chile, el cual corresponde a un difractómetro de dos ejes(a la salida del tubo radial central del núcleo del reactor). En este trabajo exploratorio se obtuvo un difractograma de polvos, procediendo a una optimización de las condiciones experimentales de la técnica con el propósito de orientarla a estudios posteriores en este tipo de sistemas.

En este trabajo, se procedió al estudio del intervalo comprendido entre los 10° y $100^{\circ}(2\theta)$ a la temperatura ambiente. El difractograma de neutrones fue refinado utilizando el programa de Rietveld a nuestra disposición [34,35]. Para fines ilustrativos y por razones de completitud, reportamos los resultados relacionados con los parámetros cristalográficos, planos cristalinos e intensidades relativas, las cuales indicamos en la Tabla IV.

Considerando las limitaciones intrínsicas de la técnica, baja resolución angular, creemos que los resultados están en buena concordancia con los obtenidos por medio de la técnica de difracción de rayos X. Adicionalmente, el difractograma es entregado en la Fig. 7.

4. Resultados y Conclusiones

De los conjuntos de datos, reportados en las diversas secciones de este artículo, concluimos que hemos logrado un proceso de síntesis y de caracterización estructural para estas dos elpasolitas; Cs₂NaDyCl₆ y Cs₂NaHoCl₆, que nos posibilita disponer de datos actualizados y precisos. En general, la diffacción de rayos X para polvos establece que las posiciones atómicas efectivas promedio para estas estructuras son: $4Ln^{3+}(0,0,0)$, $4Na^+(1/2,1/2,1/2)$, $8Cs^+(1/4,1/4,1/4)$ y $24Cl^-(x,0,0)$, donde x = 0.2554 [0.2552], para Dy³⁺ y

d(Å) Rietveld	1 Rietveld	hkl	2θ (grados) Rietveld
6.21	18	111	12.10
3.80	100	022	19.88
3.10	14	222	24.40
2.68	82	004	28.30
2.46	8	133	30.90
2.19	50	224	34.80
1.89	49	044	40.60
1.63	2	335	47.40
1.61	14	226	48.10
1.54	18	444	50.40
1.43	26	246	54.60
1.39	2	137	56.30
1.34	8	008	58.60
1.26	4	066	62.70

Ho3+, respectivamente. Los valores de los parámetros cristalinos se indican en la Tabla II, como resultados de la aplicación del método de refinamiento de perfiles de Rietveld. Adicionalmente, podemos indicar que la estructura para estos cristales muestra empaquetamientos, cerrados y cúbicos de $Cs^+ + 3Cl^-$, con átomos de Na⁺ y Ln³⁺(Dy³⁺,Ho³⁺), llenando huecos octaédricos. De igual forma, observamos que este tipo de estructuras corresponden a cristales del tipo antifluoritas, las cuales en este caso adoptan la forma: $(M_{(1/3)}\square_{(2/3)})X_2$, donde M indica un ión lantánido, X representa los átomos de Cloro y

corresponden a las vacancias de la estructura asociada, la cual puede, en principio acomodar una cantidad significativa de defectos sin colapsar (lo cual, explica el carácter higroscópico de estos sistemas). También, los resultados exploratorios reportados, correspondientes a difracción de neutrones para Cs2NaHoCl6 sugieren aplicaciones futuras interesantes para el caso de materiales del tipo general $Cs_2NaLn_XLn'_{1-X}Z_6$, donde $Z^- = F^-, Cl^-$

FIGURA 7. Difractograma de neutrones de la elpasolita Cs₂NaHoCl₆.

y Br⁻. Estos sistemas nos interesan en nuestros estudios, en progreso en dinámica de cristales para elpasolitas puras y dopadas.

Finalmente, las implicancias futuras en los aspectos estructurales (descensos de simetría) nos permitirán acceder a una base importante de datos nuevos y otros actualizados de modo de indagar en fenómenos de interacción ión-fonón, para los cuales existe un interés renovado por sus grandes implicancias en problemas fundamentales de la física. En particular, estamos estudiando densidades de estados y curvas de dispersión de fonones para distintas direcciones de polarización en el caso de cristales cúbicos y otros distorsionados para los cuales, se han ido acumulando datos experimentales importantes.

Agradecimientos

Los autores desean agradecer a la Comisión Chilena de Energía Nuclear por las facilidades otorgadas en la obtención de los datos reportados y en la puesta a punto de una serie de instrumentos necesarios para estos estudios estructurales. A.S-B desea agradecer a Conicyt (Chile) por el otorgamiento de una beca de Doctorado.

- 1. P.A. Tanner et al., 215 349 (1994).
- P.A. Tanner, C.K. Jayasankar y F.S. Richardson, Molec. Phys. 65 (1988) 49.
- 3. P.A. Tanner, Chem. Phys. Letterr 199 (1985) 213.
- 4. P.A. Tanner, J. Phys. Chem 90 (1986) 5605.
- 5. P.A. Tanner, Chem. Phys. Letters 132 (1986) 116.
- 6. P.A. Tanner, Chem. Phys. Letters 126 (1986) 137.
- C.K. Jayasankar, F.S. Richardson, P.A. Tanner, M.F. Reid, *Mol. Phys.* 61 (1987) 635.
- P.A. Tanner, J. Chem. Phys. Faraday Transaction 2 83 (1987) 1367.
- P.A. Tanner, J. Chem.Soc. Faraday Transaction 2 83 (1987) 553.
- 10. P.A. Tanner, Chem. Phys. Letters 145 (1988) 134.
- M.Chua, P.A. Tanner y M.F. Ried, J. Luminescence 58 (1994) 356.
- M.Chua, P.A. Tanner y M.F. Ried, J. Luminescence 60/61 (1994) 838.
- P.A. Tanner, M.Chua y M.F. Ried, J. Alloys and Compounds 225 (1995) 20.

Rev. Mex. Fis. 51 (1) (2005) 5-13

- R. Acevedo, P.A. Tanner, T. Meruane y V. Poblete, *Phys. Rev.* B (1996) 3976.
- R. Acevedo y E. Cortés, Theoretical Chemistry Accounts 107 (2002) 187.
- R. Acevedo, C. Portillo, G. Navarro y T. Meruane, Advances in Quantum Chemistry 44 (2003) 509.
- W.E. Hatfield, R.C. Fay, C.E. Pfluger y T.S. Piper, J. Am. Chem.Soc 85 (1963) 265.
- K.W. Bagnall, J.B. Laidler y M.A. Stewart, J. Chem. Soc A (1968) 133.
- D. Brown, Halides of the Lanthanides and Actinides, Wiley and Sons, London, (1968) p. 158.
- 20. L.R. Morss y J. Fuger, J. Inorg. Chem. 8 (1969) 1433.
- L.R. Morss, M. Siegal, L. Stenger y N. Edelstein, *Inorg. Chem.* 9 (1970) 1771.
- 22. G. Meyer, Prog. Solid St. Chem. 14 (1982) 141.
- 23. R. Acevedo y V. Poblete, Powder Diffraction 10 (1995) 241.
- V. Poblete, R. Acevedo y P.A. Tanner, *Rev. Méx. Fis. S1*, 44 (1998) 29.
- 25. V. Poblete y R. Acevedo, Rev. Méx. Fis. SI 44 (1998) 32.
- V. Poblete, Tesis Doctorado en Ciencias de la Ingenieria con mención en Ciencias de los Materiales. Universidad de Chile, (1998).

- 27. R. Acevedo et al., Rev. Méx. Fís. S1 44 (1998) 41.
- O.F. Hurtado, R. Acevedo y T. Meruane, *Rev. Méx. Fis. S1* 44 (1998) 44.
- P.A. Tanner, R. Acevedo, T. Meruane y O.F. Hurtado, J. Alloys and Compounds 323-324 (2001) 718.
- R. Acevedo, T. Meruane, G. Navarro, P.A. Tanner y Y.Y. Zhao, *Rev. Méx. Fis.* 47 (2001) 245.
- R. Acevedo, O.F. Hurtado, C. Portillo y W. Strek, Acta Physica Polonica A 100 (2001) 829.
- R. Acevedo, Investigación y Ciencia (Edición Española de Scientific American), (Enero 2003) p. 54.
- R. Acevedo, A.Soto-Bubert, G. Navarro, T. Meruane y W. Strek, Acta Physica Polonica A 105,233(2004)
- 34. H.M. Rietveld, J. Appl. Crystallogr 2 (1969) 65.
- G. Zelada, Tesis de Licenciatura en Ciencias con mención en Física, Universidad de Chile, (1984).
- P.A. Tanner y M.-Y. Shen, Research Report AP-17-93, City University of Hong Kong. Tat Chee Avenue. Kowloon. China.
- P.A. Tanner y M.-Y. Shen, Spectrochimica Acta A 50 (1994) 997.

Publicación 3.

Vol. 105 (2004)

ACTA PHYSICA POLONICA A

No. 3

Spectral Intensities for the Emission $|{}^{4}S_{3/2}\Gamma_{8}\rangle \rightarrow |{}^{4}I_{15/2}\Gamma\rangle$ in the Cs₂NaErCl₆

R. Acevedo^a, A. Soto-Bubert^a, G. Navarro^b, T. Meruane^c and W. Stręk^d

^aDepartamento de Quimica Basica, Facultad de Ciencias Fisicas y Matematicas Universidad de Chile, Beauchef 850, Casilla 2777, Santiago, Chile
^bInstituto de Ciencias Básicas, Facultad de Ingeniería
Universidad Diego Portales, Av. Ejército No. 441, Casilla 298-V, Santiago, Chile
^cDepartamento de Quimica, Universidad Metropolitana de Ciencias de la Educacion, Av. J.P. Alessandri 774, Casilla 147-C, Santiago, Chile
^dInstitute of Low Temperature and Structure Research, Polish Academy of Science Okólna 2, 50-422 Wrocław, Poland

(Received November 5, 2003; in final form January 12, 2004)

We report explicit vibronic intensity calculations for the $|{}^{4}S_{3/2}\Gamma_{8}\rangle - |{}^{4}I_{15/2}\Gamma\rangle$ excitations in the Cs₂NaErCl₆ elpasolite-type systems, based upon new and updated experimental data, obtained from optical absorption measurements made at 10 K, in the energy range from 6,000 up to 26,000 cm⁻¹. Our calculation model is a generalization of the vibronic crystal field-ligand polarization method and the calculation is performed using a minimum set of adjustable parameters — all and each of them have a clear physical meaning. Our strategy was chosen so as to make a significant distinction with previous calculations, performed by other authors, who have worked out a model originated from a supra-parameterized scheme, within the framework of the superposition model of Newman. Throughout the course of the current work, it is shown that our model is suitable to handle this kind of calculations and also that the numerical results obtained are in fairly good agreement with experiment.

PACS numbers: 32.70.Cs

1. Introduction

Vibronic side bands are usually associated with electric dipole transition moments in centrosymmetric rare-earth systems. Several pioneer calculations cor-

responding to vibronic line strengths for these systems have been developed in a collection of papers by Judd [1], Richardson and co-workers [2-5] and Satten et al. [6]. In these research works, both the static and the dynamic contributions to the total transition dipole moments were included, and a calculation scheme was developed to parameterize the energy matrix as well as to modulate the observed spectral intensities. In all of these calculations, we have employed a seven atom model system (7-atoms), such as LnX_6^{3-} , where the Ln^{3+} ions are associated with octahedral sites of symmetry and are directly bonded to a total of six halide ions. However, less attention has been focused on non-centrosymmetric complex ions, though the models developed by Richardson et al. [2-5] are, in principle, suitable to accommodate any group-subgroup symmetry chain. It must be said that the vibronic side bands in non-centrosymmetric crystals are substantially weaker than the pure zero phonon line $(0 \rightarrow 0')$, though some stronger vibronic features are also to be expected. In passing, let us say that the weakness of vibronic lines in systems such as Eu^{3+} in LaNbO₄ were observed [7], nevertheless some stronger vibronic lines were also reported for other lanthanide(3+) type compounds [8], to a certain extent somehow unexpected. Also some stronger vibronic lines have been attributed to the ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$ emission for the Gd³⁺ ion, as reported by Blasse and Brixner [9]. A general conclusions may be stated as follows: the intensities of vibronic transitions may differ by, say an order of magnitude or so, depending upon the host lattice.

There is also available some solid evidence, which indicates that the vibronic spectra of systems such as Eu(AP)₆I₃ and Eu(AP)₆(ClO₄)₃, in centrosymmetric environments, show up the appearance of strong vibronic lines, most probably associated with high-energy internal ligand vibrations, their intensities being comparable with the transition combined with the metal chromophore [10]. In a latter work by Strek et al. [11], these authors took a general view of the general problem of vibronic transitions in lanthanide(3+) type compounds with reference to systems, in which internal ligand vibrations may be observed. The strategy followed by these authors was based upon the independent system model for which both the static and the dynamic contributions to the dipole strengths are taken into account. The main goal of their research was to work out identities to estimate amplitude of vibronic transitions associated with the internal ligand vibrations. They showed that the second-order theory is not adequate to rationalize the presence of high-energy phonon side bands in connection with these vibrations. It is also to be noticed that the lowest order non-vanishing terms, which are most likely to accommodate the ligand vibrations, are derived from a third-order perturbation calculations and, as a result, it is straightforward to conclude that the intensities associated with these vibronic lines should be weaker. Further studies were performed by Flint and Greenough [12] for Cr(3+) complex ions, in octahedral symmetry and also by Berry and co-workers [10] with reference to systems such as $Eu(AP)_6X_3$. In a subsequent work, Acevedo et al. [13, 14] showed that as for

the $Cr(NH_3)_6^{3+}$ ion, in the octahedral point molecular group, the observed vibronic intensities associated with vibrational modes of the same type and symmetries, corresponding to the odd-parity symmetry blocks (a) $\tau_{1u}[\delta(N-Cr-N), \rho(Cr-N-H)]$ and (b) $\tau_{2u}[\delta(N-Cr-N), \rho(Cr-N-H)]$ show intensities which are comparable in magnitude.

The most likely explanation lies on the generally accepted assumption, which suggests that the unexpected high observed intensity may be rationalized on the assumption that it is the NH_3 - lone pair motion out of the inter-nuclear axis Cr-N-H responsible for these spectral intensities. As for monoatomic ligand subsystems, the electronic spectra of lanthanide ions imbedded in cubic elpasolite crystals [15] show up magnetic dipole and/or electric quadrupole allowed electronic transitions together with extensive vibronic side bands.

It is known from experiment that the three $\Gamma_1 \rightarrow \Gamma_2 + \nu_k$, k = 3, 4, 6 transitions are the most intense features in the spectrum. In all previous calculations, using the 7-atom model, the basic assumptions have been as follows: (a) The coupling between the internal and the external modes of vibrations is either too small and/or negligible. (b) The potential energy surfaces of the terminal electronic states involved in the transition have the same shape and are only vertically displaced to one another, along the breathing mode coordinate (α_{1g}) and (c) The energy gap between the terminal electronic states is large enough so that the vibronic states may be represented, employing the crude Born-Oppenheimer approximation.

Richardson and co-workers [3, 5, 15–19] have applied vibronic coupling models to the parameterization of the vibronic intensities in the elpasolite-type crystals, within the framework of the approximations (a), (b), and (c), stated above in the text. In all of these calculations the strategy followed by these authors has been to rely upon rather full parameterization models, either when a combined crystal field-closure-ligand polarization or a generalization of the superposition models are employed [5, 17–25]. In spite of these authors efforts, it is known that the database available is either scarce or incomplete or both, then it does seem appropriate not to work with supra-parameterized models and instead, to develop vibronic schemes characterized as having a fewer parameters to be fitted from the available experimental data.

It is interesting to examine the physical basis of the superposition model of Newman [20-23]. A subsequent calculation performed by Richardson et al. [5] utilized an extension of this approach so as to fit the spectral intensities associated with transitions of the type $\Gamma_1 \rightarrow \Gamma_2 + \nu_6$, for the UBr₆²⁻ complex ion. In this paper, we found that the number of parameters to be fitted from experiment exceeds largely the available data.

In an additional effort, Acevedo et al. [26] focused the attention upon those factors: electronic and vibrational in character, which are most likely to play a major role in determining the spectral intensities for these systems. This re-

search work was carried out with reference to the two absorptions, namely the $\Gamma_6({}^2F_{7/2}) \rightarrow (\Gamma_7, \Gamma_8)({}^2F_{5/2}) + \nu_k$, involving the three odd parity normal modes of vibrations for the YbCl³⁻₆ clusters. In a recent paper, Acevedo and co-workers [27] reported vibronic calculations for the $|({}^4I_{15/2})\Gamma_k\rangle \leftarrow |({}^4I_{13/2})\Gamma_l\rangle$ emissions of the Er^{3+} ion, in the Cs₂NaErCl₆ elpasolite-type system.

Previous experimental and theoretical studies, performed by Richardson et al. [19, 28] and references therein, using a full parameterization approach, obtained an accurately determined set of energy levels for the $Cs_2NaErCl_6$ system, up to about 26,500 cm⁻¹. Also these authors based upon these results (eigenvalues and eigenfunctions) decided to work out transition dipole magnetic moments, which are shown to be in close agreement with the experimental data. Our approach [27] was based upon simple model calculations for some selected excitations of Er^{3+} ion, in the above mentioned host.

We concluded in principle that there are several sources for disagreement between the reported experimental data and our theoretical predictions. In order to explain some discrepancies, we may also argue that the reported assignments for a variety of peaks in the spectra is very likely to correspond to a juxtaposition of vibronic transitions, rather than unambiguously determined excitations. There are though some complexities which should be worked and analyzed further and many of the approximations were studied so as to accommodate a number of factors which are known to play a substantial role in the general theory of vibronic transitions and their intensity mechanisms. We appreciate the need for further and deeper theoretical works along these lines, and we have decided to study the $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle$ transitions in the Cs₂NaErCl₆ type elpasolite.

The choice of these excitations was influenced mainly by the rather unexpected intensity for these excitations, for which the static selection rule $\Delta J = 6$ is operative. New and updated experimental data for this system has been reported by Crooks et al. [29]. These authors reported the optical absorption measurements at 10 K for the Cs₂NaErCl₆ elpasolite in the energy range from 6,000 to 26,000 cm⁻¹. Their calculation was based upon what these authors regard as absolute line intensities for a number of transitions, and employing a vibronic version of the method of Newman [22] they worked out a set of optimized intrinsic intensity parameters for the $ErCl_6^{3-}$ complex ion. The model was tested and their results, at first glance, showed that the numerical overall agreement between experiment and the theoretical predictions seems to be reasonable. In spite of this apparent success, these authors claim that the signs of the $A_t^{-\lambda}$ parameters agree for all odd parity modes, with the exception of the sign for A_5^{-6} parameter, associated with the au_{2u} -bending mode (u_6). In their paper, the authors claimed that the overall signs for the intrinsic parameters $A_t^{-\lambda}$ are consistent with the signs found in other materials and for the zero-phonon case. In view of these and related calculations, performed somewhere else, we decided to tackle the vibronic intensity calculations for a number of transitions for which the static selection rule $\Delta J = 6$ becomes operative. Our model and strategy employed differs notably from that of Crooks et al. [29].

We will attempt to explain the observed intensities for this system, assuming a two steps photon radiative cascade ("a two-jump excitation path"), which certainly involves intermediate electronic states.

This paper is mainly devoted to the mechanistic aspects of radiative transitions and the need for developing more suitable and meaningful models to explain spectral intensities in relativistic systems. The calculation will be performed, using a seven atom system model.

The above is a consequence of the well known experimental evidences, which both suggests and indicates that for the radiative transitions the promoting modes are mainly localized on the ErCl_6^{3-} moiety [29]. The experiment validates the use of our seven atom system model to be employed throughout the course of the current work.

2. Synthesis and structural characterization

The sample was obtained by means of a solid state reaction, in N₂ atmosphere, utilizing stoichiometric quantities of CsCl, NaCl, and ErCl₆. Before the thermal treatment the product was dried out at 105°C so as to eliminate any residual of $n-C_6H_6$.

The thermal analysis technique (DTA/TGA) allowed us to find the most suitable temperatures to perform the thermal analysis and in this way, to facilitate the crystallization procedure for the system. As for the Cs₂NaErCl₆ elpasolite system, the critical crystallization temperature is reached at 837.9°C. Also the structural determination and the analysis of the impurities were performed, using X-ray fluorescence and the measured density was 3.62 ± 0.01 (pycnometer, LANGER 450, under vacuum). The structural characterization of this elpasolite system was obtained by means of X-ray diffraction measurements (DRX-powder studies) and the profiles were refined employing the method put forward by Rietveld [30]. The operational conditions of the X-ray generator were of 20 mA and 40 kV, with a Cu anode and a Ni filter, corresponding to a wavelength of about 1.5444 Å. The range scanned was from 12° up to 79° (2 θ) at room temperature. Finally, the average atomic positions were found as follows: $4\text{Er}^{3+}(0,0,0)$, $4\text{Na}^{+}(\frac{1}{2},\frac{1}{2},\frac{1}{2})$, $8\text{Cs}^{+}(\frac{1}{4},\frac{1}{4},\frac{1}{4})$, $24\text{Cl}^{-1}(\frac{1}{4},0,0)$, and the lattice parameter as follows: $a_0 = 10.7089$ Å.

3. Theoretical models and vibronic calculations

The formal theory of the vibronic coupling (vibronic crystal field-ligand polarization, VCF-LP) has been developed for both centrosymmetric and non-centrosymmetric complex ions, hosted in crystals in different space groups. Richardson et al. [3, 16, 24] (and references therein) have carried out a number of

calculations of vibronic intensities in the rare earths (ReZ_6^{2-}) and the lanthanide (LnZ_6^{3-}) halide complex ions. Similarly, and over the last two decades, our group has been engaged in spectral intensity calculations for the elpasolite-type systems, using a generalized version of the vibronic crystal field-with and without invoking closure approximation-ligand polarization model [26, 31-33].

As we explained in Sec. 1, we have decided to develop both a vibronic model and a calculation method to account for the observed intensities of the $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle (\Gamma = \Gamma_{6}, \Gamma_{7}, \Gamma_{8}^{a}, \Gamma_{8}^{b}, \Gamma_{8}^{c})$ emissions in the Er(3+) elpasolite-type system. It is interesting to realize that on the basis of new and updated experimental data [29] we observed that these excitations exhibit overall oscillator strengths of about 10^{-9} , and based upon theoretical considerations, we realize that for these transitions a one-step mechanism path, connecting the terminal electronic states, is most likely to induce intensities in the range of 10^{-10} to 10^{-12} , and therefore further theoretical work is needed.

As we showed in Sec. 2, the Cs2NaErCl6 elpasolite system belongs to the space group $Fm3m(O_h^5)$, and the Er^{3+} ions occupy octahedral sites of symmetry. The vibrational symmetry species for these crystals are as follows [34, 35]: $Na^+(\tau_{1u})$, $Cs^+(\tau_{1u} + \tau_{2g})$ and for the $ErCl_6^{3-}$ clusters, we obtain the vibrational representation: $\Gamma_{vib} = \alpha_{1g}(\nu_1) + \varepsilon_g(\nu_2) + \tau_{1u}(\nu_3) + \tau_{1u}(\nu_4) + \tau_{2g}(\nu_5) + \tau_{2u}(\nu_6)$. It can be noticed that, in addition to the fifteen degrees of freedom for the clusters, there are four lattice modes according to the following symmetry species: $2 au_{1u}$ (IR active), τ_{2g} (Raman active) and τ_{1g} (inactive). In a classic paper, Lentz [34] and latter Ning et al. [35] discussed the vibrations for both the A3B'X6 and the A2BB'X6 crystals. When a modified version of a valence type force field is employed, a total of ten unknown internal force constants are needed to estimate the fundamental vibrations in the k = 0 point. In these two papers [34, 35] the notation introduced by Lentz for the symmetry coordinates is preserved: S_i , i = 1-10 so as to describe the symmetry coordinates (along the polarization direction of the crystal). When this notation is adopted, the symmetry blocks become: α_{1g} (1×1), ε_{g} (1×1), τ_{1g} (1×1), τ_{1u} (4×4), τ_{2g} (2×2), and τ_{2g} (1×1).

The next step is to find a suitable potential energy function and by means of a semi-empirical method to solve the vibrational equations of motion, which will eventually lead us to solve the secular determinant $|GF - \lambda E| = 0$ [36, 37]. As for the intensity calculations, we are interested in obtaining the odd parity normal modes of vibrations for the system. A proper strategy involves solving the dynamic matrix, including both the short- and the long-range interaction terms. This is indeed a major task and a fairly complete set of new and updated experimental data for the crystal is required promptly.

A zero-order calculation, including only the short-range interaction contributions to the dynamic matrix, was performed for a series of selected elpasolite-type systems by Ning et al. [35]. This calculation was carried out for lanthanide elpasolite systems, using data obtained from room temperature to 10 K. Also, the 10 vibrational frequencies of the model, employed to modulate the crystals, were fitted using a modified version of the standard valence force field. An approximate set of internal coordinates was obtained, showing up to a first approximation the extent of the mixing in the internal and the external modes of vibrations (for additional details of this calculation, the reader is referred to the paper of these authors).

In our current work, we are aware that this task can partially be achieved, solving the equation of motion for the system, using as a basis the symmetry coordinates corresponding to the symmetry blocks: $\tau_{1u}(S_6, S_7, S_8, S_9)$ and $\tau_{2u}(S_{10})$. Next, we write the transformation matrix S = LQ, which relates the set of the symmetry coordinates to the corresponding set of normal coordinates of the system. It is well known that the L matrix depends upon the details of the interacting vibrational force field, i.e., L = L(F). Also, the extent of the coupling between the internal and the external modes of vibrations for the crystal is small [29], because of the assumption that the more efficient promoting modes belonging to the clusters ErCl₆³⁻ seem to be appropriate and well founded. A close examination of Refs. [34, 35] indicates that if this coupling is neglected then we may make the following symmetry assignments: $S_6 = S$ (stretching; τ_{1u}), $S_7 = S$ (bending; τ_{1u}). Thus and within the seven atom system approximation, the odd-parity normal modes of vibrations corresponding to the three moiety modes may be written as follows: $S_{3t} = L_{33}Q_{3t} + L_{34}Q_{4t}$, $S_{4t} = L_{43}Q_{3t} + L_{44}Q_{4t}$, and $S_{6t} = L_{66}Q_{6t}$: t = a, b, c [38-40]. We recognize that this calculation is rather approximate and the long-range interaction contributions to the dynamic matrix were left out, therefore a re-examination of the methodology employed is most needed, in any future model calculation.

3.1. The vibronic crystal field-closure-model (VCF-closure-model)

In this section we give a short review of the relevant master equations used throughout the course of current work to estimate the vibronic crystal field-closure contribution to the total transition dipole moment, for parity forbidden but vibronically allowed $f \rightarrow f$ electronic transition in cubic environments. For details concerning the derivations of equations and the approximations employed, the reader is referred to Refs. [26, 29, 40]. In a previous paper [27] we showed some basic equations which enabled us to deal with the vibronic intensity calculations for the seventy five vibronically allowed $|({}^{4}I_{15/2})\Gamma_k\rangle \rightarrow |({}^{4}I_{13/2})\Gamma_l\rangle + \nu_m$, m = 3, 4, 6, absorptions in this elpasolite.

In this work we will introduce a more sophisticated model and a set of master, symmetry adapted equations to deal with these vibronic intensity calculations. It can be shown [33, 38, 39] that when closure is adopted, the explicit nature of these intermediate electronic states becomes totally irrelevant except for the choice of some kind of effective energy gap. The latter corresponds to a virtual $f \rightarrow d$ and/or $f \rightarrow g$ excitations.

Thus for the $|\alpha_1(L_1SJ_1)\Gamma_1\gamma_1l\rangle \rightarrow |\alpha_2(L_2SJ_2)\Gamma_2\gamma_2m\rangle$ electronic transition, the β -th component to the transition dipole moment (VCF-closure-model) becomes

$$\mu_{1\to2}^{\mathrm{CF},\beta} = -\frac{2Ze}{\Delta E} \sum_{\nu_{t}} S_{\nu_{t}} \sum_{\Gamma,\gamma} \sum_{i,\tau} A_{\nu_{t}}^{\Gamma\gamma}(i,\tau) \sum_{\overline{\Gamma},\overline{\gamma}} \lambda(\overline{\Gamma})^{1/2} (-1)^{\overline{\Gamma}+\overline{\gamma}^{+}} \\ \times V \begin{pmatrix} T_{1} & \Gamma & \overline{\Gamma} \\ \beta & \gamma & \overline{\gamma}^{+} \end{pmatrix} (-1)^{\Gamma_{1}+\gamma_{1}^{+}} \sum_{u} V_{u} \begin{pmatrix} \Gamma_{1} & \Gamma_{2} & \overline{\Gamma} \\ \gamma_{1}^{+} & \gamma_{2} & \overline{\gamma} \end{pmatrix} \\ \times \langle \alpha_{1}(L_{1}SJ_{1})\Gamma_{1}l \parallel O^{\overline{\Gamma}}(T_{1}\Gamma|i,\tau) \parallel \alpha_{2}(L_{2}SJ_{2})\Gamma_{2}m \rangle_{u}.$$
(1)

Next, when the symmetry adapted vibronic crystal field coefficients $W_{(k,u)}^{[(T_1\Gamma)\overline{\Gamma};i,\tau]}[\Gamma_1J_1|\Gamma_2J_2]$ are introduced, we may write the identity

$$\langle \alpha_1(L_1SJ_1)\Gamma_1l \parallel O^{\overline{\Gamma}}(T_1\Gamma|i,\tau) \parallel \alpha_2(L_2SJ_2)\Gamma_2m \rangle_u$$

$$= \sum_k W^{[(T_1\Gamma)\overline{\Gamma};i,\tau]}_{(k,u)}[\Gamma_1J_1|\Gamma_2J_2] \langle \alpha_1(L_1S)J_1 \parallel C^k \parallel \alpha_2(L_2S)J_2 \rangle,$$
(2)

where

$$W_{(k,u)}^{[(T_{1}\Gamma)\overline{\Gamma};i,\tau]}[\Gamma_{1}J_{1}|\Gamma_{2}J_{2}] = \sum_{\gamma_{1},\gamma_{2},\gamma} (-1)^{\Gamma_{1}+\gamma_{1}^{+}} \\ \times V_{u} \begin{pmatrix} \Gamma_{1} & \Gamma_{2} & \overline{\Gamma} \\ \gamma_{1}^{+} & \gamma_{2} & \overline{\gamma} \end{pmatrix} \sum_{M_{1},M_{2},q} C^{*}(\alpha_{1}J_{1}M_{1}|\Gamma_{1}\gamma_{1}l) \\ \times C(\alpha_{2}J_{2}M_{2}|\Gamma_{2}\gamma_{2}m)P_{k,q}^{\overline{\Gamma}\overline{\gamma}}(T_{1}\Gamma|i,\tau)(-1)^{\Gamma_{1}+\gamma_{1}^{+}} \begin{pmatrix} J_{1} & k & J_{2} \\ -M_{1} & q & M_{2} \end{pmatrix}.$$
(3)

Full tabulations for the vibronic crystal field coupling constants $A_{\nu_t}^{\Gamma\gamma}(i,\tau)$, the symmetry adapted V-coefficients, the coupled vibronic operators $O^{\overline{\Gamma}}(T_1\Gamma|i,\tau)$, the 3*j*-symbols, and the symmetry coordinates may be found in [33, 38-40] and references therein. Also, further details and tabulations may be obtained upon request from R.A.

3.2. The vibronic ligand polarization model (VLP-model)

For isotropic ligands, the dynamic contribution to the total transition dipole moment adopts a rather simple form. Thus, the ε -th vector component may be written as given below

$$\mu_{1 \to 2}^{\mathrm{LP},\varepsilon} = (-1)^{\Gamma_1 + \lambda_1^+} \sum_{k,t} S_{kt} \sum_{\Gamma,\gamma} \sum_{i,\tau} B_{k,t}^{\Gamma\gamma,\varepsilon}(i,\tau) \sum_r V_r \begin{pmatrix} I_1 & I_2 & I \\ \gamma_1^+ & \gamma_2 & \gamma \end{pmatrix}$$
$$\times \langle \alpha_1(L_1SJ_1)\Gamma_1 l \parallel M^{\Gamma}(i,\tau) \parallel \alpha_2(L_2SJ_2)\Gamma_2 m \rangle_r.$$
(4)

656

240

Spectral Intensities for the Emission
$$|{}^{4}S_{3/2}\Gamma_{8}\rangle \rightarrow |{}^{4}I_{15/2}\Gamma\rangle \dots 241$$

The reduced matrix elements, on the right hand side of the above identity may be further simplified, by taking advantage of the irreducible tensor algebra [41-46]. To achieve this simplification, we define the symmetry adapted coefficients as given below

$$Z_{(i,\tau)r}^{\Gamma}[l\Gamma_{1}J_{1}|m\Gamma_{2}J_{2}] = \sum_{\gamma_{1},\gamma_{2},\gamma} (-1)^{\Gamma_{1}+\gamma_{1}^{+}} V_{r} \begin{pmatrix} \Gamma_{1} & \Gamma_{2} & \Gamma \\ \gamma_{1}^{+} & \gamma_{2} & \gamma \end{pmatrix}$$

$$\times \sum_{M_{1},M_{2}} \sum_{q} R_{i,q}^{\Gamma\gamma}(\tau) C^{*}(\alpha_{1}J_{1}M_{1}|\Gamma_{1}\gamma_{1}l)$$

$$\times C(\alpha_{2}J_{2}M_{2}|\Gamma_{2}\gamma_{2}m)(-1)^{J_{1}-M_{1}} \begin{pmatrix} J_{1} & i & J_{2} \\ -M_{1} & q & M_{2} \end{pmatrix}$$
(5)

for r = 1, 2. Thus, in terms of these coefficients, we may write the general identity

$$Z_{(i,\tau)r}^{\Gamma}[l\Gamma_{1}J_{1}|m\Gamma_{2}J_{2}]\langle\alpha_{1}(L_{1}S)J_{1}||D^{i}||\alpha_{2}(L_{2}S)J_{2}\rangle,$$

$$Z_{(i,\tau)r}^{\Gamma}[l\Gamma_{1}J_{1}|m\Gamma_{2}J_{2}]\langle\alpha_{1}(L_{1}S)J_{1}||D^{i}||\alpha_{2}(L_{2}S)J_{2}\rangle,$$
(6)

where

$$D_m^l = -(er^l)\sqrt{\frac{4\pi}{2l+1}}Y_{lm}(\theta,\phi).$$

The actual evaluation of these coefficients may be accomplished utilizing the tabulations given by Griffith [44], Dobosh [45], and Rotemberg et al. [46].

3.3. Application: the $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |{}^{4}I_{15/2})\Gamma\rangle$ emissions for the $ErCl_{6}^{3-}$ ions in $Cs_2NaErCl_{6}$ crystal

Richardson et al. [19, 47] (and references therein) studied the optical excitation and emission spectra for this material. Detailed assignments were suggested for both the ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ and the ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ emissions. These experimental results together with previous experimental studies allowed these authors to locate about 35 crystal field energy levels spanning 11 multiplets of the Er^{3+} ion in the Cs₂NaErCl₆ crystal. The energy levels obtained by an optimization procedure provided good agreement with experiment.

Excitation spectra for the ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ emission were reported at several temperatures over the 340-540 nm spectral region. It was found that the intensity of the bands observed in this region decrease as the temperature of the sample is increased. The exception is the ${}^{4}G_{11/2} \rightarrow {}^{4}I_{13/2}$ emission, for which it is observed that its intensity increases as the temperature increases. A very detailed discussion may be found in [19], regarding the line assignments for this transition at 15 K (the reader is referred to Fig. 1 and Table IV in Ref. [19]).

In a latter paper, Tanner et al. [48] undertook a thorough analysis of the spectral data and made comparative energy level parameterizations for the trivalent lanthanide ions in cubic elpasolite systems. The reader is referred to Table 15

(energy levels for the Cs₂NaErCl₆ and Cs₂LiErCl₆ elpasolites) and to Fig. 4 (luminescence spectra of the Cs₂NaErCl₆ and Cs₂LiErCl₆ elpasolites at 20 K), in Ref. [48], for details of the assignments and spectral intensities between 18.200 and 17.660 cm⁻¹. It is clear from these experimental works that all and each of the assignments have been done on the basis of a simple and direct one-photon transitions, assisted by the odd parity normal modes of the ErCl₆³⁻ clusters in these elpasolites. It may also be observed from the spectra reported by Richardson et al. [19] and Tanner et al. [48] that the understanding of the intensity mechanisms associated with the ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ and the ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ emissions is by no means a trivial task, by employing a simple and direct one-photon mechanism.

As we shall see, the observed spectral intensity for the assigned excitation is about 10^{-9} (somehow an unexpected high value for the oscillator strengths. A static $\Delta J = 6$ selection rule is in this case operative and therefore, a conventional and straightforward calculation would be both inadequate and unrealistic). In this research paper, we have decided to focus our attention upon the ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ emissions in the Cs₂NaErCl₆ crystal, for which a conventional calculation would produce a calculated oscillator strengths in the range of $10^{-10}-10^{-12}$.

New and updated experimental data [29] indicates that the observed overall spectral intensities are at least one order of magnitude stronger (10^{-9}) and we also notice from the spectra that the associated vibronic structure is rich. As it was told previously, the assignments have been made on the basis of a vibronic, one-photon electric dipole mechanism involving transitions of the type: $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle + \nu_{m}, m = 3, 4, 6.$

The main goal of this research work is to focus our attention upon those mechanistic factors, which are most likely to both influence and determine the observed oscillator strengths for this type of systems. Our mechanistic assumption to account for the observed spectral intensity should be regarded as a first attempt to remove many of the approximations employed in previous vibronic intensity calculations for a variety of systems.

Due to the fact that for these excitations the selection rule $\Delta J = 6$ is operative and also that the reported spectral intensity is about 10^{-9} [29], we will assume a "two-step quantum jump" as the intensity mechanism, whereby the $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle$ emissions acquire their intensities from a radiative path, given by the chain: $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{11/2})\Gamma'\rangle \rightarrow |({}^{4}I_{15/2})\rangle$, with full participation of tensor operators of ranks 4 and 2, respectively.

When the above intensity mechanism is adopted, the overall $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle$ emissions borrow their intensities from two sources, namely the $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{11/2})\Gamma'\rangle$ and the $|({}^{4}I_{11/2})\Gamma'\rangle \rightarrow |({}^{4}I_{15/2})\rangle$ excitations. Next and for the sake of simplicity in the notation, we will label the terminal electronic states as follows: $|1\rangle = |({}^{4}S_{3/2})\Gamma_{8}\rangle, |2'\rangle = |({}^{4}I_{11/2})\Gamma'\rangle$ and $|3\rangle = |({}^{4}I_{15/2})\Gamma\rangle$.

Within the framework of this proposed intensity mechanism, the transition dipole moment may be (within the constraints of our assumption) partitioned into

two contributions to give

$$\mu_{1\to 2} = \mu_{1\to 2'}(k=4) + \mu_{2'\to 2}(k=2), \tag{7}$$

where the rank of the tensors connecting the terminal vibronic states are given in brackets.

A close look at Eqs. (1), (2) and (3) indicates that within the framework of a VCF-closure-LP model, the relevant matrix elements to be evaluated are as follows: (a) for the VCF-model: $\langle \alpha_1(L_1SJ_1)\Gamma_1l \parallel O^{\overline{\Gamma}}(T_1\Gamma|i,\tau) \parallel \alpha_2(L_2SJ_2)\Gamma_2m \rangle_r$ and (b) for the VLP-model: $\langle \alpha_1(L_1SJ_1)\Gamma_1l \parallel M^{\Gamma}(i,\tau) \parallel \alpha_2(L_2SJ_2)\Gamma_2m \rangle_r$, where r = 1, 2 when applicable.

Next we list in Table I the symmetry constraints for operators and vibronic states involved in our mechanism proposal.

The $ ({}^{4}S_{3/2})\Gamma_{8}\rangle$	-	$ ({}^{4}I_{15/2})\Gamma\rangle$	+	ν_m	(m	=	3, 4, 6)	emissions	in
Cs2NaErCl6.									

TABLE I

Terminal states Intermediate		Symmetry of the operators		
$ 1\rangle \rightarrow 2\rangle$	states $ 2'\rangle$	$ 1\rangle \rightarrow 2'\rangle$	$ 2'\rangle \rightarrow 2\rangle$	
$\Gamma_8 \rightarrow \Gamma_6$	Γ_6	$\Gamma_3, \Gamma_4, \Gamma_5$	-	
$\Gamma_8 \rightarrow \Gamma_6$	Γ_7	$\Gamma_3, \Gamma_4, \Gamma_5$	Γ_5	
$\Gamma_8 \rightarrow \Gamma_6$	a,b[8	$\Gamma_1, \Gamma_3, {}^{a,b}\Gamma_4, {}^{a,b}\Gamma_5$	Γ_3, Γ_5	
$\Gamma_8 \rightarrow \Gamma_7$	Γ_{6}	$\Gamma_3, \Gamma_4, \Gamma_5$	Γ_5	
$\Gamma_8 \rightarrow \Gamma_7$	Γ_7	$\Gamma_3, \Gamma_4, \Gamma_5$	-	
$\Gamma_8 \rightarrow \Gamma_7$	a,b[8	$\Gamma_1, \Gamma_3, {}^{a,b}\Gamma_4, {}^{a,b}\Gamma_5$	Γ_3, Γ_5	
$\Gamma_8 \rightarrow a, b, c\Gamma_8$	Γ_6	$\Gamma_3, \Gamma_4, \Gamma_5$	Γ_3, Γ_5	
	Γ_7	$\Gamma_3, \Gamma_4, \Gamma_5$	Γ_3, Γ_5	
	^{<i>a</i>,<i>b</i>} Γ_8	$\Gamma_1, \Gamma_3, {}^{a,b}\Gamma_4, {}^{a,b}\Gamma_5$	Γ_3 , ${}^{a,b}\Gamma_5$	

Next we rewrite Eqs. (1) and (4) as given below

$$\mu_{1 \to 2}^{\mathrm{CF},\alpha} = \sum_{k,t} U_k^{\mathrm{CF},\alpha} S_{kt} \tag{9}$$

and, for the ligand polarization contribution, the identity becomes

$$\mu_{1\to2}^{\mathrm{LP},\alpha} = \sum_{k,t} U_k^{\mathrm{LP},\alpha} S_{kt}.$$
(10)

The symmetry coordinates S are related to the normal coordinates by means of the transformation matrix S = LQ, where L = L(F), that is the L matrix depends upon the details of the interacting vibrational force field. Furthermore, when the coupling between the internal and the external modes of vibrations of the same symmetry is neglected, the L matrix becomes

$$\boldsymbol{L} = \begin{pmatrix} L_{33} & L_{34} & 0\\ L_{43} & L_{44} & 0\\ 0 & 0 & L_{66} \end{pmatrix}.$$
 (11)

Further and for the sake of completeness and simplicity, we will introduce the $\beta_k^{M,\alpha}$ quantities for k = 3, 5, 6 and M = CF or LP, and we write the transformations

$$\begin{pmatrix} \beta_3^{M,\alpha} \\ \beta_4^{M,\alpha} \\ \beta_6^{M,\alpha} \end{pmatrix} = \begin{pmatrix} L_{33} & L_{43} & 0 \\ L_{34} & L_{44} & 0 \\ 0 & 0 & L_{66} \end{pmatrix} \begin{pmatrix} U_3^{M,\alpha} \\ U_4^{M,\alpha} \\ U_6^{M,\alpha} \end{pmatrix}, \quad \text{where } \alpha = 0, \pm 1.$$
 (12)

It is important to realize that the mixing in of the two τ_{1u} moiety symmetry coordinates is essential to describe the normal modes of vibrations for the ErCl_6^{3-} cluster in the Cs₂NaErCl₆.

The extent of the mixing depends critically upon the details of the vibrational force field (F). In this work we follow the convention put forward by Griffith, for point molecular groups [41, 44], and the component of the electric dipole operator in the natural basis is related to the Cartesian basis as follows:

$$\begin{pmatrix} \mu_{+1} \\ \mu_{0} \\ \mu_{-1} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0 \\ +\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mu^{X} \\ \mu^{Y} \\ \mu^{Z} \end{pmatrix}.$$
(13)

In Table II we collect together both the crystal field $U_k^{\text{CF},0}$ and the ligand polarization $U_k^{\text{LP},0}$ electronic factors, see Eqs. (9) and (10).

Next a close look at Eqs. (9)-(12) suggests that the total oscillator strength for each of the vibronic origins may be written as follows:

$$D_{1 \to 2}(\nu_k) = \sum_{\alpha=0,\pm 1} \left\{ \left[\beta_k^{\text{CF},\alpha} \right]^2 + \left[\beta_k^{\text{LP},\alpha} \right]^2 + 2 \left[\left(\beta_k^{\text{CF},\alpha} \right) \left(\beta_k^{\text{LP},\alpha} \right) \right] \right\}$$
$$\times |\langle 0|Q_k|1 \rangle|^2 = D_{1 \to 2}^{\text{CF}} + D_{1 \to 2}^{\text{LP}} + D_{1 \to 2}^{\text{CF},\text{LP}}.$$
(14)

The above identity indicates that the total oscillator strength for each vibronic origin (ν_k , k = 3, 4, 6) is made up of three terms: the crystal field (VCF), the ligand polarization (VLP), and the interference (CF, LP). The latter coupled interaction term results from the coupling among the crystal field and the ligand polarization transition dipole moments.

It is interesting to bear in mind that this so-called interference term is a signed quantity, and therefore it may either sum or subtract intensity from the diagonal terms VCF and VLP, respectively.

The above discussion is relevant and therefore we should choose the phases of both the wave functions and the tensor operators correctly to obtain the right sign for this cross term (CF, LP). Furthermore, a close look at Table II indicates that in units of the electron charge the electronic factors $V_k^{M,\alpha}$ for M = CF or LP, k = 3, 4, 6 and $\alpha = 0, \pm 1$ have been expressed in terms of quantities such as:

244

TABLE II

245

Crystal field (the correspo though in uni	contributions. The V_k^{CF} nding values for the lip ts of $a_{4,2}$).	$U_k^{CF,0} = (U_k^{CF,0}/C_{4,2}), k = 1$ gand polarization model	3, 4, 6 electronic factors are given in brackets,
$(1\rangle \rightarrow 2'\rangle)$	$V_3^{\rm CF,0}$	$V_4^{CF,0}$	$V_6^{CF,0}$
		[[10 00050 [10 00142]	0 01122 [10 00074]

$(1\rangle \rightarrow 2'\rangle)$	$V_3^{CF,0}$	V ₄	V ₆
$\Gamma_8 \rightarrow \Gamma_6$	-0.07620 [-0.44513]	+0.02856 [+0.29143]	-0.01122 [+0.08874]
$\Gamma_8 \rightarrow \Gamma_7$	-0.18450 [-0.18752]	+0.06918 [+0.27636]	+0.19376 [-0.23724]
$\Gamma_8 \rightarrow {}^{a}\Gamma_8$	+0.02730 [-1.08530]	-0.01020 [-0.40020]	-0.14936 [+0.46748]
$\Gamma_8 \rightarrow {}^b\Gamma_8$	+0.15416 [+3.04050]	-0.05780 [+1.23930]	-0.03464 [+0.40546]
$(2'\rangle \rightarrow 2\rangle)$	V ₃ ^{CF,0}	$V_4^{CF,0}$	$V_6^{ m CF,0}$
$\Gamma_6 \rightarrow \Gamma_7$	+ 0.01068 [+0.09062]	+0.00534 [-0.03398]	0 [-0.056640]
$\Gamma_6 \rightarrow {}^a\Gamma_8$	-0.011340 [-0.00100]	-0.005670 [+0.00040]	0 [+0.015020]
$\Gamma_6 \rightarrow {}^b\Gamma_8$	-0.004260 [-0.338780]	-0.002130 [+0.12704]	0 [+0.136460]
$\Gamma_6 \rightarrow \Gamma_8$	-0.146860 [-0.30196]	-0.073430 [+0.11324]	0 [-0.23422]
$\Gamma_7 \rightarrow \Gamma_6$	+0.004410 [+0.03744]	+0.00220 [-0.01404]	0 [-0.02340]
$(2'\rangle \rightarrow 2\rangle)$	$V_3^{CF,0}$	$V_4^{ m CF,0}$	$V_6^{ m CF,0}$
$\Gamma_7 \rightarrow {}^a\Gamma_8$	+0.06530 [+0.15840]	+0.03266 [-0.05940]	0 [-0.03756]
$\Gamma_7 \rightarrow {}^b\Gamma_8$	-0.019180 [+0.14788]	+0.009590 [-0.05546]	0 [-0.07486]
$\Gamma_7 \rightarrow {}^c\Gamma_8$	+0.013700 [+0.16452]	+0.00685 [-0.06168]	0 [-0.02580]
${}^{a}\Gamma_{8} \rightarrow \Gamma_{6}$	0 [0]	0 [0]	0 [0]
${}^{a}\Gamma_{8} \rightarrow \Gamma_{7}$	-0.056240 [+0.46054]	-0.028120 [-0.17270]	0 [-0.18308]
${}^{a}\Gamma_{8} \rightarrow {}^{a}\Gamma_{8}$	+0.001880 [-0.17674]	+0.000940 [+0.06628]	0 [+0.11046]
$(2'\rangle \rightarrow 2\rangle)$	$V_3^{CF,0}$	$V_4^{ m CF,0}$	$V_6^{ m CF,0}$
${}^{a}\Gamma_{8} \rightarrow {}^{b}\Gamma_{8}$	+0.094620 [+0.20862]	+0.047310 [-0.07822]	0[+0.22938]
${}^{a}\Gamma_{8} \rightarrow {}^{c}\Gamma_{8}$	+0.096140 [-0.05464]	+0.048070 [+0.02048]	0 [+0.03414]
${}^{b}\Gamma_{8} \rightarrow \Gamma_{6}$	0 [0]	0 [0]	0 [0]
${}^{b}\Gamma_{8} \rightarrow \Gamma_{7}$	-0.070640 [+0.18416]	-0.035320 [-0.06904]	0 [-0.08766]
${}^{b}\Gamma_{8} \rightarrow {}^{a}\Gamma_{8}$	+0.09614 [+0.16142]	+0.048070 [-0.06054]	0 [+0.23248]
${}^{b}\Gamma_{8} \rightarrow {}^{b}\Gamma_{8}$	-0.011200 [-0.00312]	-0.005600 [+0.00118]	0 [-0.02644]
${}^{b}\Gamma_{8} \rightarrow {}^{c}\Gamma_{8}$	-0.004300 [-0.03536]	-0.002150 [+0.01326]	0 [-0.00452]

 $C_k = \frac{2e^2(r^k)}{[\Delta E]R_0^{k+1}}$ for the crystal field and $A_k = \frac{\overline{\alpha}_L(r^k)}{R_0^{k+3}}$ for the ligand polarization models.

The final step is the evaluation of the oscillator strengths and relative vibronic intensity distributions for the three odd parity vibrational modes of motion. All this was carried out within the set of approximation introduced in our current model previously and also in Ref. [27]. We display our result and their comparison, when available with experiment, in Table IIIA, whereas in Table IIIB we collect parameter values employed in the calculation.

TABLE IIIA

Total oscillator strengths and relative vibronic intensities. The $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle$ emissions for the Cs₂NaErCl₆ crystal.

The ${}^{4}S_{3}$	$_{2}U' \rightarrow {}^{4}I_{15/}$	$_2E'$ emission			
				t = 3	0.01269
Oscillato	r strengths	1.085×10^{1}	$^{1}\langle Q(\nu_{t})\rangle^{2}\Delta\nu_{t}$	t = 4	0.02873
				t = 6	0.03948
Interm.	f_3	f_4	f_6	$f_3: f_4: f_6$	Experimental
E'_{11}	0.0007665	0.0006091	0.0000553		
$E''_{\frac{11}{11}}$	0.0005926	0.0012842	0.0012199		
$U_{\frac{11}{2}}^{\prime a}$	0.0006510	0.0000804	0.0004896	1.00:1.77:1.03	1.0:2.8:1.8
$U_{\frac{11}{2}}^{'b}$	0.0005419	0.0010084	0.0008646		
	0.0025520	0.0029821	0.0026294		
Total os	cillator stren	gth: $f = 1.5$	66×10^{-9}	in units of A_4^2	$A_4 = 0.000438e$
The ${}^4S_{3}$	$_{2}U' \rightarrow {}^{4}I_{15/}$	$_2E''$ emission	1		
	- ,			t = 3	0.01286
Oscillato	r strengths	$1.085 \times 10^{11} \langle Q(\nu_t) \rangle^2 \Delta \nu_t$		t = 4	0.02911
				t = 5	0.03999
Interm.	f_3	f_4	f_6	$f_3: f_4: f_6$	Experimental
E' <u>11</u>	0.0005414	0.0014992	0.0013997		
E''_11	0.0016769	0.0014002	0.0022554		
U'a 11	0.0034336	0.0308100	0.0141085	1.00:11.83:3.20	1.0:0.7:2.3
$U_{\frac{11}{2}}^{\prime b}$	0.0016834	0.0530646	0.0057426		
	0.0073353	0.0867740	0.0235062		
Total osc	cillator stren	gth: $f = 2.2$	56×10^{-8}	in units of A_4^2	$A_4 = 0.000438e$
The ${}^4S_{3/}$	$_2U' \rightarrow {}^4I_{15/2}$	$_2U'^a$ emissio	n		
				t = 3	0.01288
Oscillato	r strengths	$1.085 \times 10^{11} \langle Q(\nu_t) \rangle^2 \Delta \nu_t$		t = 4	0.02915
				t = 5	0.04005
Interm.	f_3	f_4	f_6	$f_3:f_4:f_6$	Experimental
E'_{11}	0.0016242	0.0000466	approx. 0		
E''_11	0.0062545	0.0113627	0.0007730		
$U_{11}^{\prime a}$	0.0059531	0.0029733	0.0012936	1.00:0.53:0.35	1.0:2.0:0.6
U'b 11	0.0016110	0.0017752	0.0086588		
4	0.0306428	0.0161578	0.0107254		
Total osc	cillator stren	gth: $f = 1.10$	14×10^{-8}	in units of A_4^2	$A_4 = 0.000438e$

TABLE IIIA (cont.)

The ${}^{4}S_{3}$	$_{/2}U' \rightarrow {}^{4}I_{15/}$	2U'b emissio	n	*		
				t = 3	0.01284	
Oscillato	or strengths	1.085×10^{1}	$^{11}\langle Q(\nu_t)\rangle^2 \Delta \nu_t$	t = 4	0.02906	
				t = 5	0.04005	
Interm.	f_3	f_4	f_6	$f_3: f_4: f_6$	Experimental	
$E'_{\frac{11}{2}}$	0.0191483	0.0088604	0.0041532			
E''_11	0.0002273	0.0007612	0.0017422			
U'a 11	0.0196953	0.0150938	0.0009748	1.00:0.83:0.20	1.0:0.8:2.1	
U'11	0.0013187	0.0086250	0.0010944			
2	0.0403896	0.0333404	0.0079380			
Total oscillator strength: $f = 1.567 \times 10^{-8}$		67×10^{-8}	in units of A_4^2	$A_4 = 0.000438e$		
The ${}^{4}S_{3}$	$_{\prime_2}U' \rightarrow {}^4I_{15/}$	₂ U' ^c emission	n			
				t = 3	0.01267	
Oscillato	r strengths	trengths $1.085 \times 10^{11} \langle Q(\nu_t) \rangle^2 \Delta \nu_t$ $t =$		t = 4	0.02869	
				t = 5	0.03942	
Interm.	f_3	f_4	f_6	$f_3: f_4: f_6$	Experimental	
E'_{11}	0.0766383	0.0200457	0.0169231			
$E''_{\frac{11}{2}}$	0.0006234	0.0004935	0.0011314			
U'a 11	0.0024846	0.0003672	0.0000197	1.00:0.32:0.23	1.0:1.0:1.6	
U'b 11	0.0015052	0.0054913	0.0010052			
-	0.0812515	0.0262977	0.0190794			
Total osc	illator stren	gth: $f = 2.43$	32×10^{-8}	in units of A_4^2	$A_4 = 0.000438e$	

As for the notation: the irreducible representations Γ_6 , Γ_7 , Γ_8 can also be labeled as E', E'', U' according to Mullikan. Interm. = Intermediate.

Crooks et al. [29] reports a number of vibronic oscillator strengths for a series of absorption transitions at 20 K from the $|({}^{4}I_{15/2})a\Gamma_{8}\rangle$ state to excited electronic energy levels for Er^{3+} ion in $\mathrm{Cs}_{2}\mathrm{NaErCl}_{6}$. The tabulated ν_{3} and ν_{4} vibrational frequencies correspond to the transversal optical (TO) modes, whereas the ν_{6} -vibrational frequency is associated with the zone boundary (ZB) mode. The reader is warned to look throughout the Table III with caution. As for the absorption $|({}^{4}I_{15/2})a\Gamma_{8}\rangle \rightarrow |({}^{4}S_{3/2})a\Gamma_{8}\rangle$ excitation, both the absolute line strengths and relative vibronic intensity calculations are displayed for the sake of comparison and completeness along the discussion.

From Table IV it is seen that as for the overall oscillator strength associated with the excitation: $|({}^{4}I_{15/2})a\Gamma_{8}\rangle \rightarrow |({}^{4}S_{3/2})\Gamma_{8}\rangle$, we find: $f = 1.727 \times 10^{-8}$. We observe that with the exception of the intensity induced by the $\nu_{4}(\tau_{1u})$ -bending mode of the cluster, our model is able to rationalize and reproduce

TABLE IIIB

Data set and calculated crystal field energy levels.

Parameter values	Coeffici	ent values		
$\langle r^2 \rangle = 0.2325 \times 10^{-16} \text{ cm}^2$	CF: $C_2/C_4 = \langle r^2 \rangle R_0^2 / \langle r^4 \rangle = 11.1$			
$\langle r^4 \rangle = 0.1527 \times 10^{-32} \text{ cm}^4$	LP: $A_2/A_4 = 11.1$			
$R_0({\rm Er-Cl}) = 2.70$ Å	$C_4/A_4 = (2e^2 I$	$R_0^2/\alpha_L \Delta E) = 6.27$		
ΔE aproximately 90,000 cm ⁻¹	$A_4 = 0$).000438e		
Vibrational parameters				
$\nu_3 = 255 \text{ cm}^{-1}$	$\langle Q(\nu_3) \rangle^2 = 6.59 \times 10^{-18}$	$L_{33} = 0.20, \ L_{34} = 0.01$		
$\nu_4 = 114 \text{ cm}^{-1}$	$\langle Q(\nu_4) \rangle^2 = 1.48 \times 10^{-17}$	$L_{43} = -0.13, \ L_{44} = -0.29$		
$\nu_3 = 85 \text{ cm}^{-1}$	$\langle Q(\nu_6) \rangle^2 = 2.03 \times 10^{-17}$	$L_{33} = 0.2375$		
Crystal field ene	ergy levels			
$E(\frac{3}{2}U')$	$18,265 \text{ cm}^{-1}$			
$E(\frac{11}{2}E')$	$10,151 \text{ cm}^{-1}$			
$E(\frac{11}{2}aU')$	$10,176 \text{ cm}^{-1}$			
$E(\frac{11}{2}bU')$	$10,182 \text{ cm}^{-1}$			
$E(\frac{11}{2}E'')$	$10,208 \text{ cm}^{-1}$			
$E(\frac{15}{2}aU')$	0 cm^{-1}			
$E(\frac{15}{2}E'')$	25 cm^{-1}			
$E(\frac{15}{2}bU')$	55 cm^{-1}			
$E(\frac{15}{2}E')$	257 cm^{-1}			
$E(\frac{15}{2}cU')$	284 cm^{-1}			
		TABLE IV		

Total oscillator strength and experimental and calculated vibronic intensity distribution for $|({}^{4}I_{15/2})a\Gamma_{8}\rangle \rightarrow |({}^{4}S_{3/2})\Gamma_{8}\rangle$ excitations.

$f/10^{-8}$	$[a]^a$	[b] ^b	$[c]^c$
0.519	1.00	1.00	1.00
0.929	1.79	1.73	0.53
0.279	0.54	1.65	0.35
	$f/10^{-8}$ 0.519 0.929 0.279	$\begin{array}{c c} f/10^{-8} & [a]^a \\ \hline 0.519 & 1.00 \\ \hline 0.929 & 1.79 \\ \hline 0.279 & 0.54 \end{array}$	$f/10^{-8}$ $[a]^a$ $[b]^b$ 0.5191.001.000.9291.791.730.2790.541.65

^aexp. [29], ^bcal. [29], ^cthis work

2

in fair agreement both the total and the relative vibronic intensity distribution for this excitation.

We also argue from Table III that our model is able to predict spectral intensities within our expectations for all the excitations involved in the $|({}^{4}I_{15/2})a\Gamma_{8}\rangle \rightarrow$ $|({}^{4}S_{3/2})\Gamma_{8}\rangle$ transitions. For all the excitations, the so-called experimental values have been estimated, assuming a Gaussian shape for the absorption band, and therefore the oscillator strength becomes: $f \approx 4.61 \times 10^{-9} \varepsilon_{\max} \overline{\nu}_{1/2}$. The band width is measured at $\varepsilon = \frac{1}{2} \varepsilon_{\max}$.

4. Conclusions

A generalized vibronic intensity calculation was presented for the $|({}^{4}S_{3/2})\Gamma_{8}\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle$ emissions in the Cs₂NaCl₆ crystal. A radiative decay cascade was suggested to explain the rather unexpected high observed intensity for these excitations, governed by a static selection rule $\Delta J = 6$. The intensity of these excitations may be explained using the mechanistic chain: $|({}^{4}S_{3/2})\Gamma\rangle \rightarrow$ $|({}^{4}I_{11/2})\Gamma'\rangle \rightarrow |({}^{4}I_{15/2})\Gamma\rangle$, whereby the intensity is obtained from two sources with the cooperation of the odd parity vibrational modes of the clusters $ErCl_6^{3-}$. Closure procedure was employed to evaluate the vibronic crystal field contribution to the total transition dipole moment, and the transition dipole moment was partitioned into three components, two of the three are diagonal (the crystal field and the ligand polarization) whereas the non-diagonal is referred to as the interference term. A careful analysis of the phases for both wave functions and operators was performed so as to ensure that the sign of the cross term is correct. The calculation was taken throughout, without the inclusion of the coupling between the internal and the external vibrational modes of symmetry. The experimental evidence suggests that this coupling is small and therefore may be neglected in this first-order physical model.

It is worth mentioning that our calculation is not based upon a full parameterization of both, the energy and the intrinsic intensity parameters. We have instead focused our attention upon those factors (electronic and vibrational, in character) which are most likely to influence the rates of decay for the observed absorption and/or emissions for these systems.

We have reasonably succeeded in reproducing to a fair degree of approximation, the overall oscillator strengths for about 60 parity forbidden but vibronically allowed peaks in the emission spectra for this system [27]. We observe that overall agreement among our theoretical predictions and experiment is as good as it could be expected from such a simple model calculation. We are fully aware that lattice dynamic calculations are due to be carried out promptly and we may anticipate that theoretical work in this direction is currently being performed in our laboratories. There is an urgent need for having rather complete data base for these stoichiometric elpasolite-type system, so as to include both the short- and the long-range interaction in the crystals. We also feel that work on phonon dispersion curves along different polarization directions of these crystals is required. Last but not least, it seems that our strategy and model calculation is both useful and flexible to reproduce the observed spectral intensities for a series of lanthanide type crystals. We also recognize the need for more sophisticated theoretical work, covering the mechanistic aspects upon which the observed intensities may be understood and rationalized.

Acknowledgments

R.A. would like to express his gratitude to the Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, and also to the Universidad Diego Portales (VRA 2049, 2065), for partial financial support to undertake this research and also to the Institute of Low Temperature and Structure Research, Wrocław, Poland for the hospitality and the pleasant environment provided during the course of the current work.

References

- [1] B.R. Judd, Phys. Scr. 21, 543 (1978).
- [2] T.R. Faulkner, F.S. Richardson, Mol. Phys. 35, 1141 (1978).
- [3] T.R. Faulkner, F.S. Richardson, Mol. Phys. 36, 193 (1978).
- [4] T.R. Faulkner, F.S. Richardson, Mol. Phys. 38, 1165 (1979).
- [5] M.F. Reid, F.S. Richardson, Mol. Phys. 51, 1077 (1984).
- [6] R.A. Satten, C.L. Schreiber, E.Y. Wong, J. Chem. Phys. 78, 79 (1983).
- [7] I.B. Ignatiev, V.V. Ovsiankin, Opt. Spectrosc. 41, 609 (1976).
- [8] P. Caro, O.K. Moune, E. Antic-Fidancev, M. Lemaitre-Blaise, J. Less-Common Met. 112, 153 (1985).
- [9] G. Blasse, L.H. Brixner, Inorg. Chim. Acta 169, 25 (1990).
- [10] M.T. Berry, A.F. Kirby, F.S. Richardson, Mol. Phys. 66, 723 (1989).
- [11] W. Strek, J. Sztucki, Chem. Phys. Lett. 177, 407 (1991).
- [12] C.D. Flint, P. Greenough, J. Chem. Soc. Faraday Trans. II 70, 815 (1974).
- [13] R. Acevedo, PhD. thesis, University of London, 1981.
- [14] R. Acevedo, S.O. Vásquez, An. Quím. 91, 526 (1995).
- [15] Z. Hasan, F.S. Richardson, Mol. Phys. 45, 1299 (1982).
- [16] J.P. Morley, T.R. Faulkner, F.S. Richardson, J. Chem. Phys. 77, 1710 (1982).
- [17] D.R. Foster, F.S. Richardson, R.W. Schwartz, J. Chem. Phys. 82, 601, 618 (1985).
- [18] D.R. Foster, F.S. Richardson, J. Chem. Phys. 82, 1085 (1985).
- [19] A. De Piante, F.S. Richardson, Z. Hasan, J. Chem. Phys. 82, 1102 (1985).
- [20] D.J. Newman, G.G. Sui, W.Y. Fung, J. Chem. Phys. 15, 3113 (1982).
- [21] G.G. Sui, D.J. Newman, J. Chem. Phys. 81, 4959 (1984).
- [22] D.J. Newman, Adv. Phys. 20, 197 (1971).
- [23] D.J. Newman, Ng. Betty, Rep. Prog. Phys. 52, 699 (1981).
- [24] F.S. Richardson, M.F. Reid, J.J. Dallara, R.D. Smith, J. Chem. Phys. 83, 3813 (1985).
- [25] M.F. Reid, F.S. Richardson, J. Chem. Phys. 83, 3831 (1985).
- [26] R. Acevedo, P.A. Tanner, T. Meruane, V. Poblete, Phys. Rev. B 54, 3976 (1996).
- [27] R. Acevedo, G. Navarro, T. Meruane, P.A. Tanner, Y.Y. Zhao, Rev. Mex. Fis. 47, 245 (2001).

- [28] M.F. Reid, F.S. Richardson, P.A. Tanner, Mol. Phys. 60, 881 (1978).
- [29] S.M. Crooks, M.F. Reid, P.A. Tanner, Y.Y. Zaho, J. Alloys Comp. 250, 297 (1997).
- [30] H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
- [31] P.A. Tanner, R. Acevedo, O.F. Hurtado, T. Meruane, J. Alloys Comp. 323-324, 718 (2001).
- [32] P.A. Tanner, V.V.R.K. Kumar, C.K. Jaysankar, M.F. Reid, J. Alloys Comp. 225, 85 (1995).
- [33] R. Acevedo, T. Meruane, E. Cortes, S.O. Vasquez, C.D. Flint, Theor. Chim. Acta 88, 99 (1994).
- [34] A. Lentz, J. Phys. Chem. Solids 35, 827 (1974).
- [35] L. Ning, P.A. Tanner, X. Shangda, Vibrational Spectrosc. 31, 51 (2003).
- [36] E.B. Wilson Jr, J.C. Decius, P.C. Cross, Molecular Vibrations, Dover Publications, New York 1980.
- [37] S. Califano, Vibrational States, Interscience, New York 1976.
- [38] R. Acevedo, E. Cortes, T. Meruane, S.O. Vasquez, C.D. Flint, An. Quim. 90, 334, 339 (1994).
- [39] R. Acevedo, Introductory Elements in Atomic and Molecular Spectroscopy. Applications to System of Spectroscopic Interest, RIL Editores, Santiago, Chile 2000 (in Spanish).
- [40] R. Acevedo, C.D. Flint, T. Meruane, G. Munoz, M. Passman, V. Poblete, J. Mol. Struct. (Theochem) 390, 109 (1997).
- [41] J.S. Griffith, The Irreducible Tensor Method for Molecular Symmetry Groups, Prentice Hall, Englewood Cliffs, New Jersey 1962.
- [42] U. Fano, G. Racah, Irreducible Tensorial Sets, Academic Press, New York 1959.
- [43] P.H. Butler, Point Group Symmetry Applications, Plenum Press, New York 1981.
- [44] J.S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press, New York 1961.
- [45] P.A. Dobosh, Phys. Rev. A 5, 2376 (1972).
- [46] M. Rotemberg, R. Bivis, N. Metropolis, J.K. Woodten Jr., The 3j and 6j Symbols, Technology Press, MIT, Cambridge, Massachusetts 1959.
- [47] P.A. Tanner, A. De Piante, F.S. Richardson, M.F. Reid, Mol. Phys. 60, 1037 (1987).
- [48] P.A. Tanner, V.V.R.K. Kumar, C.K. Jayasankar, M.F. Reid, J. Alloys Comp. 215, 349 (1994).

Publicación 4.

metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

Three yttrium crotonate complexes with diimines

Ana María Atria,^{a,e,e} Juan Carlos Muñoz,^b Andrés Soto,^b María Teresa Garland^{b,e} and Ricardo Baggio^d

*Facultad de Ciencias Quánicas y Fagnaciónicas, Universidad de Chile, Casilla 233, Santiago, Chile, *Departamento de Písica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile, *CMAT, Casilla 487-3, Santiago, Chile, and *Departamento de Física, Comisión Nacional de Energia Atómica, Avenida del Libertador 8250, 1429 Buenos Aires, Argentina, Correspondence e-mait: astroafecio, uchile, cl.

Received 13 August 2003 Accepted 29 August 2003 Online 23 September 2003

The synthesis and crystal structures of three new yttrium crotonate (crot) compounds, associated with three different nitrogenous bases, namely 1,10-phenanthroline (phen), 4-methyl-1,10-phenanthroline (mphen) and 2,2'-bipyridylamine (bpa), are presented. All three compounds organize as centrosymmetric dimers, to give tetra-µ-crotonatobis[crotonato(1,10-phenanthroline)yttrium(III)] dihydrate, [Y2(C4H5O2)6(C12H8N2)2]-2H2O or [Y(crot)3(phen)]2-2H2O. (1). tetra-µ-crotonato-bis[crotonato(4-methyl-1,10-phenanthroline)yttrium(III)] dihydrate. $[Y_2(C_4H_5O_2)_6(C_{13}H_{10}N_2)_2]$ -2H₂O or [Y(crot)₃(mphen)]₂·2H₂O. (II), and tetra-µ-crotonato-bis[diaqua(crotonato)yttrium(III)] 2,2'-bipyridylamine tetrasolvate, [Y2(C4H5O2)6(H2O)4]-4C10H9N3 or [Y(crot)3-(aq)2224(bpa), (III). Complexes (I) and (II) are isomorphous, with the bases acting as chelating ligands. In complex (III), the coordination sphere is built up of carboxylate and aqua ligands, with the non-coordinated diimine acting as included solvent.

Comment

In a long-term project studying magnetic interactions in homo- and heteronuclear systems, we have focused on carboxylate compounds (Atria *et al.*, 1990, 1992, 2002; Baggio *et al.*, 2000), as they usually present a diversity of coordination modes, leading to very interesting structures. In particular, when lanthanide cations are used as metallic centres, the carboxylate group is found to bind in a *syn-syn, syn-anti* or *anti-anti* mode $(\eta^1 \eta^1 \mu_2$ type; for nomenclature, see *e.g.* Cotton & Wilkinson, 1988). Less common, but not rare, is the chelatobridging mode $(\eta^2 \eta^1 \mu_2$ type). At present, we are exploring the complexing capabilities of the crotonate ion in these types of compounds, and report herein the syntheses and full structural characterizations of three new yttrium crotonate complexes, [Y(crot)₃(phen)]₂·2H₂O, (I), [Y(crot)₃(mphen)]₂·2H₂O, (II), and [Y(crot)₃(aq)₂]₂·4(bpa), (III), where crot is the crotonate anion, phen is 1,10-phenanthroline, mphen is 4-methyl-1,10phenanthroline and bpa is 2,2'-bipyridylamine. All three compounds are dimeric species.

Compounds (I) and (II) are isomorphous, which is not unexpected given their ligand similarities; both dimers are almost identical in their molecular structure (Figs. 1 and 2). Each cation is coordinated via the O atoms to three crotonate groups binding in dissimilar coordination modes (the atoms are labelled accordingly), namely unit A, which is purely chelating, unit B, a pure syn-syn bridge, and unit C, which is tridentate, with one O atom chelating to one of the Y centres while the other bridges both Y atoms. The first difference between these closely related structures is that the crotonate unit A in compound (I) is disordered over two sites of similar occupancies [0.53 (2)/0.47 (2)], while it is ordered in (II). A bidentate dinitrogenated base [phen in (I) and mphen in (II)] completes the coordination sphere around the cation through both N atoms. Here, the second difference between the

DOI: 10.1107/50108270103019073

Figure 1

Morecular diagram of the centrosymmetric dimeric unit in (I). Displacement ellipsoids are drawn at the 30% probability level. Dashed ellipsoids and bonds indicate the observed erotonate ligand disorder.

structures arises: while the phea group in structure (I) is ordered, the mphen ligand in (II) is disordered over two positions, which are rotated by 180° relative to one another, as shown in Fig. 2. The fact that this rotation takes place around the symmetry axis of the molecular core allowed refinement of the group as if it were ordered and had full occupancy, except for the terminal methyl groups, which then appear at different sites in the molecule with populations of 0.600 (5) and 0.400 (5).

Figure 2

Medecular diagrams of the centrosysametric dimeric unit in (II). Displacement ellipsoids are drawn at the 30% probability level. Disordered methyl groups are drawn with dashed lines and labelled with primes (see text).

3650 Clysb 2003 - C59, in416-m420

metal-organic compounds

This binding scheme results in a ninefold coordination for the Y^{III} cations, which are linked to each other through quadruple bridges. Two of these are through a single O atom (Y-O-Y') and two through a complete carboxylate, in a Y-O-C-O-Y sequence. The resulting Y---Y' cistance is 3.8948 (16) A in (1) and 3.9009 (10) A ia (11). The main interaction between the rather isolated cimeric entities is achieved through the aromatic groups related by the centre of symmetry at (4,1,0), which show a significant π - π interaction. Being parallel by symmetry requirements, they lie at graphitic distances from each other [3.40 (1) A for (I) and 3.49 (1) A for (II)]. The central rings show roughly the same 'slippage' (deviation from exact superposition viewed normal to the rings) of the rings in both structures [approximately 0.85 (2) Å], leading to an overlap of ca 60% of the complete ring area.

The structures are completed by one hydrate water molecule disordered over two sites. It was not possible to find its H atoms, thus preventing a detailed study of the hydrogenbonding scheme. However, the short $OW \rightarrow O_{\rm crot}$ distances present in both structures strongly suggest these hydrogenbonding interactions are a stabilizing factor for the packing. Short $O \rightarrow O$ distances for (1)(11) are $O1WA \rightarrow O2A = 2.819(9) \cdot 2.855$ (7) Å $O1WB \rightarrow O1A = 2.631$ (11)/2.689 (11) Å and $O1WB \rightarrow O1A^* = 2.858$ (17)/2.918 (11) Å [symmetry code: (iv) 1 - x, 1 - y, -z].

The major difference between structure (III) and structures (I) and (II) resides with the nitrogenous bases, which are not coordinated in (III), acting instead as solvates. The crotonate units are attached to the cations in an analogous way to (I) and

Figure 3

Molecular diagram of the cestrosymmetric dimeric unit in (III). Independent atoms are drawn as full shaded ellipsoids. Only those H atoms relevant to the hydrogen-bonding description have been included. Hydrogen bonds are shown by broken lines and displacement ellipsoids are drawn at the 30% probability level. Atom OLCP is at symmetry position $(x - y + z - y) = z^2$.

Ana Maria Atria et al. • Three [YaC_HaO and complexes with diamines _ m417
(II), with the ligand displaying the three different coordination modes and building up quadruple bridges, to join Y111 cations together at a distance of 3.9664 (5) Å (Fig. 3). The coordination sphere around each Y centre is, in this case, completed by two water molecules, located in similar positions to those occupied in (I) and (II) by the imine N atoms.

The two independent bpa groups in structure (III) (four units per dimer) present a trans disposition of their bpy groups, with pyridine atom N3 pointing outwards and being involved in hydrogen-bonding interactions. The other pyridine N atom (N1) points inwards and is shielded from intermolecular contacts by a weak C7-H7++N1 intramolecular hydrogen bond, with average parameters H++-N ~ 2.20 Å and C-H···N ~ 120° (Fig. 3). Both moieties are distorted from planarity, through opposite rotations of the lateral pyridine groups around the corresponding N2--C5 and N2--C6 bonds. The combined effect leads to a dihedral angle between rings of 6.0 (1)° in unit U and 11.3 (1)° in unit V

All the active H atoms in the structure of (III) (four aqua and two amino) take part in hydrogen bonding, in a complex scheme presented in Table 4 and shown in Fig. 3. The main effects of these interactions are, firstly, the attachment of the bpa molecules to the dimeric units to create a kind of a 'cluster', and, secondly, to join the resulting entities into onedimensional chains running along the crystallographic b axis (entries 4 and 5 in Table 4). The columnar structures interact weakly with each other, mainly through van der Waals interactions. There are no π - π interactions between the planar groups of neighbouring bpa groups.

In summary, we have synthesized and solved the structures of three vttrium crotonate complexes characterized by a similar bridging mode between the cations, i.e. two 'short' (Y-O-Y) and two 'long' (Y-O-C-O-Y) bridges. A search in the Cambridge Structural Database (CSD, version 5.24; Allen, 2002) of dimeric carboxylate-bridged YIII centres showed only four fully reported structures, one of which presented a simpler bridging scheme with just two Y-O-Y links. namely bis(µ2-acetato)tetrakistacetato)tetraaquadiyttrium tetrahydrate (CSD refcode TACETZ01; Ribot et al., 1991). The remaining three, bis([µ2-(trimethylsily])acetato-O.O.O' [[µ2-(trimethylsilyl)ace tato-O.O'][µ2-1-[dimethyl(prop-2-enyl)silyl]-2,3,4,5-tetramethylcyclopentadienyl[yttrium) (AFINIM: Evans et al. 2001), bis[(µ2-KO:KO-acetato)(µ2- $\kappa O: \kappa^2 O'$ -acetato)(η^3 -cyclopentadienyl)tris(μ_2 -dimethylphosphito-O,P)cobaltyttrium(III)] (WEQKEI; Han et al., 1999) and bis(#2-salicylato-O.O.O)bis(#2-salicylato-O.O)bis(salicylato-O,O')divitrium tetrahydrate (LESMUR; Ma er al., 1994), present very similar yttrium environments to the ones reported herein, in spite of the diversity of their carboxylate ligands. It can thus be concluded that this type of dimeric bridging is common for the yttrium-carboxylate system, leading to a rather constrained geometry with a narrow spread (3.347-4.028 Å) in the Y-+Y distances. The distances found here for (I), (II) and (III) lie within the extreme values found in the literature. The existence of these structures supports the feasibility of generating heteronuclear complexes containing magnetic lanthanide cations combined with Y as a nonmagnetic centre. We are at present engaged in the synthesis and characterization of compounds of this type, which ought to be useful tools for studying 4f-4f magnetic interactions.

Experimental

The three complexes, (1), (11) and (111), were synthesized by similar methods. A mixture of Y2O3 (1 mmol) and crotonic acid (6 mmol) was dissolved in water (100 ml), followed by the addition of the appropriate diimine ligand (1 mmol) dissolved in methanol (10 ml). The resultant mixture was refluxed for 24 h, filtered while hot and then concentrated to 25 ml. The filtrate was left to stand at room temperature and colourless crystals appeared after four weeks. Crystals of compounds (1) and (11) were very poorly diffracting, and the reported data correspond to the best of many data collections obtained from different specimens. All starting materials were used as purchased without further purification. Elemental analyses (C, H) were performed on a Carlo-Erba EA 1108 instrument: the results obtained (% calculated/% found) are as follows: for (1), C48H30N4O18Y5 C 53.15/52.9 and H 4.65/4.5; for (11), C40H38N8O18Y7 C 53.97/54.1 and H 4.89/4.8; for (111), C₆₄H₂₄N₁₂O₁₆Y₂; C 53.19/53.4 and H 5.16/5.3.

Compound (I)

Constant distant

CA April 1000	
$\begin{split} & [S_{-2}C_{4}H_{3}O_{2})_{42}C_{12}H_{4}N_{2}\gamma_{3}]{-}2H_{3}O\\ & \mathcal{M}_{r}=1084.74\\ & \text{Tricling}, \ \mathcal{P}I\\ & a{-}10.5565(14)\ \ddot{A}\\ & b{-}10.9994(15)\ \ddot{A}\\ & c{=}11.4194(15)\ \ddot{A}\\ & \sigma{=}55866(12)^{6}\\ & \mathcal{H}=75.65(2)^{6}\\ & \mathcal{H}=75.65(2)^{6}\\ & \mathcal{H}=71.256(3)^{8}\\ & V{=}12257(3)(3)\ \ddot{A}^{2} \end{split}$	Z = 1 $D_x \approx 1.480 \text{ Mg m}^{-3}$ Mo <i>ka</i> r maistion Cell parameters from 98 reflections $\theta = 4.5.24.1^{\circ}$ $\mu \approx 2.44 \text{ mm}^{-1}$ T = 203 (c) K Prisma, colourless $0.32 \times 0.24 \times 0.18 \text{ mm}$
Data collection	

Bruker SMART CCD area-detector diffractometer and ω scans Absorption correction: multi-scan (SADABS in SAINT-NT: Bruker, 2000) Tens = 0.50, Tens = 0.64

6943 measured reflections

Refinement

Refinement on F2 1 + 0.057 $R[F^2 > 2\sigma(F^2)]$ = $R(F^2) = 0.115$ 5-0.86 51.36 reflections 348 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected interatomic distances (Å) for (I).

Y1-028	2.302 (5)	¥1-N2	2.582 (6)
Y1-01C	2.320 (5)	YI-OIC	2.585 (4)
YI = OIB	2,323 (5)	¥1-N1	2.586 (8)
Y1-02C	2,399 (5)	Y1-CL4	2,757 (8)
Y1=02A	2,442 (5)	Y1=CIC	2,907 (7)
Y1-014	2,474 (6)	\$1	3.8948 £16
Symmetry code: (i)	$1 - x_1 - y_2 - z_2$		
Symmetry code: (i)	1 + x, 1 - y, 1 - z.		

m418 Ana Mana Attaz et al. + Three [YgR_HgO26] complexes with diimanes

Acta Cryst. (2003). C59, m416-m420

5136 independent reflections

 $a = 1 \left[a^2 (F_a^2) - (0.0818P)^2 \right]$ where $P = (F_a^2 + 2F_a^2)/3$

 $R_{\rm int} = 0.059$

 $\theta_{max} \approx 28.1^{\circ}$ $h = -12 \rightarrow 13$

k - - 13 - - 14

 $(\Delta \sigma)_{min} = 0.012$ $\Delta\rho_{\rm max}=0.7)~e~{\rm \AA}^{-3}$

 $7 = 0 \Rightarrow 14$

1717 reflections with 1 > 20(1)

Compound (II)

Crystal data

$$\begin{split} & [Y_{2l} C_4 H_3 O_2 \varepsilon_{4l} C_{12} H_{10} N_{2} \varepsilon_{2}] CH_2 O \\ & M_c = 1112.79 \\ & \text{Triclinic, } P_1^T \\ & \sigma = 10.6924 ~(14) ~\text{\AA} \\ & b = 10.9060 ~(15) ~\text{\AA} \\ & c = 11.8528 ~(16) ~\text{\AA} \\ & \sigma = \pi^2 ~\text{SU} 2^{1/6} \\ & \beta = 72.320 ~(2^{1/6} \\ & \gamma = \pi^2 ~\text{SU} 2^{1/6} \\ & \gamma = \pi^2 ~\text{SU} (2^{1/6} \\ & \gamma =$$

Data collection

Bruker SMAJRT CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS in SAINT-NT; Bruker, 2000) $T_{min} = 0.61$, $T_{max} = 0.72$ 7557 measured reflections

Refinement

Refinement up F^2 $R[F^3 > 2\sigma(F^2)] \neq 0.047$ $nR(F^2) = 0.084$ S = 0.03 5329 reflections 329 parameters H atoms treated by a mixture of independent and constrained refinement $\begin{array}{l} Z = 1 \\ D_{e} = 1.454 \ \mathrm{Mg} \ \mathrm{m}^{-3} \\ \mathrm{Slo} \ \mathrm{Kar} \ \mathrm{reflection} \\ \mathrm{reflections} \\ \theta = 3.8 \cdot 22.9^{\circ} \\ \mu = 2.34 \ \mathrm{rm}^{-1} \\ T = 293 \ (2) \ \mathrm{K} \\ \mathrm{Prism}, \ \mathrm{colouriless} \\ 0.22 \times 0.2^{\circ} \times 0.14 \ \mathrm{nm} \end{array}$

 $\begin{array}{l} 5329 \mbox{ independent reflections } \\ 20(1) \mbox{ reflections with } I > 2\sigma(1) \\ R_{1ar} = 0.030 \\ \theta_{max} = 25^{\circ} \\ h = -13 \rightarrow 9 \\ k = -13 \rightarrow 9 \\ k = -13 \rightarrow 11 \\ l = -15 \rightarrow 14 \end{array}$

$\begin{array}{l} &= 1 \left[g^2 (F_{\mu}^{-2}) + 10005 P (^2) \right] \\ &= \mathrm{where} \ P = (F_{\mu}^{-2} + 2F_{\mu}^{-2}) \ 2 \\ (\Delta \, \sigma)_{\mathrm{max}} = 0.008 \\ \Delta \, \rho_{\mathrm{max}} = 0.34 \ \mathrm{e} \ \Lambda^{-3} \\ \Delta \, \rho_{\mathrm{max}} = -0.24 \ \mathrm{e} \ \Lambda^{-3} \end{array}$

Table 2

Selected interatomic distances (Å) for (II).

Y-01C	2,296 (3)	Y-014	2,446 (3)
Y-028	2.307 (3)	Y=N2	2.561 (4)
Y-018	2.309 (3)	Y-N1	2,572 (4)
Y-02C	2,390 (3)	Y-01C	2,602 (3)
Y-024	2.423 (3)	$\Sigma \mapsto X^{0}$	3.9009 (10)

Symmetry code: (i) 1 + x, 1 + y, 1 + z.

Compound (III)

Crystal data $[Y_2 C_4 H_3 O_{21}q] H_2 O_{14}] H_2 O_{16}] H_0 N_3$ $M_c = 1445.18$ Monoclinic, -C2/c a = 38.108 (4) Å b = 8.851 (1) Å $\beta = 126.26$ (1) Å $\beta = 126.26$ (1) Å 1 = 8.054 (1) Å

Z = 4 Data collection

Diana concentration	
Broker SMA RT CCD area-detector	7877 i
diffractometer	4515.0
p and to scants	$R_{int} =$
Absorption correction: multi-scan	Banar -
(SADABS in SAINT-NT;	h =
Bruker, 2000)	*=
$T_{min} = 0.62, T_{max} = 0.75$	1 3
23 271 measured reflections	

$$\begin{split} D_v &= 1.382 \ \text{Mg m}^{-9} \\ \text{Mo } Kar \ \text{radiation} \\ \text{Cell parameters from 112} \\ \text{reflections} \\ \theta &= 4.7-25.4^{9} \\ \mu &= 1.74 \ \text{mm}^{-1} \\ T &= 293 \ (2) \ \text{K} \\ \text{Prism, colourless} \\ n &= 38 \times n \ (2) \times 0.14 \ \text{mm} \end{split}$$

$\begin{array}{l} 7877 \mbox{ independent reflections } \\ 48.5\mbox{ reflections with } l > 2 \sigma t l \\ R_{\rm int} = 0.055 \\ R_{\rm int} = -2 \times 2^{-2} \\ h = -50 \rightarrow 50 \\ k = -11 \rightarrow 11 \\ l = -30 \rightarrow 32 \end{array}$

Refinement Refinement on $F^{(0)}$ $R[F^2 > 267F^2] = 0.042$ $wR(F^2) = 0.094$ S = 0.887877 reflections 499 parameters H atoms treated by a mixture of independent and constrained refinement

Table 3

Selected interatomic distances (Å) for (III).

	 A state of the production of the state of th	na na katalog na sport sport se sa	
Y-01A	2,4065 (18)	Y"-02C	2.3220 (17)
Y-024	2.4378 (19)	Y-02C	2.6426 (18)
Y"-01B	2.2893 (18)	Y-01W	2.374 (2)
Y-028	2.3238 (17)	Y-02W	2,394 (2)
Y-01C	2.4549 (17)	YY	3.9664 (5)

Symmetry and colling many market and

Table 4

Hydrogen-bonding geometry (A. 9) for (III).

the second s				and the second
D-HA	D - H	Hand	B+	$D = H \cdots A$
CTU-HTUNIV	0.95 (4)	2.23 (3)	2,913 (6)	:129(4)
CTU-HTU-NID	0.94 (2)	2.25 (4)	2,873 (5)	123 (3)
OIW-HIWB NOV	0.77(4)	1.99 (4)	2,759 (3)	174 (2)
01W-H1WA-01C	0.78(3)	2.01 (3)	2.782 (3)	370 (4)
028-H2W8-04C**	0.75 (3)	2.15 (3)	2.882 (3)	167 (4)
OCW-H2WAN3U	0.75 (3)	2.06 (3)	2,797 (4)	168 (3)
N2V-H2NU-028	0.79 (3)	2.57 (2)	3,196 (3)	137 (2)
N2U-H2NU-02A	0.79 (3)	2.61 (2)	3,318 (4)	150 (3)
N2U-H2NU-01A	0.78(3)	2,20 (2)	2.970 (3)	368 (3)

Symmetry dödet (180 $g+x,\xi+y,1-z,$

H atoms unambiguously defined by the stereochemistry (i.e. those on C atoms) were placed at their calculated positions and allowed to ride on their parent C atoms, with $U_{\rm so}({\rm H}) = 1.2 U_{\rm col}({\rm C})$. Terminal methyl groups were allowed to rotate as well. H atoms corresponding to the (disordered) hydrate water molecules in structures (1) and (11) were not included in the model. In structure (111), the bound water H atoms were found in the final difference Fourier map and, together with the amino H atoms, were refined with similarity restraints on $\Omega - H$. H \cdots H and N -H distances, so as to ensure a reasonable geometry.

For all compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

The authors are grateful for funding from FONDECYT (No 1020802) and FONDAP (No. 11980002), and from Fundación Amdes C-13575. JCM is a grateful recipient of a Deutscher Ak ademischer Austauschdienst scholarship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1033). Services for accessing these data are described at the back of the journal.

Scia Cryst. 2003 - C59, m416+m420.

Ana Maria Atria et al. . Three [Y₂C₅H₅O₂]₄] complexes with diimines m419

metal-organic compounds

$$\begin{split} & v = \int [\sigma^2(F_0^{-2}) - (0.0432P)^2] \\ & \text{ where } P = (F_0^{-2} + 2F_c^{-2})/3 \end{split}$$

 $\begin{array}{l} (\Delta \, \alpha)_{\rm max} = 0.014 \\ \Delta \rho_{\rm max} = 1.14 \, {\rm e} \, \Lambda^{-2} \end{array}$

 $\Delta\rho_{\rm max}\approx-0.33~{\rm e}~{\rm A}^{-3}$

metal-organic compounds

References

- Allen, F. H. (2002). Acta Cryst. B58, 380–388.Atria, A. M., Moreno, Y., Spodine, E., Gatland, M. T. & Baggio, R. (2002). Inorg. Chim. Acta, 338, 1–6.
- Diorg, Cham, Statu, Saw, 1-9.
 Atria, A., M., Spoline, E., Manssur, J., Letelier, R. & Peña, O. (1992). Bol. Soc. Chil. Quint. 37, 323–338.
- Atria, A. M., Spodine, E., Peña, O., Kivi, M. & Manssur, J. (1990). Bol. Soc.
- Chil Quion, 38, 265–270.
 Haggio, R., Garland, M. T., Moreno, Y., Pedia, O., Perec, M. & Spodine, E. (2000) J. Chem. Soc. Dation Trains. pp. 2061–2066.
 Bruker (2000). SAINT-NT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SMART-NT. Version 5.624. Bruker AXS Inc., Madison.

- Wisconsin, USA, USA, Cotton, F. A. & Wilkers, G. (1988). Advanced Inorganic Chemistry, 5th ed., p. 38. New York: Wiley-Interscience.
- Evans, W. J., Brødy, J. C. & Ziller, J. W. (2001). J. Am. Chem. Soc. 123, 7711-J. C. M. S. M. S. G. & Jeong, J. H. (1999). Polyhedron, 18, 3027–3030.
 Ma, J.-F., Jin, Z.-S. & Ni, J.-Z. (1994). Acta Cryst. C50, 1010–1012.

- Ribot, F., Toledano, P. & Sanchez, C. (1991). Inorg. Chim. Acta, 185, 239–245. Sheldrick, G. M. (1994). SHELXTLIPC, Version 50(3, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.

ANEXO VII

Articulos en progreso, 2006.

A New Approach and Some Criteria to deal with the theory of the normal modes of Vibrations in the Elpasolite Stoichiometric Type Systems Short Range Intramolecular Interactions

Roberto Acevedo¹, Andrés Soto-Bubert¹, Paul Bosch², W.Strek³ 1: Departamento de Ciencias de los Materiales. Facultad de Ciencias Físicas y Matemáticas. Universidad de Chile. Avenida Beauchef 850. Casilla. 2777. Santiago-Chile

2: Instituto de Ciencias Básicas. Facultad de Ingeniería. Universidad Diego Portales. Avenida Ejército 441. Casilla 298-V. Santiago-Chile.

3: Institute of Low Temperature and Structure Research. Polish Academy of Sciences. Okölna 2, 50-422. Wroclaw. Poland.

ABSTRACT

There are a number of stoichiometric elpasolite type systems, for which a considerable amount of experimental data is being accumulated over the last three decades. For these purposes, data from linear and non linear optics is available, though we must emphasize, that the experimental evidence is rather scarce or incomplete, and as a consequence is not obvious to claim that many relevant problems in the solid state spectroscopy for these systems have been solved adequately. We have been working on systems such as $Cs_2NaLnCl_6$ for Ln = Pr, Eu, Tb, Dy, Ho, Er and Tm, aiming to advance our understanding in those electronic and vibrational factors, upon which the one photon electronic transitions depend upon. We have chosen in this article, to report a novel strategy to rationalize the normal coordinate analysis so as to get a closer and more realistic approach to deal with those contributions which determine, what we regard as a natural potential energy distribution (NPED). It is essential to agree on the conditions upon which, we develop our convergence tests based on a physical view, so as to discern between a selections of experimental assignments from a more comprehensive viewpoint. As a starting point, we review the magnificent contribution put forward by Lentz, who may claim priority in this area of the vibrational spectroscopy for the cryolite and elpasolite compounds and subsequently by other authors, whom have introduced some correction terms in the description of the vibrational force field. It is indeed a major task to produce a better description for this interacting potential, based upon a maximum of ten vibrational frequencies. In this work, our description is based upon a total of seventy two internal coordinates and an initial number of ninety eight internal force constants. We show that the

potential energy matrix *F* may be symmetrized by reducing the number of these latter to eighty one internal force constants. For each of the elpasolite type systems, we have considered a total of three representative *F*-matrices, and have calculated both the diagonal and non diagonal contributions to the observed vibrational wave numbers, $\sqrt{\lambda_i} = (v_i/1303,16)$ for each of the experimental data and have been able to understand the sensitivity of the mixing between the symmetry coordinates for the same symmetry specie with reference to a given vibrational frequency. It is shown that our current approach is both flexible and general so as to work out the most important contributions to the vibrational factor.

Key Words: Intramolecular force field, Chloride Stoichiometric Elpasolites.

I. - Introduction

For the elpasolite type systems, vibronic side bands are usually associated with electric dipole transition moments in centrosymmetric rare-earths systems. The are a number of pioneer calculations corresponding to vibronic line strengths for these pure and doped crystals in a series of papers by Judd [1], Richardson et [2-5] and Satten et al [6]. These authors were able to advance the state of the art, by focusing both the electronic and the vibrational factors, upon which the intensity may be rationalized from both a theoretical and an experimental viewpoints.

In a recent review, P.A.Tanner[7] went through a hard work to put together a vast amount of mainly experimental work, with reference to the spectra, energy levels and energy transfer phenomena in highly symmetric lanthanide type crystals. The main goals of the work by Tanner was to provide the readers with a comprehensive and updated report, regarding the series from $La(4f^{0})$ to $Lu(4f^{14})$, including as well the Y^{+3} ions, which have been for practical purposes labeled by Ln^{+3} . It is interesting to observe that this work, is mainly to both neat and doped hexa-halide clusters with the Ln^{+3} ions seated in well determined octahedral symmetry sites in elpasolite type crystals such as M_2ALnX_6 . It has been claimed by the author that the main goal of the study of the electronic spectra for theses systems is to gain experimental information about the interaction of the vibrational contribution to the crystal field (CF) with the paramagnetic ion as well as to determine the energies and symmetry properties of the normal modes of vibrations for the crystals. Furthermore, the accurate knowledge of both, the most likely energy levels schemes and of the vibrational properties is known to be essential for the understanding of the various energy transfer phenomena (ET),

occurring between lanthanide ions. Apart from the potential applications of these systems (efficient phosphors, up converters and solid state laser materials), the need for studying lanthanide elpasolites is that they most probably comprise the most symmetric crystals available for Ln⁺³ ions and may be employed to improve our current understanding of both static and dynamic processes in the solid state physics. There are still, though many matters open to discussion and in the current research work, we have decided to advance one step further and to undertake a thorough and careful analysis of the vibrational factor, upon which the rates of decays depend upon. It is essential to understand as much as possible of those factor which determine our current knowledge in the spectroscopy of these elpasolite type materials. It is well recognized that to make progress in the understanding of the electronic spectra associated with the electronic spectra of the M_2ALnX_6 elpasolite type systems; it is a priority the understanding and rationalization of the vibrational spectra. In principle, the vibrations of the clusters such as LnX_{6}^{-3} may be classified in terms of moiety normal modes (this stands only if, we neglect the interactions between the internal and the external vibrations), say: v_i : i = 1 - 6, or by linear combinations of the symmetry coordinates $S_i: i = 1 - 10$ of the ten atoms system representation for these crystals (this will be discussed in the forthcoming sections). In all cases, we refer our studies to the branch, when $\vec{k} = \vec{0}$, i.e. the optical vibrations. It is very illuminating to look at, with care and caution, table 1, reported by Tanner [7], where the transformation properties in the octahedral point molecular group accounting for the interaction among the radiation field with single crystals and related selection rules are given. The languages is, though sometimes misleading since in the Figure 3 of ref[3], the Cartesian nuclear displacement coordinates are given by the symmetry coordinates S_i : i = 1 - 10 and not for the normal modes of vibrations. This point, it is crucial to understand the fundamental since the normal modes of vibrations are, in theory only known when the vibrational interacting potential force field is modulated by some kind of physical model. Thus, the vibrational equation of motion, $GFL = L\Lambda$ should be first of all, solve to modulate the normal modes of vibrations either for the cluster LnX_6^{-3} or the dynamic equation $D(\vec{k})E(\vec{k}) = \Omega^2(\vec{k})E(\vec{k})$, for the ten-atoms description of the crystal. In this notation, $\Omega^2(\vec{k})$ is a diagonal matrix whose matrix elements correspond to the eigen values $\omega_{p,\vec{k}}^2$, associated with the eigenvectors $e(\mu i | p \vec{k})$. For a crystal, the situation may become formidable since the experimental data needed to undertake the full lattice dynamic

calculation may be inaccessible and therefore there is an urgent need to formulate new models and also some mathematical strategies to accommodate the various contributions to the dynamic matrix for long, medium range and short range forces in the crystal. We shall see throughout the course of the current work that, within the framework of the ten atom- system model only the four $\tau_{1\mu}$ normal modes are infrared active, whilst the α_{1g} , ε_{g} and the τ_{2g} normal modes are Raman active, being the τ_{2u} vibrational inactive in both the infrared and Raman. P.A.Tanner [7] provides an updated source for experimental data for these types of systems. Several studies have been carried out at room temperature and infrared spectra measured for systems such as : (a) $Cs_{2}NaLnCl_{6}$ [8-12], (b) M_2ALnBr_6 [13], and (c) M_2ALnCl_6 [14-16]. Also, Raman spectra have been reported in the temperature range from 300 down to 10 K for the above systems (a)-(c), and the references may be found, under the heading of vibrational spectra, page. 10 of ref[7]. The convention has been to assign the four Raman bands to the symmetry coordinates S_5, S_4, S_2, S_1 in order of increasing energy, whereas the four infrared bands have been assigned to the symmetry coordinates of the τ_{1u} -species, say S_9, S_7, S_8 and S_6 . Besides, the $\tau_{2\mu}$ -symmetry coordinate S_{10} is taken from the vibronic spectra. It may convenient, thought not easy to prove that the association done between the symmetry coordinates due to Lentz [17] and the normal modes of vibrations as tabulated by Tanner in Figure [3].p.11, is meaningful. According to Lentz, for the 10-atom model system, we have:

$$\Gamma_{vib} = A_{1g}(v_2) + E_g(v_2) + T_{1g}(v_3) + 2T_{2g}(v_4, v_5) + 4T_{1u}(v_6, v_7, v_8, v_9) + T_{2u}(v_{10})$$

At this point, when we follow Tanner [7], we observe that the following convention (related the 10 atoms system model with the 7 atom system models) have for the odd parity modes, been adopted:

$$v_{6}(10) \leftrightarrow v_{3}(7, stretching, \tau_{1u}), v_{7}(10) \leftrightarrow v_{4}(7, bending, \tau_{1u}), v_{10}(10) \leftrightarrow v_{6}(7, bending, \tau_{2u})$$

This is a rather important point, which in our opinion deserves some careful attention. We shall see, through the course of the current work, the level of approximation to be introduced in the model should this convention is to be employed at all.

It is also important to bear in mind that for polar vibrations, we may divide them into two subsets, say: (a) longitudinal (LO) and (b) transverse

(TO), both along the optic branch. We also know that as for the frequencies are concerned, it is observed that v(LO) > v(TO), based upon the direction of the displacement with respect to the phonon wave vector \vec{k} . It is also important to notice that the TO - LO splitting is not well resolved at room temperature for the infrared spectra and there has been some discussion, in the literature, to discern which vibronic features of the spectra correspond to these modes. It is also to be said that the tabulated τ_{1u} -vibrational frequencies are certainly averaged over the LO and the TO components.

Finally but not at least, we have worked out a through vibrational coordinate analysis, without including the long range interactions for a series of clorohalides elpasolite type crystal such as: $Cs_2NaLnCl_6$ for Ln = Pr, Eu, Tb, Dy, Ho, Er and Tm.

The vibrational data employed for our purposes is as given below [18]

								-	0	
Ln	ν_1	v ₂	v ₃	ν_4	ν_5	ν_6	ν ₇	ν_8	ν ₉	ν_{10}
Pr	282	220	21	114	46	255	105	173	59	77
Eu	290	228	21	118	47	260	105	176	58	79
Tb	292	233	(20)	123	45	268	111	182	56	82
Dy	295	235	(21)	124	45	266	111	181	(61)	80
Ho	297	239	(21)	127	47	267	114	176	61	83
Er	297	236	21	126	47	268	116	182	62	86
Tm	297	237	(20)	127	47	268	118	182	63	88

Tabla 1

Wavenumbers (cm⁻¹) for the elpasolites $Cs_2NaLnCl_6$

The above data is close enough to that of Tanner [7], reported in Table 2 so has been employed through the course of the current work. It is interesting at this point of the discussion to pay careful attention to some of the partial results, reported by Tanner [7], Lents [17] and Ning et al [18]. In particular, in the review paper by Taner [7], this author refers to three model calculations: (a) cal 1: five parameters model within the framework of a simple general valence force field, (b) cal 2: a nine –parameters unit cell group calculation has been tried, utilizing a general valence force field and (c) cal 3: seems to refer to a more complete lattice dynamics calculation, within a set of approximation [19]. The conclusion drawn out of these calculations are somehow expected, due to the various levels of

approximations as well as to the scarce or incomplete set of experimental data. We shall come back to this point latter on in the current paper, once we introduce our model and strategy followed trough the current research work, to deal with these rather complicated systems. Our calculations must not be regarded as, say cal 4, since the whole approach is different and it is by no means an extension of any previous research works in the field.

II.- Normal coordinates analysis in the elpasolite type crystals.

(2.1) **Preliminary Remarks**:

The trivalent positive lanthanide ions in the elpasolite type crystals of the M_2ALnX_6 type are currently associated with octahedral symmetry sites. In this section, we will mention some relevant topics, related with the synthesis and structural characterization of these crystals and our main emphasis will be in the observed phase transitions, and the conditions upon which they take place. The electronic, vibrational and Raman spectra of these materials show somehow spectral features which are not pure at all, and therefore they show an increasing complexity. We have so far, described the electronic spectra in terms of the 0-0' transition (ZPL) and the associated vibronic structure. It is indeed, straightforward to realize the difficulties to be found, when attempting to model the intensities associated with $f \rightarrow f$ and/or $f \rightarrow d$ electronic transitions in the RE systems.

It is also relevant to take into account the marked differences among the spectra associated with mixed electronic configurations such as $4f^N \rightarrow 4f^{N-1}5d$ and the pure $4f \rightarrow 4f$ excitations for these crystals. Moreover, it is essential to work a reasonable strategy to get a description of the energy levels for these materials, matter which was addressed by Richardson. F. S, M.F.Reid and collaborators in a series of research papers [5, 7, 20-26]. All the pioneer calculations involve a great number or parameters to be fitted from the experimental data, and this is a point which we believe it should be addressed from a different viewpoint. We would rather have a smaller set of unknown parameters to be employed, within the framework of a semi empirical method rather than a greater set of them, mainly because we will rarely and for very few simple systems have available a satisfactory set of experimental data. We should rather expect an incomplete set of data and this must be handled with care. In our view, our main goal is to advance our understanding of these complex phenomena, introducing simple but comprehensive model calculation with the minimum set of adjustable parameters.

In this work, we decided to consider from both, experimental and theoretical viewpoints, the vibrational factor which together with the electronic factor is most likely to determine the rate of both radiative and non radiative transitions for these materials.

The dipole strength $D_{1\rightarrow 2} \propto |F(elec)F(vib)|^2$ is then proportional to the modulus square of the product of both factors mentioned above. For the sake of completeness, it is worth mentioning, once again, the work done by Tanner [7], since it does represent a significant effort to show for chemists how to deal with various topics such as : the synthesis, structural characterization, static selection rules, vibrational spectra, electronic transitions between to f-allowed electronic states (assisted, in a cubic environments, by the odd parity modes of vibrations of the system), Raman spectra and the interaction between electrons and phonons and its consequences in the mixing in of allowed states, two photon absorption experiments (one and two color), electronic spectra associated with transitions such as $4f^N \rightarrow 4f^{N-1}5d$, the careful study of the trend followed in the series of the lanthanide ions of the parameters adjusted by the computing program due to M.F.Reid (DOCUMENTATION) and finally, the revised and updated work refers to some energy transfer phenomena (ET).

As we mentioned earlier on in the text, our attention in this section will be focused to the vibrational factor F(vib). To accomplish this task, we have available, an incomplete set of rather accurate database from linear and non linear optics for a series of Chloride elpasolite type systems such $Cs_2 NaLnCl_6$, and also some accumulated knowledge about dealing with optimization procedures so as to search for global minimum along the various hyper surfaces corresponding to the allowed terminal electronic states of the vibronic transitions.

As we mentioned above, it is suggested that the strategy to be followed should be as flexible and general as possible so as to accommodate the various terms which should be considered in this type of calculations. Along these lines, we decided to examine the previous research works carried out for these materials by other authors [7,17,18] so as to work on them as starting point and then to include in a rather novel way the interactions between the cluster $LnCl_6^{-3}$ and the counter ions; M^+ and A^+ , all done within the Fm3m-space group. In Figure 1, we report the model appropriate to describe the vibrational behavior of several crystals, such as, A_2MLnCl_6 , adopting a a 10-atoms system model. For the sake of understanding the complexities of these problems, we have considered in our vibrational study a fairly complete set of lanthanide ions, such as: $_{59}$ Pr, $_{63}Eu$, $_{65}Tb$, $_{66}Dy$, $_{67}Ho$, $_{68}Er$ and $_{69}Tm$. A total of seven lanthanide ions in elpasolite type crystals such as those reported along with the vibrational frequencies in Table 1.

Due to our limited experimental data available for these systems, we need to develop a new approach to include some mathematical constrains in our optimization procedures, so as to minimize as a valid physic criterion, the cross terms (interference terms) associated with the potential energy distribution (PED). This strategy give rises to the idea of a Natural Potencial Energy Distribution (NPED).

The main goal of this work is to undertake a careful study of the constraints related with any normal coordinate's analysis for an N-body system. We certainly need to develop sensible criteria to allow us to make both lines identifications and assignments for the various peaks and bands in both absorption and emission spectra for these complex systems. This approach becomes extremely sensible and relevant, in particular for systems having many electrons, where the relativistic effects may become For all these cases, a full configuration very significant, indeed. interactions is required to get some idea about energy levels and subsequently, static selection rules and most likely identifications and assignments of the main features in the spectra. It does not seem to us, that the old criterion based upon a rather excessive parameterization and the search for the smallest possible values for the mean square deviation (among the observed and the calculated energy levels) seem to be neither appropriate nor unique and therefore, some additional requirements should be included in our physical and calculation model to make it more realiable and sound from a physical point of view.

At this point of the discussion, it does seem relevant to refer to the work of Lentz [17], who can claim priority in these kind of vibrational analysis. His work was, somehow inspired and motivated by some experimental evidence related to systems such as the elpasolites and the cryolites, $M_2BB'X_6$ and $M_3B'X_6$, respectively. In this work, the author put forwarded a 10-atoms system model and employed (with the data available at that time) a Wilsonian type force field, i.e. a diagonal force field. Though, the limitations of this model, it has been subsequently employed to deal with the vibrational behavior of these systems. He introduced the notation: $S_i: i = 1-10$, for the various symmetry coordinates with references to these systems.

It is, in a way, rather unfortunate to realize that the crude approximations involved in a Wilsonian version for the vibrational force field, preclude us of having a sound and sensible description of the normal modes of vibration for this 10-atoms systems model. It is worth mentioning, that the transformation: S = LQ, relating the symmetry coordinates to the normal coordinates of the system depends upon the choice of the vibrational force field. Moreover, the L-matrix depends upon the details of the vibrational force field, so we write: L = L(F). Thus, the choice of the vibrational force field is by every means some kind of crucial for these purposes. In a recent work, Ning et al [18] attempted to improve the work of Lentz, by including a new set of experimental data and also some additional non diagonal matriz elements $(f_{i,j})$ for the potential energy matrix F.

These results of this work are still open to discussion, since there are some inconsistencies which must be lifted, in particular those related with some negative values for the Hooke type force constants. It is indeed, relevant to realize that by definition these force constants should be positive in values and it is not admissible to justify some of the negative values for the $f_{i,j}$ parameters, by arguing that it does not matter much, since these values are amplificable.

since these values are small and/or negligible.

In our opinion, when this kind of unexpected results appear it might well be that the wrong strategy to tackle the problem has been adopted. It must be said, that the calculation itself can not manipulated in any possible way, and therefore it seems to be more sensible to look for a new model and strategy, in the hope that we will obtain a sensible set of internal force constants and also a reasonable description of the normal modes of vibrations for the crystal. We have reported a review article with reference to the spectroscopy of the $Cs_2NaErCl_6$ system, having studied several absorptions from the ground state $|({}^4I_{15/2})a\Gamma_8\rangle$ to a fair number of excited states. This calculation was performed so as to test the validity of some of the approximations to be employed in the current research work.

(2.2)Normal modes of vibrations. A 10-atoms system model.

(2.2.1)Introduction

It is well established, in the literature that based upon chemical and physical differences, we may at least classify the crystals into four different categories: (a) ionic, (b) covalent, (c) metallic and (d) molecular. The

above categories are employed only for practical purposes, since we also know that some crystals show some characteristic properties, which are intermediate among some of the above categories within which we have, in principle classify our materials. As for molecular crystals, it is interesting to focus our attention, since much of the argumentation to be used upon them, will as well be applicable to ionic crystals.

These molecular crystals show relatively low values of cohesion energies, low melting points, softness and deformability, low electric and as well as they show rather poor mechanical thermal conductivities properties. According to the above properties, we may classify these molecular crystals in terms of (a) structural arrangements of the atoms and (b) nature and strength of the interaction forces. Some additional comments which may be of some interest are (a) The preservation of the molecular identity: this is so, since the bonding forces among atoms of the same molecules are more intense that those of that between atoms, belonging to different molecules. It is also known that they exhibit some deviations for both the bond lengths and bonding angles when the the phases corresponding to gas and the crystalline samples are compared. This may be explained, as a consequence of the intermolecular potential along the intramolecular bonds. (b) For simple molecules (with low rotational barriers), it is feasible that in the crystal, the molecules may adopt a configuration other than expected, which is by no means stable in gas phase. (c) These crystals are characterized by the occurrence of a periodicity of molecular identities, named Bravais lattices, which can be found along all the polarization directions of the crystal.

We are very much aware that the vibrational spectra in gas phase, the fundamental modes of vibrations of the molecules and their related overtones may be observed experimentally. Nevertheless, for crystals, we may also appreciate the same bands shifted in frequencies and split in a number of components , those which essentially depend on two main factors such as; the number of molecules by unit cell and the symmetry associated with these cells. The frequency shifts appear to be some wave numbers, nevertheless in all of those cases where the directional forces are notably intense, these shifting may become of $about100 cm^{-1}$. It is important to say, at this point of the discussion, that the crystal spectrum at low frequencies shows up new bands , which would not be expected to appear in the spectra of the sample in the gas phase.

These new bands are due to vibrations of the crystal, in which the molecules undergo small motions from both translational and rotational in character. It is also well established that in the gas phase, molecules undergo free translation and rotational motions, but in the crystal these motions are not longer free at all. These are restricted by backward forces as result of the intermolecular forces. These vibrations are named external

vibrations and are of different origin of those that of neat molecules broadly known as internal vibrations. Generally speaking both sets of vibrations (internal and external) are well enough separated and the energy gap is important to be taken into account, for any practical purposes. In a first approximation, we could argue that based upon the energy gap between the internal and the external vibrations, the coupling between them is either small or negligible. This approximation should be considered with most care, since it is easy to get lost in some kind of scientific debate on this matter. It is also to be mentioned that the treatment of the external vibrations is also carried out without taking much care of the internal vibrations (the coupling among them is assumed to be so weak or negligible at all). When the external vibrations are treated well separated from the internal vibrations, we refer this situation to the so called approximation for the rigid rotor. This is simple to follow, because when this approximation holds then the molecules of the system are assumed to be rigid rotors and therefore, in this zero order approach, we forget all together of the internal degree of freedom. This way of dealing with the N-body problem has the great advantage of reducing in six the number of degree of freedom for non linear molecules and in the case of linear molecules, this number is reduced only to five (this is because, any linear molecule is suppose to lye along the quantization axis Z and therefore the rotation along this axis is not an ordinary operation any more, so it may be associated with some kind of identity operator for a given basis set). This treatment and suggestion to classify the vibrations in both internal and external, in character is employed also in those cases, when the so called rigid approximation is no longer valid and/or utilized and therefore all the degree of freedom should be considered simultaneously.

For crystals, it is well known that the normal modes associated with these internal vibrations appear al low frequencies in the spectra and also they overlap with the crystal modes. When this situation occurs, the spectroscopy becomes very complicated and therefore caution should be taken as a serious matter, so as to avoid wrong identification and assignment of peaks and bands in the spectra of these materials. This may be the result of some relevant overlapping between excitations associated with normal modes of both, the same symmetry species and comparable energies. It is also to be emphasized that the approximation of rigid body in the spectroscopy of these materials leaves the door open for any further studies associated with the external vibrations. Following the same set of ideas, we can also argue that these crystal vibrations are somehow controlled by the intermolecular potential and are widely employed as a means to advance our understanding of the very physics nature of the various interactions among molecules, as well as to test our potential model so far used in this kind of calculations.

For the internal vibrations, they behave as small perturbations in the internal force field. Due to these reasons and other of second order, the shifts and splitting associated with the external vibrations are much less employed in calculations due mainly to their complexities. We also recognize that beyond the ideas of internal and external bands, the spectra associated with crystals show up a number of broad absorptions known as sidebands, associated mainly with internal vibrations. The sidebands are the result of the mixing in of the internal modes of the crystal. Finally, multi phonon absorptions appear, in the region of the overtones and combinations of the internal modes and are currently associated with the various internal modes referred to different molecules in the unit cell.

(2.2.2)Vibrations

In this section, we aim to put forward a model to help the understanding of the advantages and disadvantages when a normal coordinates analysis is performed for stoichiometric elpasolite type systems. We know very little regarding the detailded description of the interacting vibrational force field.

At the very best, we know that, this interacting potential operator is a function of the relative distance among the particles of the system. At starting point, we need to work out the known vibrational equations of motion: $GFL = L\Lambda$. When the systems is stable, for a given nuclear configuration, then the G matrix is known and can be worked out from structural parameters and the masses of the nuclei ions of the crystal. All of this, is certainly referred to some nuclear equilibrium configuration $(\vec{Q} \rightarrow \vec{Q}^{(0)})$. Also the *L*-matrix plays a crucial role in the theory since it does relate the symmetry coordinates to the normal coordinates of the system (S = LQ)

The *L*-matrices represent the amplitudes of vibrations and are functions of the chosen force field *F* (the details of the force field should be considered with extreme care and accuracy). The amplitudes of vibrations are normalized to the kinetic matrix by means of the transformation: LL'=G. This kind of normalization condition is solely determined by the geometry and the equilibrium configuration for the system. It should be kept in mind that for a given *L*-matrix (i.e. for a choice of the force field), the kinetic matrix *G* is fixed. From the normalization condition, given above, it follows that the *G*-matrix must be positive, then its eigenvalues

must be positive. Next, let *B* be factorization matrix of the transformation attributed to Cholesky [28] for the *L*-matrix, then we write: G = B'B.

Also: $GFL = L\Lambda$, then if follows: $F = G^{-1}(L\Lambda)L^{-1} = (LL')^{-1}(L\Lambda)L^{-1}$. Then, we may write: $F = (L')^{-1}(L^{-1})(L\Lambda)L^{-1} = (L^{-1})(L^{-1}L)\Lambda L^{-1} = (L^{-1})\Lambda(L^{-1})$. It is interesting to observe that the *F*-matrix obtained using this method, will be symmetric and that the eigenvalues of the matrix product *GF* will be the same as those reported by the experiment (input values). Next, to find a suitable *F*-matrix, it is relevant to define the amplitudes of vibrations matrix *L* in an appropriate form, and as a consequence, this latter matrix must be non singular and its columns should provide a basis set in the whole space R^n . Let us introduce, the transformation: L = B'A', where the *B*-matrix has been defined previously and *A* stands for a matrix whose columns constitutes an orthonormal basis set in the R^n -space, i.e. $A' = A^{-1}$.

It follows that: G = L'L = (B'A')'(B'A') = (AB)(AB)'. Also, $F = (L^{-1})'\Lambda(L^{-1})$ and L = B'A' and $A' = A^{-1}$. Thus, we write: $L = B'A' \rightarrow L' = AB \rightarrow L^{-1} = B^{-1}A^{-1}$.

In terms of these identities, we write, the chain of identities as given below:

$$F = \{ [B'A']^{-1} \} \land \{ [B'A']^{-1} \} = (\{ [AB]'\}^{-1})' \land \{ [BA]'\}^{-1} = (AB)^{-1} \land \{ [BA]^{-1} \} = B^{-1}A' \land \{ [AB]'\}^{-1} \}$$

We have employed the identity: $(AB)^{-1} = B^{-1}A^{-1} = (B^{-1})A'$, since the A-matrix is orthogonal. Also, we may write the chain of identities, such as:

$$\{[AB]\}^{-1} = (B'A')^{-1} = (B^{-1}A^{-1}) = (B^{-1}A')^{-1} = A(B^{-1})^{-1}$$

and therefore, we end up with the matrix identity to be employed to get a modeled force field for these systems, then we write: $F = (B_{-1})A' \Lambda A(B^{-1})$. From this matrix transformation, we observe that the *F*-matrix depends solely on the details of the *A*-matrix, which must be orthogonal ($A^{-1} = A'$). Next, we shall introduce an algorithm so as to put some restrictions upon the *F*-matrix; all its matrix elements should be positive and the following constrains should be fulfilled simultaneously:

The restrictions imposed upon this energy potential matrix are as described below:

- (a) $f_{i,i} > 0$, for all i, j = 1, 2, ..., n
- (b) $f_{i,i} > f_{i,j}$, for all i, j = 1, 2, ..., n
- (c) $f_{i,i} > f_{i,i}$, for all i, j = 1, 2, ..., n

Within the 10-atoms system model for these elpasolite type systems, the τ_{1u} - symmetry block is 4 x 4 and the symmetry coordinates have labeled as S_i (i = 6,7,8,9). Next, we observe, see Table 1 that for a series of systems such as $Cs_2NaLnCl_6$, it follows that: $v_6 > v_8 > v_7 > v_9$.

A small but useful piece of help, may be obtained from the vibrational behavior of, say some diatomic molecule, such as: *AB* - type. We find that the allowed vibrational frecuencies, corresponding to the optical branch are those given by the identity: $v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$, where the reduced mass is denoted by μ , whereas the Hooke type force constant is labeled as k. It is then straightforward to observe that for a set of given masses, it follows some kind of trend as follows: $v \propto \sqrt{k}$, and hence we might expect for the 4x4 symmetry block and for the diagonal matrix elements a given patters as: $f_{66} > f_{88} > f_{77} > f_{99}$. This is, indeed our starting point, for the most probably ordering for the diagonal matrix elements. The conditions to be fulfilled by the *F*-matrix are somehow written as given below:

Conditions upon the *F*-matrix = $\begin{cases} true & if all conditions are satisfied \\ false & otherwise \end{cases}$

Algorithm:

Be G and F, two given matrices B is the factorization matrix of the G-matrix (Cholesky)

While: Conditions upon F = false \hat{A} -matrix (random) if $|A| \neq 0$, then A is an orthogonal matrix generated by \hat{A} $F = (B^{-1})A' \wedge A(B^{-1})$ If these conditions upon F are fulfilled, then Stop F is feasible end (If) end(If) end(While)

(2.2.3) Assignment Criteria

Preliminary Remarks

As we discussed, previously in the text, we will either never or very rarely have enough experimental data to fit the parameters needed to accommodate several effects in these types of systems. We observe that for the short range interaction contributions to the dynamic matrix, $d(\vec{k})$, the choice of the *F* - matrix is by all means a crucial step.

It is then obvious, the many reasons we have to put much effort and energy to work out some criteria to discern among all the possible potential energy matrices, since a unique solution is not possible. There is, though a criterion which may help to choose the most representative vibrational potential for these N-body systems.

In this section, we will put forward a methodology to be taken into consideration, when dealing with both identifications and assignments of spectral features of the spectra. We have explored these criteria in previous works in this field with a fair degree of success [29-32]. We need to work on the basis that potential energy distribution plays an important role in spectroscopy and therefore a criterion is needed to discern among a set of possible potential energy matrices, the most appropriate and sound from a physical viewpoint which may be employed to discuss both, the identification and assignments of peaks and bands in the spectra of these systems. We must follow this procedure to the lack of experimental data and simultaneously our need to advance the state of the art in this broad area of the spectroscopy of new materials.

The strategy to follow is a given below:

A) The short range contributions to the dynamic matrix obey the vibrational equation of motion: $GFL = L\Lambda$, where G = LL'. Thus, we write the general identity: $\Lambda = L'FL$, and the elements of the diagonal matrix Λ are denoted by $\lambda_i (i = 1, 2, ..., s)$, being *s*-the number of normal modes of vibrations for the system. It is known, that these eigenvalues of the H = GF - matrix may be expressed as: $\overline{v_i} = 1303, 16\sqrt{\lambda_i}$. In this notation, the waved numbers associated with each of the normal modes of vibrations for the systems have labeled as $\overline{v_i}(cm^{-1})$. From the identity: $\Lambda = L'FL$, we write the general identity:

$$\lambda_i = \sum_{r=1}^s \sum_{k=1}^s L_{r,i} L_{k,i} f_{k,r} = \sum_{k=1}^s L_{k,i}^2 f_{k,k} + \sum_{k \neq r} L_{r,i} L_{k,i} f_{k,r}.$$

We observe that the terms λ_i may be regarded as a partition into two terms; a diagonal and non diagonal contributions. The first terms on the right hand side of the above identity is expected to be the major component to the total values of the λ_i -values. These non diagonal contributions may be regarded as an interference term, which needs to be considered in detail (based solely upon the fact, that the diagonal components of the F - matrix is expected to be bigger than the non diagonal elements, then many researchers either neglect these terms from the very beginning, renormalizing the above general identity for λ_i , since they assumed that the condition is currently fulfilled: $[(\sum_{k=1}^2 L_{k,i}^2 f_{k,k})/\lambda_i] \approx 1$.

For a series of compounds and transitions of the type $d \to d$ and $f \to f$, we have studied the above assumption and we found no reason to believe that this approximation is to be considered seriously. We have instead, considered the complete identity as given below: $1 = [(\sum_{k=1}^{s} L_{k,i}^{2} f_{k,k})/\lambda_{i}] + [(\sum_{k\neq r}^{s} L_{r,i} L_{k,i} f_{k,r})/\lambda_{i})].$ Thus for each λ_{i} , we may write: $(1) \qquad 1 = [(\sum_{k=1}^{s} L_{k,i}^{2} f_{k,k})/\lambda_{i}] + [(\sum_{k\neq r}^{s} L_{r,i} L_{k,i} f_{k,r})/\lambda_{i})] = (PED)_{i}^{d} + (PED)_{i}^{n-d}$

A close looks at the above identity show (for a given frequency), that the potential energy distributions (PED), depends on both the amplitudes of vibrations and the force constant matrices. We also know that L = L(F), i.e. these amplitudes of vibrations depend parametrically on the details of the assumed force field *F*. Thus, considerer a 2x2, symmetry block and also that both the *F* and *L* matrices are well established and ay be considered good enough the for the sake of the vibrational problem. In this case, we write in matrix notation:

(2)
$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} L_{11} & L_{21} \\ L_{12} & L_{22} \end{pmatrix} \begin{pmatrix} f_{11} & f_{12} \\ f_{12} & f_{22} \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}$$

and the conditions is met: $L_{11}L_{12}f_{11} + L_{11}L_{22}f_{12} + L_{12}L_{21}f_{11} + L_{21}L_{22}f_{22} = 0$, and as for the potential energy distribution, we may also write the general identity (for a given foce field):

(3)
$$\begin{pmatrix} (PED)_{11} & (PED)_{12} \\ (PED)_{21} & (PED)_{22} \end{pmatrix}$$

Here, we define, for a given
$$\lambda_i$$
 -value: 100% = $\sum_k (PED)_{k,i}$.

B) Matrix notation suitable for computing calculations:

At his point of the discussion, it is convenient to introduce a more general notation, suitable for computing calculations as given below:

(4)
$$[Mdiagonal]_{i,j} = L^2_{i,j}f_{i,j}$$

and also:

(5)
$$[M - non - diagonal]_{i,j} = \sum_{ll \neq i} L_{i,j} L_{ll,j} f_{i,ll}$$

In this approach, as we mention earlier on in the text, we may proceed to sum the above two matrices (4) and (5) to produce the M_{d+n-d} and it is straightforward to realize that the summation of all the matrix elements along a column of the M_{d+n-d} - matrix will produce as results the eigenvectors associated with the H = GF-matrix for each and all of the symmetry blocks. Similarly, it is relevant to notice that from the above defined matrices (4) and (5), we obtain the matrix elements corresponding to the natural potential energy distribution (in percentage) to give the general expression:

(6)
$$(PED)_{i,j} = 100 \left\{ \frac{\left[M_{d+n-d}\right]_{i,j}}{\lambda_j} \right\}$$

C) The Potential Energy Matrix

This criterion will be employed, throughout the course of the current section to illustrative our strategy and methodology to deal with the vibrational behavior of N-particles systems, with reference to the $Cs_2NaLnCl_6$ -type system, for Ln = Pr, Eu, Tb, Dy, Ho, Er and Tm. As we mentioned earlier in the text, Ning et al [18] made available a valuable set

of experimental data for a series of different elpasolite systems as well as a physical model to describe the dynamic behavior of the vibrating systems. When this work is compared with that of Lentz [17], we realized that many points, remains still obscure and some additional theoretical work is required. The model introduced by Ning et al, may be regarded as useful though with a minor applicability. These authors included a new force constant, named "h" as a freely varying parameter so as to improve the quality of the fitting between the experimental and the calculated vibrational frequencies. A close look at the results of their work indicates that the fitting seems to be better, though there still problems to be solved as far as the potential energy matrix employed in the calculation.

We anticipate that a careful analysis of the F - matrix elements for each of the allowed symmetry species, within the framework of the 10 – atoms system, as described by Lentz [17] and subsequently revised by Ning et al [18], indicates that the potential energy function employed in that calculation is very approximate and therefore should be re studied on the basis of the new experimental data available.

All of these facts, motivated us to undertake a careful theoretical analysis of the force field to be employed and in this way to get a better and closer description of the "true normal modes of vibrations" for these systems.

In this piece of work of ours, we do not claim that the problem has been solved accurately and we can anticipate that there are still some points which are open to discussion. Having said this, we can say, though that this represents in our view, a serious attempt to advance the state of the art for those short range contributions to the dynamic matrix $D(\vec{k})$. We can also mention that, work has been done in our laboratory, to do some theoretical work for these elpasolite-type systems, including the potential in the approach of Born-Mayer-Buckingham and a substantial progress has been achieved.

This work will soon be reported, and we will also like to get involved in broad areas such as full lattice dynamic calculations for various cystals, explicit calculations of phonon densities and a new version of a dynamic vibronic method to deal with these N-particle systems.

In section (2.2.2), we report a methodology and strategy to get a sensible description of the F - matrices, with explicit references to these crystals. Much of that information is already given in the text previously so we will not repeat it here.

To build a potential energy function for the system, we proceeded as follows:

(1) A representative set of internal force constants were chosen so as to include as many interactions as possible, among bonded and non bonded nuclei ions in the crystal. Six different sets of bonded and non bonded force constants were included. The reader is referred to Figure 2. (a) $\{\Delta r_i\}; i = 1, 2, ..., 6$ (bonded stretching, Ln - Cl), (b) $\{\Delta R_i\}; i = 1, 2, ..., 6$ (non bonded stretching, Na - Cl), (c) $\{\Delta \alpha_{1,i}(Cl - Ln - Cl)\}$, bonded bendings, twelve in total, (d) $\{\Delta \beta_{i,j}(Cl - Na - Cl)\}$, non bonded , twelve in total and (f) $\{\Delta d_{i,j}(Cl - Cs - Cl)\}$, non bonded, twenty four in total. As we observe, the total of internal coordinates employed in the current approach is seventy two, in total.

(2) The next step in our analysis has been to introduce a number of contributions compatible with the set of internal coordinates, defined previously in (a). We have organized the whole range of interactions and also the identification of each and all of them in Figure 3 and Appendix VII. The total of, diagonal and non- diagonal interactions terms (internal force constants), is ninety eight in total. For illustrative purposes, we have drawn a pictorial representation of these interactions in the 10-atomos system model. The Hooke-type force constants have been labeled as x[i]; i = 1, 2, ..., 98

(3) An interesting, though complicated situation appears, when attempting to symmetrized the basis set of the internal coordinates so as to obtain the U-matrix, (U is such that: $U = U^+$), relating the symmetry to the internal coordinates, by means of the identity: S = LQ, where L = L(F). Having in mind the model in study, the number of vibrational freedom should be 24 in total, however in the summation the restricted $T_{1g}(S_3)$ - symmetry coordinates has not been included. Thus, we write:

$$\Gamma_{vib} = A_{1g}(S_1) + E_g(S_2) + T_{1g}(S_3) + 2T_{2g}(S_4, S_5) + 4T_{1u}(S_6, S_7, S_8, S_9) + T_{2u}(S_{10})$$

(4) The problem was solved by introducing linear combinations of the sets of the internal coordinates, introduced in (1): (a)-(f), and therefore we report in Appendices I and II, the symmetry coordinates in terms of the internal coordinates and also in terms of the Cartesian nuclear displacement coordinates.

(5) Having obtained the U-matrix, it is relevant to observe: (a) We have chosen 10 symmetry coordinates to model the dynamical behavior of our system and (b) 38 internal coordinates out of the total, i.e. 72 are included in the calculation (we have included only the linear independent internal coordinates). Thus, we may write transformation as given below:

S(10x1) = U(10x38)s(38x1), where small s(38x1) corresponds to the matrix of the linearly independent internal coordinates. The problem has been tackled, by working the symmetrized potential (F_{sym}) and kinetic energy (G_{sym}^{-1}) matrices, employing general relations such as: $X_{sym} = UXU'$ (similarity transformation). We have been able to block these matrices, imposing upon the system the general condition among the Hooke-type for constants:

$$x[i] = 0; i = 21, 22, 71, 72, 73, 74, 75, 76, 83, 84, 85, 86, 87, 88, 93, 94$$

(6) Following the methodology expressed previously in this section, we reproduced the G-matrix as given by Lentz [17].

(7) As for the $T_{2g}(2x2)$ and $T_{1u}(4x4)$ symmetry blocks, we followed the methodology and mathematical procedure, already explained in section (2.2.2). We focused our attention upon the $Cs_2NaLnCl_6$, for Ln = Pr, Eu, Tb, Dy, Ho, Er, Tm. For the 2x2 block, we list the most representative F-matrix, whereas for the 4x4 symmetry blocks, we decided to list for each elpasolite type crystal up to three potential energy matrices.

We have employed the criterion of the natural potential energy distribution to discern among several sets of F -matrices At this point of discussion, that the conditions the we may argue, *x*[*i*] = 0; *i* = 21, 22, 71, 72, 73, 74, 75, 76, 83, 84, 85, 86, 87, 88, 93, 94 upon the system produces blocks of symmetry well determined and as expected the fitting among the observed and the vibrational frequencies is exact (the reader is reminded that this is condition upon which is based the transformation attributed to Cholesky [28]. This information for the series of Chloride elpasolite crystals is collected in the Appendix III. It can be observed that each and all of the matrix elements informed in this Appendix are positive and the eigenvalues of the H = GF matrix are the observed frequencies (the fitting is by definition exact).

(8) In the present section (B), we introduced the criteria leading to the concept of natural potencial energy distribution (NPED), and we defined the following matrix elements $[MDiagonal]_{i,j} = L_{i,j}^2 F_{i,j}$ and $[Mnon - diagonal]_{i,j} = \sum_{ll \neq i} L_{i,j} L_{ll,i} F_{i,ll}$, thus for the 2x2 symmetry block

ll = 1, 2, whereas for the 4x4 symmetry block ll = 1,2,3,4, respectively.

In this scheme, we generate a new matrix; say M_{d+n-d} as the summation over the diagonal and non-diagonal matrices given above.

Therefore, the straightforward sum over each column of this matrix will reproduce the eigenvalues of the H = GF - matrix, for all and each of the symmetry blocks. It is then possible, to evaluate the potential energy distribution matrix (*PED*), whose elements may be regarded in percentages, according to the general expression:

$$\left[PED\right]_{i,j} = 100 \left\{ \frac{\left[M_{d+n-d}\right]_{i,j}}{\lambda_j} \right\}$$

It is straight to realize that the summation along lines (columns and rows) should amount to 100 %. All these information is collected in Appendix IV.

(9) The symmetrized $F_{sym} = UFU'$ and its matrix elements are given in terms of the Hooke-type force constants in Appendix V. Next, for illustrative and informative purposes, we introduce a new set of relative internal force constants as given below:

$$\begin{aligned} X_{1} &= x[9] - x[7] = 2F_{66} - F_{88} \\ X_{2} &= x[1] - x[3] = (2F_{66} + F_{88}) - 2\sqrt{2}F_{68} \\ X_{3} &= x[4] - x[6] = (2F_{66} + F_{88}) + 2\sqrt{2}F_{68} \\ X_{4} &= x[1] - x[3] + x[4] - x[6] = 2(2F_{66} + F_{88}) \\ X_{5} &= x[2 + x[5]] - 2x[8] = \frac{2}{3}(F_{11} - F_{22}) \\ X_{6} &= x[1] + x[4] - 2x[9] = \frac{2}{3}(F_{11} + 2F_{22} + 3F_{88}) \\ X_{7} &= x[3] + x[6] - 2x[9] = \frac{2}{3}(F_{11} + 2F_{22} - 6F_{66}) \\ X_{8} &= x[38] - x[40] = \frac{1}{6}(-\sqrt{30}F_{67} + 2\sqrt{6}F_{69} + \sqrt{15}F_{78} - 2\sqrt{3}F_{89}) \\ X_{9} &= x[42] - x[44] = -\frac{\sqrt{10}F_{67} - 2\sqrt{2}F_{69} + \sqrt{5}F_{78} - 2F_{89}}{2\sqrt{3}} \\ X_{10} &= x[48] - x[49] - x[51] + x[53] = \\ &= \frac{1}{3}(6F_{66} + 2\sqrt{15}F_{67} - 3\sqrt{2}F_{68} + 2\sqrt{3}F_{69} - \sqrt{30}F_{78} - \sqrt{6}F_{89}) \end{aligned}$$

$$\begin{aligned} X_{11} &= x[45] - x[46] - x[68] + x[70] = \\ &= \frac{1}{3} \Big(6F_{66} + 2\sqrt{15}F_{67} + 3\sqrt{2}F_{68} + 2\sqrt{3}F_{69} + \sqrt{30}F_{78} + \sqrt{6}F_{89} \Big) \end{aligned}$$

In Appendix VI, we list the numerical values obtained throughout the course of the current work[cal(1), cal(2), cal(3)], for a total of seven systems of the type: $Cs_2NaLnCl_7$, where: Ln = Pr, Eu, Tb, Dy, Ho, Er and Tm. The heading cal(1), cal(2) and cal(3) corresponds to the three different force fields, we have illustrated in this paper for the $\tau_{1u}(4x4)$ -symmetry blocks.

References

[1] B.R.Judd. Phys.Scr, 21, 543(1978) [2] T.R.Faulkner, F.s. Richardson. Mol. Phys, 35, 1141(1978) [3] T.R.Faulkner, F.S.Richardson. Mo.Phys, 36, 193(1978) [4] T.R.Faulkner, F.S.Richardson. Mol. Phys, 38, 1165(1979) [5] M.F.Reid, F.S.Richardson. Mol.Phys, **51**, 1077(1984) [6] R.A.Satten, C.L.Schreiber, E.Y.Wong. J.Chem. Phys, 78, 79(1983) [7] P.A.Tanner. Top.Curr. Chem, 24, 1(2004) [8] A.Barbanel, R.B.Dushin, N.K.Chudnovskaya, G.P.Chudnovskaya. Radiokhimiya, 21,706(1979) R.B.Dushin, V.P.Kolin, [9]A.Barbanel, N.K.Mikhailova, G.P.Chudnovskaya. Koor Khim, 1,411(1975) [10]W.Strek. Z.Mazurak, C.Szafranski, J.Hanusa, K.Hermamowicz, B.Jezowska-Trzebiatowska. Chem.Phys, 84,269(1984) [11]B.Jezowska-Trzebiatowska,W.Ryba-Romanowski, Z. Mazurak, J. Hanusa. Chem. Phys, 50, 209(1980) [12]H-D.Amberger. Spectrochimia Acta **34 A**, 627(1978) [13]H-D.Amberger. private communication [14]R.Becker, A.Lentz, W.Sawodny. Z.Anorg.Allg.Chem, 420, 210(1976) B.Jezowska-Trzebiatowska, [15] W.Strek, J.Hanusa, K.Hermanowicz, G.Denisenko, K.S. Aleksandrov, V.N.Voronov. J.Appl. Spectroscopy, 62, 877(1995) [16]H-D.Amberger. Z.Anorg.Allg.Chem, 467,231(1980) [17]A.Lentz. J.Phys.Chem. Solids, 35,827(1974) P.A.Tanner, X.Shangda. Vibrational [18]L.Ning, Spectroscopy, 31, 51(2003)

[19]R.S.Sinkovits, R.H.Bartram. J.Chem.Phys.Solids, **52**, 1137 (1991)

[20]M.F.Reid, F.S.Richardson. Chem Phys,Lett, **95**, 501(1983)

[21]M.F.Reid, F.S.Richardson. J.Less. Common.Metals, 93, 113(1983)

[22]M.F.Reid, F.S.Richardson. J.Chem.Phys, 79, 5735(1983)

[23]M.F.Reid, J.J, Dallara, F.S.Richardson. J.Chem.Phys, 79, 5743(1983)

[24]M.F.Reid, F.S.Richardson. J.Phys.Chem, **88**, 3579(1984)

[25]C.K.Jayasankar, F.S.Richardson, M.F.Reid, P.A.Tanner. Mol.Phys, **61**, 635(1987)

[26]S.M.Crooks, M.F.Reid, P.A.Tanner, Y.Y.Zaho. J.Alloys and Comp, **250**, 297(1997)

[27]R. Acevedo, A.Soto-Bubert, T.Meruane, G.Navarro. Rev.Méx.Fís, **51**(4), 330 (2005)

[28]J.E.Gentle."Cholesky Factorization". ξ 3.2.2, in Numerical Linear Algebra for Applications in Statistics. Berlin. Springer Verlag. pp:93-95, 1998

[29]R.Acevedo, A.Soto-Bubert, G.Navarro, T.Meruane, W. Strek. Acta Physica Polonica A, **105**(3), 233(2004)

[30]R.Acevedo,C.Portillo,G.Navarro,T.Meruane. Advances in Quantum Chemistry, **44**,509(2004)

[31]R.Acevedo, E.Cortés. Theor.Chem.Accounts, **107**(4), 187(2002)

[32]R.Acevedo, O.F.Hurtado, C.Portillo, W.Strek. Acta Physica Polonica A, **100**(6), 829(2001)

Figures and Captions

Figure 1: 10- atomos system model for the elpasolite type crystal M_2ALnX_6

Figure 2: Set of internal coordinates

Figure: Coordinates Δr (6)

Figure: Coordinates ΔR (6)

Figure: Coordinates $\Delta \alpha$ (12)

Figure: Coordinates $\Delta\beta$ (12)

Figure: Coordintes $\Delta q(12)$

Figure: Coordinates Δd (24)

Figure 3.

Appendix I

Symmetry coordinates in terms of the internal coordinates

$$\begin{split} S_{1} &= \frac{1}{\sqrt{6}} \left\{ r_{1}^{'} + r_{2}^{'} + r_{3}^{'} + r_{4}^{'} + r_{5}^{'} + r_{6}^{'} \right\} \\ S_{2} &= \frac{1}{\sqrt{12}} \left\{ r_{1}^{'} + r_{2}^{'} - 2r_{3}^{'} + r_{4}^{'} + r_{5}^{'} - 2r_{6}^{'} \right\} \\ S_{3} &= \frac{1}{2} \left\{ r_{1}^{'} - r_{8}^{'} + r_{9}^{'} - r_{10}^{'} \right\} \\ S_{3} &= \frac{1}{2} \left\{ r_{7}^{'} - r_{8}^{'} + r_{9}^{'} - r_{10}^{'} \right\} \\ S_{4} &= \frac{1}{2} \left\{ -r_{11}^{'} + r_{12}^{'} + r_{13}^{'} - r_{14}^{'} \right\} \\ S_{5} &= \frac{1}{\sqrt{2}} \left\{ r_{15}^{'} - r_{16}^{'} \right\} \\ S_{6} &= \frac{1}{2} \left\{ r_{17}^{'} - r_{18}^{'} - r_{19}^{'} + r_{20}^{'} \right\} \\ S_{7} &= \frac{1}{\sqrt{60}} \left\{ -2r_{21}^{'} - 2r_{22}^{'} + 2r_{23}^{'} + 2r_{24}^{'} + 2r_{25}^{'} - 2r_{1}^{'} + 3r_{25}^{'} + 3r_{26}^{'} + 3r_{27}^{'} + 3r_{28}^{'} \right\} \\ S_{8} &= \frac{1}{\sqrt{2}} \left\{ -r_{29}^{'} + r_{30}^{'} \right\} \\ S_{9} &= \frac{1}{\sqrt{12}} \left\{ -2r_{31}^{'} + 2r_{32}^{'} + r_{5}^{'} - r_{1}^{'} - r_{33}^{'} - r_{34}^{'} \right\} \\ S_{10} &= \frac{1}{2} \left\{ -r_{35}^{'} + r_{36}^{'} + r_{37}^{'} + r_{38}^{'} \right\} \end{split}$$

The new primed set of internal coordinates is defined in terms of the original internal coordinates as given below:

$$r_{1}' = \frac{1}{2} \{r_{1} - R_{1}\}$$

$$r_{2}' = \frac{1}{2} \{r_{2} - R_{2}\}$$

$$r_{3}' = \frac{1}{2} \{r_{3} - R_{3}\}$$

$$\begin{split} \mathbf{r}_{4}^{i} &= \frac{1}{2} \{ \mathbf{r}_{4} - \mathbf{R}_{4} \} \\ \mathbf{r}_{5}^{i} &= \frac{1}{2} \{ \mathbf{r}_{5} - \mathbf{R}_{5} \} \\ \mathbf{r}_{6}^{i} &= \frac{1}{2} \{ \mathbf{r}_{6} - \mathbf{R}_{6} \} \\ \mathbf{r}_{7}^{i} &= \frac{1}{8} \{ -\sqrt{2}d_{14} - \sqrt{2}d_{16} + \sqrt{2}d_{2} + \sqrt{3}d_{4} + 2q_{10} \} \\ \mathbf{r}_{8}^{i} &= \frac{1}{8} \{ \sqrt{2}d_{10} - \sqrt{2}d_{20} - \sqrt{3}d_{22} + \sqrt{2}d_{8} + 2q_{4} \} \\ \mathbf{r}_{9}^{i} &= \frac{1}{8} \{ \sqrt{2}d_{15} + \sqrt{2}d_{18} - \sqrt{2}d_{3} - \sqrt{2}d_{6} + 2q_{3} \} \\ \mathbf{r}_{10}^{i} &= \frac{1}{8} \{ -\sqrt{2}d_{12} + \sqrt{2}d_{21} + \sqrt{2}d_{24} - \sqrt{2}d_{9} + 2q_{9} \} \\ \mathbf{r}_{11}^{i} &= \frac{1}{6} \{ q_{9} + \alpha_{23} - \beta_{23} \} \\ \mathbf{r}_{12}^{i} &= \frac{1}{6} \{ q_{3} + \alpha_{26} - \beta_{26} \} \\ \mathbf{r}_{13}^{i} &= \frac{1}{6} \{ q_{4} + \alpha_{34} - \beta_{34} \} \\ \mathbf{r}_{14}^{i} &= \frac{1}{6} \{ q_{10} + \alpha_{46} - \beta_{46} \} \\ \mathbf{r}_{15}^{i} &= \frac{1}{8} \{ \sqrt{2}(-d_{10} - d_{14} - d_{16} + d_{2} + d_{20} + d_{22} + d_{4} - d_{8}) + 2q_{10} - 2q_{4} \} \\ \mathbf{r}_{16}^{i} &= \frac{1}{8} \{ \sqrt{2}(d_{12} + d_{15} + d_{18} - d_{21} - d_{24} - d_{3} - d_{6} + d_{9}) + 2q_{3} - 2q_{9} \} \\ \mathbf{r}_{17}^{i} &= \frac{1}{2} \mathbf{r}_{1} \\ \mathbf{r}_{18}^{i} &= \frac{1}{2} \mathbf{r}_{5} \\ \mathbf{r}_{19}^{i} &= \frac{1}{2} \mathbf{R}_{5} \\ \mathbf{r}_{20}^{i} &= \frac{1}{2} \mathbf{R}_{5} \\ \mathbf{r}_{21}^{i} &= \frac{1}{4} \{ \alpha_{12} + \alpha_{13} - \beta_{12} - \beta_{13} \} \\ \mathbf{r}_{22}^{i} &= \frac{1}{4} \{ \alpha_{14} + \alpha_{16} - \beta_{14} - \beta_{16} \} \end{split}$$

$$\begin{split} \mathbf{r}_{23}^{'} &= \frac{1}{4} \{ \alpha_{25} + \alpha_{35} - \alpha_{25} - \beta_{35} \} \\ \mathbf{r}_{24}^{'} &= \frac{1}{4} \{ \alpha_{45} + \alpha_{56} - \beta_{45} - \beta_{56} \} \\ \mathbf{r}_{25}^{'} &= \frac{1}{6\sqrt{2}} \{ d_{10} - d_2 - d_4 + d_8 \} \\ \mathbf{r}_{26}^{'} &= \frac{1}{6\sqrt{2}} \{ -d_{15} - d_{18} + d_{21} + d_{24} \} \\ \mathbf{r}_{27}^{'} &= \frac{1}{6\sqrt{2}} \{ d_{12} - d_3 - d_6 + d_9 \} \\ \mathbf{r}_{28}^{'} &= \frac{1}{6\sqrt{2}} \{ -d_{14} - d_{16} + d_{20} + d_{22} \} \\ \mathbf{r}_{29}^{'} &= \frac{1}{2} \{ r_1 + R_1 \} \\ \mathbf{r}_{30}^{'} &= \frac{1}{2} (r_5 + R_5) \\ \mathbf{r}_{31}^{'} &= \frac{1}{8} \{ \alpha_{12} + \alpha_{13} + \alpha_{14} + \alpha_{16} - \beta_{12} - \beta_{13} - \beta_{14} - \beta_{16} \} \\ \mathbf{r}_{32}^{'} &= \frac{1}{2} \{ d_{10} - d_{15} - d_{18} - d_2 + d_{21} + d_{24} - d_4 + d_8 \} \\ \mathbf{r}_{34}^{'} &= \frac{1}{2\sqrt{2}} \{ d_{10} - d_{15} - d_{18} - d_2 + d_{21} + d_{24} - d_4 + d_8 \} \\ \mathbf{r}_{34}^{'} &= \frac{1}{2\sqrt{2}} \{ d_{12} - \alpha_{14} - \alpha_{16} - \alpha_{25} + \alpha_{35} - \alpha_{45} + \alpha_{56} \} \\ \mathbf{r}_{35}^{'} &= \frac{1}{6} \{ \alpha_{12} - \alpha_{13} + \alpha_{14} - \alpha_{16} - \alpha_{25} + \alpha_{35} - \alpha_{45} + \alpha_{56} \} \\ \mathbf{r}_{37}^{'} &= \frac{1}{6\sqrt{2}} \{ d_{10} - d_{12} - d_2 + d_3 - d_4 + d_6 + d_8 - d_9 \} \\ \mathbf{r}_{38}^{'} &= \frac{1}{6\sqrt{2}} \{ -d_{14} + d_{15} - d_{16} + d_{18} + d_{20} - d_{21} + d_{22} - d_{24} + d_{24} - d_{24} + d_{2$$

}

Appendix II

Symmetry coordinates in terms of the Cartesian Nuclear Displacement Coordinates

$$\begin{split} S_1 &= \frac{1}{\sqrt{6}} \left\{ x_1 + y_2 - z_3 - y_4 - x_5 + y_6 \right\} \\ S_2 &= \frac{1}{\sqrt{12}} \left\{ x_1 + y_2 + 2z_3 - y_4 - x_5 - 2z_6 \right\} \\ S_3 &= \frac{1}{2} \left\{ -z_2 + z_4 - y_3 + y_6 \right\} \\ S_4 &= \frac{1}{2} \left\{ y_3 - y_6 - z_2 + z_4 \right\} \\ S_5 &= \frac{1}{\sqrt{2}} \left\{ x_9 - x_{10} \right\} \\ S_6 &= \frac{1}{2} \left\{ x_1 + x_5 - x_7 - x_8 \right\} \\ S_7 &= \frac{1}{\sqrt{60}} \left\{ -2x_1 + 3x_2 + 3x_3 + 3x_4 - 2x_5 + 3x_6 - 2x_7 - 2x_8 - 2x_9 - 2x_{10} \right\} \\ S_8 &= \frac{1}{\sqrt{2}} \left\{ x_7 - x_8 \right\} \\ S_9 &= \frac{1}{\sqrt{12}} \left\{ -x_1 - x_5 - x_7 - x_8 + 2x_9 + 2x_{10} \right\} \\ S_{10} &= \frac{1}{2} \left\{ x_2 - x_3 + x_4 - x_6 \right\} \end{split}$$

Appendix III

The F -matrix elements for the Chloride Elpasolites

a) $Cs_2 Na \operatorname{Pr} Cl_6$

	1.66018	0	0	0	0	0	0	0	0	0]
	0	1.01042	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.27098	0.01668	0	0	0	0	0
F _	0	0	0	0.01668	0.16682	0	0	0	0	0
$r_{\rm Pr1} =$	0	0	0	0	0	0.82616	0.00123	0.17145	0.10277	0
	0	0	0	0	0	0.00123	0.64832	0.02974	0.01916	0
	0	0	0	0	0	0.17145	0.02974	0.65105	0.08723	0
	0	0	0	0	0	0.10277	0.01916	0.08723	0.25018	0
	L 0	0	0	0	0	0	0	0	0	0.12378

	1.66018	0	0	0	0	0	0	0	0	0
	0	1.01042	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.27098	0.01668	0	0	0	0	0
F _	0	0	0	0.01668	0.16682	0	0	0	0	0
Γ_{Pr2} –	0	0	0	0	0	0.72988	0.05867	0.04530	0.20179	0
	0	0	0	0	0	0.05867	0.71331	0.11569	0.16229	0
	0	0	0	0	0	0.04530	0.11569	0.72925	0.02645	0
	0	0	0	0	0	0.20179	0.16229	0.02645	0.29238	0
	0	0	0	0	0	0	0	0	0	0.12378

	1.66018	0	0	0	0	0	0	0	0	0]
	0	1.01042	0	0	0	0	0	0	0	0
	0	0	0.00921	0	0	0	0	0	0	0
	0	0	0	0.27098	0.01668	0	0	0	0	0
F _	0	0	0	0.01668	0.16682	0	0	0	0	0
<i>P</i> _{Pr3} –	0	0	0	0	0	0.80707	0.01905	0.10523	0.03503	0
	0	0	0	0	0	0.01905	0.55379	0.13026	0.07030	0
	0	0	0	0	0	0.10523	0.13026	0.70318	0.13689	0
	0	0	0	0	0	0.03503	0.07030	0.13689	0.28737	0
	0	0	0	0	0	0	0	0	0	0.12378

b) $Cs_2NaEuCl_6$

	[1.75571	0	0	0	0	0	0	0	0	0]	
	0	1.08524	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.29035	0.01741	0	0	0	0	0	
F _	0	0	0	0.01741	0.17412	0	0	0	0	0	
$\Gamma_{Eu1} =$	0	0	0	0	0	0.99326	0.16363	0.08854	0.08038	0	
	0	0	0	0	0	0.16363	0.51165	0.00894	0.29247	0	
	0	0	0	0	0	0.08854	0.00894	0.61295	0.01781	0	
	0	0	0	0	0	0.08038	0.29247	0.01781	0.45397	0	
	0	0	0	0	0	0	0	0	0	0.13029	
	_										
	1.75571	0	0	0	0	0	0	0	0	0	
	0	1.08524	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.29035	0.01741	0	0	0	0	0	
F -	0	0	0	0.01741	0.17412	0	0	0	0	0	
1 _{Eu2} -	0	0	0	0	0	0.77474	0.04662	0.01203	0.03638	0	
	0	0	0	0	0	0.04662	0.69919	0.25098	0.07726	0	
	0	0	0	0	0	0.01203	0.25098	0.74961	0.10986	0	
	0	0	0	0	0	0.03638	0.07726	0.10986	0.25443	0	
	0	0	0	0	0	0	0	0	0	0.13029	
	[1 2521]	0	0	0	0	0	0	0	0	0 7	
	1./55/1	1.09524	0	0	0	0	0	0	0	0	
		1.08524	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.29035	0.01/41	0	0	0	0	0	
$F_{Eu3} =$		0	0	0.01741	0.17412	0	0	0	0	0	
	0	0	0	0	0	0.85904	0.00609	0.07653	0.22864	0	
	0	0	0	0	0	0.00609	0.63957	0.09723	0.08218	0	
	0	0	0	0	0	0.07653	0.09723	0.64869	0.18191	0	
	0	0	0	0	0	0.22864	0.08218	0.18191	0.34855	0	
	0	0	0	0	0	0	0	0	0	0.13029	

c) $Cs_2NaTbCl_6$

	[1.78001	0	0	0	0	0	0	0	0	0	l
	0	1.13336	0	0	0	0	0	0	0	0	
	0	0	0.00835	0	0	0	0	0	0	0	ĺ
	0	0	0	0.31559	0.01594	0	0	0	0	0	
F _	0	0	0	0.01594	0.15941	0	0	0	0	0	
$\Gamma_{Tb1} =$	0	0	0	0	0	0.97188	0.08584	0.08231	0.01257	0	
	0	0	0	0	0	0.08584	0.57456	0.11182	0.14158	0	
	0	0	0	0	0	0.08231	0.11182	0.73206	0.18290	0	ĺ
	0	0	0	0	0	0.01257	0.14158	0.18290	0.33202	0	
	0	0	0	0	0	0	0	0	0	0.14037	
	-									_	
	1.78001	0	0	0	0	0	0	0	0	0	
	0	1.13336	0	0	0	0	0	0	0	0	
	0	0	0.00835	0	0	0	0	0	0	0	
	0	0	0	0.31559	0.01594	0	0	0	0	0	
F -	0	0	0	0.01594	0.15941	0	0	0	0	0	
Γ_{Tb2} –	0	0	0	0	0	1.29198	0.09153	0.01597	0.02163	0	ĺ
	0	0	0	0	0	0.09153	0.59309	0.05777	0.10161	0	
	0	0	0	0	0	0.01597	0.05777	0.64421	0.02589	0	
	0	0	0	0	0	0.02163	0.10161	0.02589	0.22888	0	
	0	0	0	0	0	0	0	0	0	0.14037	
	L1 28001	0	0	0	0	0	0	0	0	0 7	1
	1.78001	1 12226	0	0	0	0	0	0	0	0	
		1.15550	0 00925	0	0	0	0	0	0	0	
		0	0.00855	0 21550	0.01504	0	0	0	0	0	
		0	0	0.01504	0.01394	0	0	0	0	0	
$F_{Tb3} =$		0	0	0.01394	0.13941	0 09694	0 00271	0 00926	0 07949	0	
		0	0	0	0	0.98084	0.093/1	0.00820	0.07848	0	
		0	0	0	0	0.093/1	0.00898	0.13442	0.14300	0	
		0	0	U	0	0.00826	0.15442	0./359/	0.19/93	0	
		0	0	0	0	0.07848	0.14566	0.19/93	0.32330	0 14027	
		0	0	0	0	0	0	0	0	0.14037	

d) $Cs_2NaDyCl_6$

	[1.81677	0	0	0	0	0	0	0	0	0]	
	0	1.15290	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.32075	0.01594	0	0	0	0	0	
F	0	0	0	0.01594	0.15939	0	0	0	0	0	
$\boldsymbol{r}_{Dy1} =$	0	0	0	0	0	1.01418	0.10096	0.06033	0.03355	0	
	0	0	0	0	0	0.10096	0.59150	0.09297	0.14829	0	
	0	0	0	0	0	0.06033	0.09297	0.75359	0.08529	0	
	0	0	0	0	0	0.03355	0.14829	0.08529	0.31871	0	
	0	0	0	0	0	0	0	0	0	0.13361	
	_									_	
	1.81677	0	0	0	0	0	0	0	0	0	
	0	1.15290	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.32075	0.01594	0	0	0	0	0	
F -	0	0	0	0.01594	0.15939	0	0	0	0	0	
$\Gamma_{Dy2} =$	0	0	0	0	0	1.04865	0.08542	0.00968	0.10144	0	
	0	0	0	0	0	0.08542	0.59889	0.11286	0.13923	0	
	0	0	0	0	0	0.00968	0.11286	0.80236	0.04617	0	
	0	0	0	0	0	0.10144	0.13923	0.04617	0.28701	0	
	0	0	0	0	0	0	0	0	0	0.13361	
	E 1 01 C7	0	0	0	0	0	0	0	0	• 7	
	1.816//	0	0	0	0	0	0	0	0	0	
	0	1.15290	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.32075	0.01594	0	0	0	0	0	
$F_{Dv^2} =$	0	0	0	0.01594	0.15939	0	0	0	0	0	
Dys	0	0	0	0	0	0.96664	0.01872	0.05816	0.30624	0	
	0	0	0	0	0	0.01872	0.71926	0.02093	0.07496	0	
	0	0	0	0	0	0.05816	0.02093	0.76882	0.06912	0	
	0	0	0	0	0	0.30624	0.07496	0.06912	0.33271	0	
	0	0	0	0	0	0	0	0	0	0.13361	

e) *Cs*₂*NaHoCl*₆

	[1.84149	0	0	0	0	0	0	0	0	0	
	0	1.19248	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.33644	0.01739	0	0	0	0	0	
F	0	0	0	0.01739	0.17392	0	0	0	0	0	
$\Gamma_{Ho1} =$	0	0	0	0	0	1.00939	0.12868	0.05657	0.04257	0	
	0	0	0	0	0	0.12868	0.58767	0.07355	0.14039	0	
	0	0	0	0	0	0.05657	0.07355	0.77447	0.08372	0	
	0	0	0	0	0	0.04257	0.14039	0.08372	0.31645	0	
	0	0	0	0	0	0	0	0	0	0.14382	
	F									-	
	1.84149	0	0	0	0	0	0	0	0	0	
	0	1.19248	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.33644	0.01739	0	0	0	0	0	
$F_{max} =$	0	0	0	0.01739	0.17392	0	0	0	0	0	
- Ho2	0	0	0	0	0	1.04340	0.11474	0.00532	0.11014	0	
	0	0	0	0	0	0.11474	0.59362	0.09167	0.13583	0	
	0	0	0	0	0	0.00532	0.09167	0.82535	0.04250	0	
	0	0	0	0	0	0.11014	0.13583	0.04250	0.28678	0	
	0	0	0	0	0	0	0	0	0	0.14382	
	F1 84140	0	0	0	0	0	0	0	0	0 7	
	1.84149	0	0	0	0	0	0	0	0	0	
		1.19248	0	0	0	0	0	0	0	0	
		0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.33644	0.01739	0	0	0	0	0	
$F_{Ho3} =$		U	0	0.01/39	0.1/392	0	0	0	0	0	
	0	0	0	0	0	1.10785	0.00212	0.10509	0.08088	0	
	0	0	0	0	0	0.00212	0.63334	0.00333	0.01543	0	
	0	0	0	0	0	0.10509	0.00333	0.73868	0.02248	0	
	0	0	0	0	0	0.08088	0.01543	0.02248	0.24523	0	
	0	0	0	0	0	0	0	0	0	0.14382	

f) $Cs_2NaErCl_6$

	1.84149	0	0	0	0	0	0	0	0	0]	
	0	1.16274	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.33115	0.01739	0	0	0	0	0	
F _	0	0	0	0.01739	0.17394	0	0	0	0	0	
$\Gamma_{Er1} =$	0	0	0	0	0	0.99747	0.03184	0.01829	0.09697	0	
	0	0	0	0	0	0.03184	0.60256	0.15105	0.03090	0	
	0	0	0	0	0	0.01829	0.15105	0.79446	0.20015	0	
	0	0	0	0	0	0.09697	0.03090	0.20015	0.37222	0	
	0	0	0	0	0	0	0	0	0	0.15440	
	1.84149	0	0	0	0	0	0	0	0	0]	
	0	1.16274	0	0	0	0	0	0	0	0	
	0	0	0.00921	0	0	0	0	0	0	0	
	0	0	0	0.33115	0.01739	0	0	0	0	0	
F =	0	0	0	0.01739	0.17394	0	0	0	0	0	
$I_{Er2} =$	0	0	0	0	0	0.96247	0.11407	0.04674	0.08092	0	
	0	0	0	0	0	0.11407	0.60517	0.07958	0.17958	0	
	0	0	0	0	0	0.04674	0.07958	0.67119	0.24562	0	
	0	0	0	0	0	0.08092	0.17958	0.24562	0.50760	0	
	0	0	0	0	0	0	0	0	0	0.15440	
	F1 04140	0	0	0	0	0	0	0	0		
	1.84149	0	0	0	0	0	0	0	0	0	
		1.10274	0	0	0	0	0	0	0	0	
		0	0.00921	0 22115	0 01720	0	0	0	0	0	
		0	0	0.55115	0.01739	0	0	0	0	0	
$F_{Er3} =$	0	0	0	0.01739	0.17394	0	0	0	0	0	
		0	0	0	0	1.20030	0.01322	0.04979	0.03891	0	
		0	0	0	0	0.01322	0.58026	0.04080	0.04243	0	
		U	0	0	U	0.0497/9	0.04080	0.73276	0.08289	0	
		0	0	0	0	0.03891	0.04243	0.08289	0.29311	0	
	L 0	0	0	0	0	0	0	0	0	0.15440	

g) Cs₂NaTmCl₆

	[1.84149	0	0	0	0	0	0	0	0	0]	
	0	1.17261	0	0	0	0	0	0	0	0	
	0	0	0.00835	0	0	0	0	0	0	0	
	0	0	0	0.33644	0.01739	0	0	0	0	0	
F	0	0	0	0.01739	0.17392	0	0	0	0	0	
$\Gamma_{Tm1} =$	0	0	0	0	0	0.91227	0.00902	0.11216	0.09336	0	
	0	0	0	0	0	0.00902	0.61818	0.06595	0.05955	0	
	0	0	0	0	0	0.11216	0.06595	0.73004	0.24897	0	
	0	0	0	0	0	0.09336	0.05955	0.24897	0.47293	0	
	0	0	0	0	0	0	0	0	0	0.16167	
	E 1 0 11 10	0	0	0	0	0	0	0	0		
	1.84149	0	0	0	0	0	0	0	0	0	
	0	1.17261	0	0	0	0	0	0	0	0	
	0	0	0.00835	0	0	0	0	0	0	0	
	0	0	0	0.33644	0.01739	0	0	0	0	0	
$F_{Tm2} =$		0	0	0.01739	0.17392	0	0	0	0	0	
12	0	0	0	0	0	0.85790	0.06901	0.02679	0.00827	0	
	0	0	0	0	0	0.06901	0.62648	0.19720	0.09288	0	
	0	0	0	0	0	0.02679	0.19720	0.69539	0.29295	0	
	0	0	0	0	0	0.00827	0.09288	0.29295	0.57704	0	
		0	0	0	0	0	0	0	0	0.16167	
	E 1 0 11 10	0	0	0	0	0	0	0	0		
	1.84149	0	0	0	0	0	0	0	0	0	
	0	1.17261	0	0	0	0	0	0	0	0	
	0	0	0.00835	0	0	0	0	0	0	0	
	0	0	0	0.33644	0.01739	0	0	0	0	0	
$F_{\tau_{m2}} =$	0	0	0	0.01739	0.17392	0	0	0	0	0	
11113	0	0	0	0	0	1.01420	0.03016	0.01328	0.06938	0	
	0	0	0	0	0	0.03016	0.52001	0.14332	0.00477	0	
	0	0	0	0	0	0.01328	0.14332	0.76138	0.28395	0	
	0	0	0	0	0	0.06938	0.00477	0.28395	0.51764	0	
	0	0	0	0	0	0	0	0	0	0.16167	

Appendix IV

L-matrix elements and natural potential energy distribution (The $T_{2g}(2x2)$ and $T_{1u}(4x4)$ symmetry blocks)

Some relevant equations, employed throughout the course of the current work. (1)

$$\left[Mdiagonal\right]_{i,\,j} = L_{i,\,j}^{2} \cdot F_{i,\,i}$$

and the non diagonal matrix

$$[Mnodiag]_{i,j} = \sum_{ll \neq i} L_{i,j} \cdot L_{ll,j} \cdot F_{i,ll} \quad ll \begin{cases} 1,2,3,4 & si \text{ pertenece a } T_{1u} \\ 1,2 & si \text{ pertenece a } T_{2g} \end{cases}$$

For all i,j-values, the new $[M_{d+n-d}]$ is considered as the sum of the above defined matrix elements, see (1) and (2). The summation of all the elements in a given matrix, along a column will produce the eigenvalue of the matrix H = GF. As we mentioned, in the main text of this manuscript the (PED))-matrix elements obtained as percentages are:

(3)

$$\left[P.E.D.\right]_{i, j} = 100 \cdot \frac{\left[M_{d+nd}\right]_{i, j}}{\lambda_{j}}$$

The L and the (PED) matrices for the $T_{\rm 2g}$ and $T_{\rm 1u}$ symmetry blocks

(A) T_{2g} -symmetry block:

(1)
$$Cs_2 Na \operatorname{Pr} Cl_6$$

 T_{2g} -symmetry block:

$$L = \begin{bmatrix} 0.167826 & 0.006376 \\ 0.003293 & -0.086679 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.007632 & 0.000011\\ 1.8089 \cdot 10^{-6} & 0.001253 \end{bmatrix}$$

$$diag.sum = \begin{bmatrix} 0.0076342 & 0.0012644 \end{bmatrix}$$

$$Mnon - diagonal = \begin{bmatrix} 9.219 \cdot 10^{-6} & -9.219 \cdot 10^{-6} \\ 9.219 \cdot 10^{-6} & -9.219 \cdot 10^{-6} \end{bmatrix}$$

non - diag.sum = [0.00001843 - 0.00001843]

$$M diagonal + M non - diagonal = \begin{bmatrix} 0.00764165 & 1.79565 \cdot 10^{-6} \\ 0.00001102 & 0.00124421 \end{bmatrix}$$

 $Sum: diag + non - diag = [0.00765268 \quad 0.00124601]$

$$P.E.D. = \begin{bmatrix} 99.8559 & 0.1441 \\ 0.1441 & 99.8559 \end{bmatrix}$$

(2)
$$Cs_2NaEuCl_6$$

 $L = \begin{bmatrix} 0.167834 & 0.006179 \\ 0.003191 & -0.086683 \end{bmatrix}$
 $Mdiagonal = \begin{bmatrix} 0.008178 & 0.000011 \\ 1.7738 \cdot 10^{-6} & 0.001308 \end{bmatrix}$

 $diag.sum = \begin{bmatrix} 0.0081804 & 0.0013194 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 9.327 \cdot 10^{-6} & -9.327 \cdot 10^{-6} \\ 9.327 \cdot 10^{-6} & -9.327 \cdot 10^{-6} \end{bmatrix}$$

non diag.sum = [0.00001865 - 0.00001865]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.00818803 & 1.76117 \cdot 10^{-6} \\ 0.00001110 & 0.00129901 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.00819913 & 0.00130077 \end{bmatrix}$

 $P.E.D. = \begin{bmatrix} 99.8646 & 0.1354 \\ 0.1354 & 99.8646 \end{bmatrix}$

(3)
$$Cs_2 NaTbCl_6$$

$$L = \begin{bmatrix} 0.167871 & 0.005057 \\ 0.002612 & -0.086703 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.008893 & 8.0701 \cdot 10^{-6} \\ 1.0873 \cdot 10^{-6} & 0.0011983 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0088947 & 0.0012064 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 6.989 \cdot 10^{-6} & -6.989 \cdot 10^{-6} \\ 6.989 \cdot 10^{-6} & -6.989 \cdot 10^{-6} \end{bmatrix}$$
$$non - diag.sum = \begin{bmatrix} 0.000013978 & -0.000013978 \end{bmatrix}$$

$$M diagonal + M non - diagonal = \begin{bmatrix} 0.00890062 & 1.08103 \cdot 10^{-6} \\ 8.07646 \cdot 10^{-6} & 0.00119134 \end{bmatrix}$$

 $Sum: diag + nodiag = [0.00890869 \quad 0.00119242]$

$$P.E.D. = \begin{bmatrix} 99.9093 & 0.0907 \\ 0.0907 & 99.9093 \end{bmatrix}$$

(4)
$$Cs_2NaDyCl_6$$

 $L = \begin{bmatrix} 0.167874 & 0.0049626\\ 0.002563 & -0.0867041 \end{bmatrix}$
 $Mdiagonal = \begin{bmatrix} 0.00903938 & 7.89942 \cdot 10^{-6}\\ 1.04713 \cdot 10^{-6} & 0.00119824 \end{bmatrix}$
 $diag.sum = \begin{bmatrix} 0.00904042 & 0.00120614 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 6.858 \cdot 10^{-6} & -6.858 \cdot 10^{-6} \\ 6.858 \cdot 10^{-6} & -6.858 \cdot 10^{-6} \end{bmatrix}$$

$$non - diag.sum = [0.0000137166 - 0.0000137166]$$

$$M diagonal + M non - diagonal = \begin{bmatrix} 0.00904624 & 1.04114 \cdot 10^{-6} \\ 7.90542 \cdot 10^{-6} & 0.00119138 \end{bmatrix}$$

 $Sum: diag + non - diag = [0.00905414 \quad 0.00119242]$

$$P.E.D. = \begin{bmatrix} 99.9127 & 0.0873 \\ 0.0873 & 99.9127 \end{bmatrix}$$

$$(5) Cs_2NaHoCl_6$$

$$L = \begin{bmatrix} 0.167867 & 0.00519391 \\ 0.0026825 & -0.0867005 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.00948061 & 9.07597 \cdot 10^{-6} \\ 1.25156 \cdot 10^{-6} & 0.00130736 \end{bmatrix}$$

$$diag.sum = \begin{bmatrix} 0.00948187 & 0.00131644 \end{bmatrix}$$

$$Mnon - diagonal = \begin{bmatrix} 7.8319 \cdot 10^{-6} & -7.8319 \cdot 10^{-6} \\ 7.8319 \cdot 10^{-6} & -7.8319 \cdot 10^{-6} \end{bmatrix}$$

$$non - diag.sum = \begin{bmatrix} 0.0000156638 & -0.0000156638 \end{bmatrix}$$

$$Mdiagonal + Mnon - diagonal = \begin{bmatrix} 0.00948844 & 1.24406 \cdot 10^{-6} \\ 9.08347 \cdot 10^{-6} & 0.00129953 \end{bmatrix}$$

$$Sum : diag + non - diag = \begin{bmatrix} 0.00949753 & 0.00130077 \end{bmatrix}$$

 $P.E.D. = \begin{bmatrix} 99.9043 & 0.0957 \\ 0.0957 & 99.9043 \end{bmatrix}$

(6)
$$Cs_2NaErCl_6$$

$$L = \begin{bmatrix} 0.167864 & 0.00529072 \\ 0.00273257 & -0.0866989 \end{bmatrix}$$
$$Mdiagonal = \begin{bmatrix} 0.00933131 & 9.26951 \cdot 10^{-6} \\ 1.2988 \cdot 10^{-6} & 0.00130746 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.00933261 & 0.00131673 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 7.9786 \cdot 10^{-6} & -7.9786 \cdot 10^{-6} \\ 7.9786 \cdot 10^{-6} & -7.9786 \cdot 10^{-6} \end{bmatrix}$$
$$non - diag.sum = \begin{bmatrix} 0.0000159573 & -0.0000159573 \end{bmatrix}$$

$$M diagonal + M non - diagonal = \begin{bmatrix} 0.00933929 & 1.29087 \cdot 10^{-6} \\ 9.27744 \cdot 10^{-6} & 0.00129948 \end{bmatrix}$$

 $Sum: diag + nodiag = \begin{bmatrix} 0.00934857 & 0.00130077 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 99.9008 & 0.0992 \\ 0.0992 & 99.9008 \end{bmatrix}$$

(7)
$$Cs_2NaTmCl_6$$

$$L = \begin{bmatrix} 0.167867 & 0.00519388 \\ 0.00268255 & -0.0867005 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.00948063 & 9.07591 \cdot 10^{-6} \\ 1.25155 \cdot 10^{-6} & 0.00130736 \end{bmatrix}$$

$$diag.sum = \begin{bmatrix} 0.00948188 & 0.00131643 \end{bmatrix}$$

$$Mnon - diagonal = \begin{bmatrix} 7.83186 \cdot 10^{-6} & -7.83186 \cdot 10^{-6} \\ 7.83186 \cdot 10^{-6} & -7.83186 \cdot 10^{-6} \end{bmatrix}$$

$$non - diag.sum = \begin{bmatrix} 0.0000156637 & -0.0000156637 \end{bmatrix}$$

$$M diagonal + M non - diagonal = \begin{bmatrix} 0.00948846 & 1.24405 \cdot 10^{-6} \\ 9.08341 \cdot 10^{-6} & 0.00129953 \end{bmatrix}$$

 $Sum: diag + non - diag = [0.00949754 \quad 0.00130077]$

 $P.E.D. = \begin{bmatrix} 99.9044 & 0.0956 \\ 0.0956 & 99.9044 \end{bmatrix}$

(B) T_{1u} -symmetry blocks:

(1) $Cs_2Na \operatorname{Pr} Cl_6$

a1)
$$F_{Pr1}$$
:

$$L = \begin{bmatrix} 0.135919 & 0.0618643 & 0.0666885 & 0.0018878 \\ 0.0459526 & 0.0434167 & -0.145074 & -0.00422731 \\ 0.138042 & -0.0703336 & -0.0223126 & -0.0282453 \\ 0.0382889 & -0.0514831 & -0.0453618 & 0.0880867 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0152625 & 0.00316186 & 0.00367422 & 2.94425 \cdot 10^{-6} \\ 0.00136902 & 0.0012209 & 0.0136448 & 0.0000115856 \\ 0.0124061 & 0.00322063 & 0.000324128 & 0.000519407 \\ 0.000366778 & 0.000663112 & 0.000514799 & 0.00194124 \end{bmatrix}$$

$$diag.sum = \begin{bmatrix} 0.0294044 & 0.00826769 & 0.018158 & 0.00247517 \end{bmatrix}$$

$$Mnon - diagonal = \begin{bmatrix} 0.000230071 & -0.00013038 & 0.000210557 & -3.59612 \cdot 10^{-6} \\ 0.00386656 & -0.000520947 & -0.0000705381 & -0.000222634 \\ 0.00102962 & -0.0000542775 & -0.0000964405 & -0.000207092 \end{bmatrix}$$

non - diag.sum = [0.00888555 - 0.00177561 - 0.000534287 - 0.000425385]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.0190218 & 0.00209185 & 0.00309635 & 0.0000108817 \\ 0.00159909 & 0.00109171 & 0.0138554 & 7.98944 \cdot 10^{-6} \\ 0.0162727 & 0.00269969 & 0.00025359 & 0.000296773 \\ 0.0013964 & 0.000608835 & 0.000418359 & 0.00173415 \end{bmatrix}$

 $Sum: diag + non - diag = [0.03829 \quad 0.00649208 \quad 0.0176237 \quad 0.00204979]$

$$P.E.D. = \begin{bmatrix} 49.6783 & 32.2216 & 17.5693 & 0.530867 \\ 4.17627 & 16.816 & 78.618 & 0.389769 \\ 42.4986 & 41.5843 & 1.43891 & 14.4782 \\ 3.64691 & 9.37811 & 2.37385 & 84.6011 \end{bmatrix}$$

726

a2)
$$F_{Pr2}$$
:

	0.106411	0.0573216	0.107848	0.0226266
I _	0.0883957	0.041338	-0.121757	0.0267121
L –	0.13839	-0.0751658	0.0215799	0.00552958
	0.0549038	-0.0146302	-0.0336546	-0.0978386

	0.00826469	0.00239821	0.00848934	0.000373672
Mdiagonal	0.00557366	0.00121893	0.0105746	0.000508972
maiagonai =	0.0139666	0.00412021	0.000339608	0.0000222979
	0.000881357	0.0000625815	0.000331159	0.00279878

 $diag.sum = \begin{bmatrix} 0.0286863 & 0.00779993 & 0.0197347 & 0.00370372 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00239796 & -0.000225399 & -0.00139739 & -0.000405583 \\ 0.00275474 & -0.000318591 & -0.000409342 & -0.000371611 \\ 0.00228337 & -0.000525565 & -0.000217741 & 8.44322 \cdot 10^{-6} \\ 0.00216761 & -0.000238287 & -0.0000865821 & -0.000885184 \end{bmatrix}$$

 $non - diag.sum = \begin{bmatrix} 0.00960368 & -0.00130784 & -0.00211105 & -0.00165393 \end{bmatrix}$ $Mdiagonal + Mnon - diagonal = \begin{bmatrix} 0.0106626 & 0.00217281 & 0.00709195 & -0.0000319112 \\ 0.0083284 & 0.000900337 & 0.0101653 & 0.000137361 \\ 0.0162499 & 0.00359465 & 0.000121868 & 0.0000307411 \\ 0.00304897 & -0.000175705 & 0.000244577 & 0.00191359 \end{bmatrix}$

 $diag + non - diag = \begin{bmatrix} 0.03829 & 0.00649209 & 0.0176237 & 0.00204979 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 27.8471 & 32.4686 & 40.2411 & -1.55681 \\ 21.7509 & 13.8682 & 57.6797 & 6.70125 \\ 42.4392 & 55.3696 & 0.691499 & 1.49972 \\ 7.96284 & -2.70645 & 1.38778 & 93.3558 \end{bmatrix}$$

a3)
$$F_{Pr3}$$
:

 $L = \begin{bmatrix} 0.122178 & 0.0417316 & 0.100013 & 0.00898331 \\ 0.0657282 & 0.0790523 & -0.120203 & -0.0065252 \\ 0.14211 & -0.0615785 & -0.0163245 & -0.0323204 \\ 0.046466 & -0.0426426 & -0.0548523 & 0.0833502 \end{bmatrix}$

 $Mdiagonal = \begin{bmatrix} 0.0120475 & 0.00140552 & 0.00807269 & 0.0000651301 \\ 0.0023925 & 0.0034608 & 0.00800167 & 0.0000235795 \\ 0.014201 & 0.00266617 & 0.00018739 & 0.000734553 \\ 0.000620467 & 0.00052256 & 0.000864645 & 0.00199647 \end{bmatrix}$

 $diag.sum = [0.0292614 \quad 0.00805506 \quad 0.0171264 \quad 0.00281973]$

$$Mnon - diagonal = \begin{bmatrix} 0.00217895 & -0.000269895 & -0.000593056 & -5.43488 \cdot 10^{-6} \\ 0.00158439 & -0.000808183 & 0.000490081 & -0.0000118818 \\ 0.00394764 & -0.000545009 & 0.000206371 & -0.000371851 \\ 0.00131754 & 0.0000601008 & 0.000393897 & -0.00038077 \end{bmatrix}$$

 $non - diag.sum = \begin{bmatrix} 0.00902853 & -0.00156299 & 0.000497294 & -0.000769938 \end{bmatrix}$ $Mdiagonal + Mnon - diagonal = \begin{bmatrix} 0.0142264 & 0.00113563 & 0.00747963 & 0.0000596952 \\ 0.00397689 & 0.00265262 & 0.00849175 & 0.0000116978 \\ 0.0181487 & 0.00212117 & 0.000393761 & 0.000362703 \\ 0.00193801 & 0.000582661 & 0.00125854 & 0.00161569 \end{bmatrix}$

 $Sum: diag + non - diag = [0.03829 \quad 0.00649207 \quad 0.0176237 \quad 0.00204979]$

$$P.E.D. = \begin{bmatrix} 37.1544 & 17.4926 & 42.4408 & 2.91226 \\ 10.3862 & 40.8593 & 48.1837 & 0.570681 \\ 47.398 & 32.6732 & 2.23427 & 17.6946 \\ 5.0614 & 8.97496 & 7.1412 & 78.8224 \end{bmatrix}$$

(2)
$$Cs_2NaEuCl_6$$

b1) *F*_{*Eu*1}:

$$L = \begin{bmatrix} 0.134218 & 0.0333893 & 0.086023 & 0.00969139 \\ 0.0617525 & 0.0550256 & -0.12036 & -0.0608182 \\ 0.131765 & -0.0841734 & -0.0195472 & -0.0145104 \\ 0.0410906 & -0.0211608 & -0.0753108 & 0.0779908 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0178929 & 0.00110733 & 0.00735007 & 0.0000932897 \\ 0.00195112 & 0.00154919 & 0.00741206 & 0.00189253 \\ 0.0106421 & 0.00434285 & 0.000234204 & 0.000129058 \\ 0.000766508 & 0.00020328 & 0.00257482 & 0.00276133 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0312527 & 0.00720265 & 0.0175711 & 0.00487621 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00336543 & -5.02249 \cdot 10^{-6} & -0.0023638 & -0.0000481367 \\ 0.0021711 & -0.0000813584 & 0.00097797 & -0.00147581 \\ 0.00173514 & -0.000258567 & -0.000101621 & -0.0000247114 \\ 0.00128189 & -0.000365621 & 0.00215651 & -0.00134666 \end{bmatrix}$$

non - diag.sum = [0.00855356 - 0.000710568 0.000669053 - 0.00289531]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.0212584 & 0.00110231 & 0.00498627 & 0.000045153 \\ 0.00412223 & 0.00146783 & 0.00839003 & 0.000416725 \\ 0.0123772 & 0.00408428 & 0.000132583 & 0.000104347 \\ 0.0020484 & -0.000162341 & 0.00473132 & 0.00141467 \end{bmatrix}$

 $Sum: diag + non - diag = [0.0398062 \quad 0.00649208 \quad 0.0182402 \quad 0.00198089]$

$$P.E.D. = \begin{bmatrix} 53.4046 & 16.9793 & 27.3367 & 2.27943 \\ 10.3557 & 22.6096 & 45.9975 & 21.0372 \\ 31.0938 & 62.9117 & 0.726872 & 5.26766 \\ 5.14592 & -2.50059 & 25.939 & 71.4157 \end{bmatrix}$$

729

b2)
$$F_{Eu2}$$
:

$$L = \begin{bmatrix} 0.0968713 & 0.0338241 & 0.126788 & 0.00444644 \\ 0.0969085 & 0.0746158 & -0.100302 & -0.00268594 \\ 0.138919 & -0.0692525 & 0.0162003 & -0.0261372 \\ 0.0535882 & -0.0434152 & -0.0396212 & 0.0869717 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.00727026 & 0.000886364 & 0.0124542 & 0.0000153174 \\ 0.0065663 & 0.00389277 & 0.00703423 & 5.04418 \cdot 10^{-6} \\ 0.0144663 & 0.00359507 & 0.000196735 & 0.000512101 \\ 0.000730645 & 0.000479569 & 0.000399413 & 0.00192453 \end{bmatrix}$$

 $diag.sum = [0.0290335 \quad 0.00885378 \quad 0.0200846 \quad 0.00245699]$

$$Mnon - diagonal = \begin{bmatrix} 0.000788459 & 0.0000360268 & -0.000750886 & 0.0000121156 \\ 0.00421766 & -0.00142954 & -0.000693617 & -9.84565 \cdot 10^{-7} \\ 0.00435864 & -0.000994794 & -0.000453624 & -0.000233515 \\ 0.00140795 & 0.0000266016 & 0.0000537285 & -0.000253712 \end{bmatrix}$$

non - diag.sum = [0.0107727 - 0.0023617 - 0.0018444 - 0.000476096]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.00805872 & 0.000922391 & 0.0117033 & 0.000027433 \\ 0.010784 & 0.00246323 & 0.00634062 & 4.05962 \cdot 10^{-6} \\ 0.018825 & 0.00260028 & -0.000256889 & 0.000278586 \\ 0.00213859 & 0.000506171 & 0.000453141 & 0.00167081 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0398062 & 0.00649207 & 0.0182402 & 0.00198089 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 20.2449 & 14.208 & 64.1623 & 1.38488 \\ 27.0911 & 37.9422 & 34.7618 & 0.204939 \\ 47.2915 & 40.0531 & -1.40837 & 14.0637 \\ 5.37251 & 7.79675 & 2.4843 & 84.3465 \end{bmatrix}$$

b3)
$$F_{Eu3}$$
:

$$L = \begin{bmatrix} 0.11974 & 0.0554847 & 0.0949737 & 0.0136666 \\ 0.0669546 & 0.060632 & -0.129618 & 0.00815283 \\ 0.139796 & -0.0635017 & -0.00712915 & 0.0376002 \\ 0.0549779 & -0.0435092 & -0.0412484 & -0.0852846 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.0123167 & 0.00264459 & 0.00774852 & 0.000160449 \\ 0.00286716 & 0.00235124 & 0.0107454 & 0.0000425117 \\ 0.0126772 & 0.00261581 & 0.0000329694 & 0.000917098 \\ 0.00105351 & 0.000659816 & 0.000593027 & 0.00253514 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0289145 & 0.00827145 & 0.0191199 & 0.0036552 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00283515 & -0.000801113 & -0.00102259 & -0.000226491 \\ 0.00126149 & -0.000570659 & 0.000454173 & -0.0000266529 \\ 0.00358929 & -0.000141436 & 0.0000915261 & -0.000514192 \\ 0.00320577 & -0.000266166 & -0.000402858 & -0.000906965 \end{bmatrix}$$

 $non - diag. = \begin{bmatrix} 0.0108917 & -0.00177937 & -0.000879745 & -0.0016743 \end{bmatrix}$

$$M diagonal + M non - diagonal = \begin{bmatrix} 0.0151518 & 0.00184348 & 0.00672594 & -0.0000660428 \\ 0.00412865 & 0.00178058 & 0.0111996 & 0.0000158588 \\ 0.0162665 & 0.00247437 & 0.000124495 & 0.000402905 \\ 0.00425928 & 0.000393649 & 0.00019017 & 0.00162818 \end{bmatrix}$$

 $Sum: diag + non - diag = [0.0398062 \quad 0.00649208 \quad 0.0182402 \quad 0.0019809]$

$$P.E.D. = \begin{bmatrix} 38.0639 & 28.3958 & 36.8743 & -3.33399 \\ 10.3719 & 27.4269 & 61.4006 & 0.800587 \\ 40.8642 & 38.1137 & 0.682534 & 20.3395 \\ 10.7 & 6.06353 & 1.04258 & 82.1939 \end{bmatrix}$$

(3)
$$Cs_2NaTbCl_6$$

c1) *F*_{*tb*1}:

$$L = \begin{bmatrix} 0.124288 & 0.027816 & 0.101132 & 0.0101026 \\ 0.0669252 & 0.0865631 & -0.11266 & -0.0185175 \\ 0.139394 & -0.0631039 & -0.0206319 & -0.0325161 \\ 0.0465033 & -0.0371849 & -0.0642358 & 0.0787083 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.0150132 & 0.000751976 & 0.00994023 & 0.0000991925 \\ 0.00257345 & 0.00430528 & 0.00729246 & 0.000197016 \\ 0.0142245 & 0.00291516 & 0.000311621 & 0.00077401 \\ 0.000718007 & 0.000459088 & 0.00136998 & 0.00205685 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0325291 & 0.0084315 & 0.0189143 & 0.00312707 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00221283 & 0.0000492182 & -0.00123153 & -0.0000331045 \\ 0.00219788 & -0.000859831 & 0.000306391 & -0.000155082 \\ 0.00365486 & -0.000326127 & 0.000330554 & -0.0004278 \\ 0.00169888 & -0.000039555 & 0.00118532 & -0.000664444 \end{bmatrix}$$

non - diag.sum = [0.00976444 - 0.00117629 0.000590742 - 0.00128043]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.017226 & 0.000801194 & 0.00870871 & 0.000066088 \\ 0.00477132 & 0.00344545 & 0.00759886 & 0.0000419337 \\ 0.0178793 & 0.00258903 & 0.000642175 & 0.000346211 \\ 0.00241689 & 0.000419533 & 0.00255531 & 0.00139241 \\ \end{bmatrix}$

 $diag + non - diag = \begin{bmatrix} 0.0422936 & 0.00725521 & 0.019505 & 0.00184664 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 40.7297 & 11.043 & 44.6485 & 3.57883 \\ 11.2814 & 47.4893 & 38.9584 & 2.27081 \\ 42.2743 & 35.6851 & 3.29235 & 18.7482 \\ 5.71455 & 5.78251 & 13.1008 & 75.4022 \end{bmatrix}$$

c2)
$$F_{Tb2}$$
:

$$L = \begin{bmatrix} 0.150295 & 0.0208615 & 0.0592556 & 0.00398871 \\ 0.0384675 & 0.0696956 & -0.1352 & -0.0197724 \\ 0.121428 & -0.0824039 & -0.0559619 & -0.015126 \\ 0.021596 & -0.0322814 & -0.0655814 & 0.0897613 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.0291841 & 0.00056227 & 0.00453643 & 0.0000205551 \\ 0.000877635 & 0.00288095 & 0.0108413 & 0.000231869 \\ 0.00949873 & 0.00437445 & 0.00201749 & 0.000147393 \\ 0.000106748 & 0.000238518 & 0.000984412 & 0.00184414 \end{bmatrix}$$

Suma diag. = $\begin{bmatrix} 0.0396672 & 0.00805619 & 0.0183796 & 0.00224396 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.000891018 & 0.0000910574 & -0.000870417 & -4.3574 \cdot 10^{-7} \\ 0.000883503 & -0.000427328 & 0.000604753 & -0.000170289 \\ 0.000629306 & -0.000290386 & 0.000479156 & -0.0000188389 \\ 0.000222548 & -0.000174322 & 0.000911927 & -0.000207754 \end{bmatrix}$$

non - diag. = [0.00262638 - 0.00080098 0.00112542 - 0.000397318]

$$M diagonal + M non - diagonal = \begin{bmatrix} 0.0300751 & 0.000653328 & 0.00366602 & 0.0000201194 \\ 0.00176114 & 0.00245362 & 0.011446 & 0.0000615799 \\ 0.010128 & 0.00408406 & 0.00249665 & 0.000128554 \\ 0.000329296 & 0.0000641953 & 0.00189634 & 0.00163639 \end{bmatrix}$$

 $Sum: diag + nodiag = \begin{bmatrix} 0.0422935 & 0.00725521 & 0.019505 & 0.00184664 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 71.1103 & 9.00495 & 18.7952 & 1.08951 \\ 4.16408 & 33.8188 & 58.6825 & 3.3347 \\ 23.947 & 56.2915 & 12.8 & 6.9615 \\ 0.778597 & 0.884817 & 9.7223 & 88.6143 \end{bmatrix}$$

733

c3)
$$F_{Tb3}$$
:

$$L = \begin{bmatrix} 0.115134 & 0.0236364 & 0.112851 & 0.00103816 \\ 0.0781245 & 0.0870512 & -0.105375 & -0.0149043 \\ 0.139041 & -0.0659312 & -0.0111741 & -0.0330389 \\ 0.0527889 & -0.0355235 & -0.0556392 & 0.081989 \end{bmatrix}$$

	0.0130813	0.000551327	0.0125678	$1.06359 \cdot 10^{-6}$
Mdiagonal –	0.0037169	0.00461484	0.00676207	0.000135279
maiagonai –	0.0142281	0.00319923	0.0000918944	0.00080337
	0.000900927	0.000407977	0.0100084	0.00217328

 $diag.sum = \begin{bmatrix} 0.0319272 & 0.00877337 & 0.0204226 & 0.003113 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00145227 & 0.000114047 & -0.0016767 & 4.94715 \cdot 10^{-6} \\ 0.00312105 & -0.00114388 & -0.0000786038 & -0.000103407 \\ 0.00326246 & -0.000435569 & 0.000294462 & -0.000460413 \\ 0.00253055 & -0.0000527576 & 0.000484246 & -0.000707485 \end{bmatrix}$$

non - diag.sum = [0.0103663 - 0.00151816 - 0.000917569 - 0.00126636]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.0145336 & 0.000665374 & 0.0109501 & 6.01074 \cdot 10^{-6} \\ 0.00683795 & 0.00347096 & 0.00668347 & 0.0000318718 \\ 0.0174906 & 0.00276366 & 0.000386356 & 0.000342957 \\ 0.00343147 & 0.000355219 & 0.00148509 & 0.0014658 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0422936 & 0.00725521 & 0.019505 & 0.00184664 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 34.3635 & 9.17098 & 56.14 & 0.325496 \\ 16.1678 & 47.8409 & 34.2653 & 1.72594 \\ 41.3552 & 38.092 & 1.9808 & 18.572 \\ 8.11346 & 4.89606 & 7.61387 & 79.3766 \end{bmatrix}$$

(4)
$$Cs_2NaDyCl_6$$

d1) F_{Dy1} :

$$L = \begin{bmatrix} 0.129828 & 0.0297543 & 0.093357 & 0.00775959 \\ 0.0635314 & 0.0768035 & -0.12006 & -0.0254677 \\ 0.136998 & -0.0705188 & -0.0248106 & -0.021672 \\ 0.0408154 & -0.032139 & -0.0639552 & 0.0840585 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0170943 & 0.000897869 & 0.00883907 & 0.0000610648 \\ 0.00238742 & 0.0034891 & 0.00852613 & 0.000383646 \\ 0.0141437 & 0.00374756 & 0.000463888 & 0.000353946 \\ 0.00053093 & 0.000329195 & 0.00130359 & 0.00225192 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0341564 & 0.00846373 & 0.0191327 & 0.00305058 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00208348 & 0.000072042 & -0.00147165 & -8.20861 \cdot 10^{-6} \\ 0.00202646 & -0.000638895 & 0.00028405 & -0.000286096 \\ 0.00235911 & -0.00043683 & 0.000272561 & -0.000114208 \\ 0.00103927 & -0.000204824 & 0.00107366 & -0.000450954 \end{bmatrix}$$

non - diag.sum = [0.00750832 - 0.00120851 0.000158621 - 0.000859466]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.0191778 & 0.000969911 & 0.00736743 & 0.0000528562 \\ 0.00441388 & 0.00285021 & 0.00881018 & 0.0000975496 \\ 0.0165028 & 0.00331073 & 0.000736449 & 0.000239738 \\ 0.0015702 & 0.000124371 & 0.00237725 & 0.00180097 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0416647 & 0.00725522 & 0.0192913 & 0.00219111 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 46.0288 & 13.3685 & 38.1904 & 2.4123 \\ 10.5938 & 39.285 & 45.6692 & 4.45206 \\ 39.6087 & 45.6324 & 3.81752 & 10.9414 \\ 3.76865 & 1.71422 & 12.3229 & 82.1942 \end{bmatrix}$$

735

d2) F_{Dy2} :

$$L = \begin{bmatrix} 0.128793 & 0.0297542 & 0.0950834 & 0.00161305 \\ 0.0648369 & 0.0745031 & -0.120752 & 0.0257385 \\ 0.137195 & -0.0722833 & -0.0245776 & 0.0132279 \\ 0.0417404 & -0.0230852 & -0.0580387 & -0.0906158 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0173946 & 0.000928379 & 0.00948067 & 2.72851 \cdot 10^{-6} \\ 0.00251765 & 0.0033243 & 0.00873255 & 0.000396751 \\ 0.0151025 & 0.00419223 & 0.000484674 & 0.000140396 \\ 0.000500041 & 0.000152953 & 0.000966781 & 0.00235668 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0355148 & 0.00859787 & 0.0196647 & 0.00289655 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00142981 & 0.000098871 & -0.00156325 & -0.0000110731 \\ 0.00209409 & -0.000657869 & 0.000329853 & -0.000282753 \\ 0.00143948 & -0.000551563 & 0.000378176 & -0.0000167165 \\ 0.00118652 & -0.000232084 & 0.000481849 & -0.000394899 \end{bmatrix}$$

Suma no diag. = $\begin{bmatrix} 0.0061499 & -0.00134265 & -0.000373372 & -0.000705441 \end{bmatrix}$

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.0188244 & 0.00102725 & 0.00791742 & -8.34461 \cdot 10^{-6} \\ 0.00461174 & 0.00266643 & 0.0090624 & 0.000113998 \\ 0.016542 & 0.00364067 & 0.000862849 & 0.000123679 \\ 0.00168656 & -0.0000791311 & 0.00144863 & 0.00196178 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0416647 & 0.00725522 & 0.0192913 & 0.00219111 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 45.1807 & 14.1588 & 41.0414 & -0.38084 \\ 11.0687 & 36.7519 & 46.9766 & 5.20276 \\ 39.7027 & 50.18 & 4.47274 & 5.64458 \\ 4.04795 & -1.09068 & 7.50924 & 89.5335 \end{bmatrix}$$
d3) F_{Dy3} :

$$L = \begin{bmatrix} 0.129802 & 0.0580081 & 0.075018 & 0.0259869 \\ 0.0545353 & 0.0405095 & -0.142099 & 0.0138114 \\ 0.13834 & -0.0720524 & -0.0137256 & 0.0175704 \\ 0.0477401 & -0.0299463 & -0.0393491 & -0.0955545 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0162864 & 0.0032527 & 0.00543997 & 0.000652794 \\ 0.00213916 & 0.00118032 & 0.0145235 & 0.000137202 \\ 0.0147135 & 0.00399135 & 0.000144839 & 0.00023735 \\ 0.000758288 & 0.000298369 & 0.000515153 & 0.00303787 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0338974 & 0.00872274 & 0.0206235 & 0.00406522 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00307451 & -0.000731061 & -0.00116342 & -0.000727163 \\ 0.000485557 & -0.000108025 & 0.000260383 & -0.0000871276 \\ 0.00165868 & -0.000155029 & 0.0000182624 & -0.0000844082 \\ 0.00254929 & -0.000473773 & -0.000447521 & -0.000975404 \end{bmatrix}$$

non - diag. = [0.00776805 - 0.00146789 - 0.0013323 - 0.0018741]

	0.0193609	0.00252164	0.00427655	-0.0000743695
Mdingough Mason dingough	0.00262471	0.0010723	0.0147839	0.0000500746
Maiagonal + Mnon – diagonal =	0.0163722	0.00383632	0.000163102	0.000152942
	0.00330758	-0.000175404	0.0000676314	0.00206247

 $Sum: diag + non - diag = \begin{bmatrix} 0.0416654 & 0.00725485 & 0.0192912 & 0.00219111 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 46.4676 & 34.758 & 22.1685 & -3.39414 \\ 6.2995 & 14.7804 & 76.6355 & 2.28535 \\ 39.2944 & 52.8794 & 0.845473 & 6.98009 \\ 7.93843 & -2.41775 & 0.350582 & 94.1287 \end{bmatrix}$$

(5)
$$Cs_2NaHoCl_6$$

e1) F_{Ho1} :

$$L = \begin{bmatrix} 0.129773 & 0.0297416 & 0.0933171 & 0.00775627 \\ 0.0634629 & 0.0767792 & -0.120087 & -0.0254677 \\ 0.137091 & -0.0700728 & -0.0246813 & -0.021631 \\ 0.0408516 & -0.0324507 & -0.0640309 & 0.0838183 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.016999 & 0.000892866 & 0.00878982 & 0.0000607245 \\ 0.00236689 & 0.00346437 & 0.00847478 & 0.000381169 \\ 0.0145553 & 0.0038028 & 0.000471779 & 0.000362374 \\ 0.000528108 & 0.000333237 & 0.00129743 & 0.00222323 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0344493 & 0.00849328 & 0.0190338 & 0.00302749 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00229188 & 0.000134853 & -0.00182662 & -7.23481 \cdot 10^{-6} \\ 0.00206364 & -0.000451673 & -0.000144453 & -0.000284591 \\ 0.0021152 & -0.000323253 & 0.000220006 & -0.000120757 \\ 0.0010585 & -0.000200515 & 0.000957466 & -0.000423801 \end{bmatrix}$$

non - diag.sum = [0.00752921 - 0.000840587 - 0.000793603 - 0.000836383]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.0205154 & 0.00123302 & 0.00300969 & -0.0000746 \\ 0.00332338 & 0.00293304 & 0.00436907 & -0.000016541 \\ 0.015607 & 0.0036803 & 0.000890462 & 0.0000921703 \\ 0.00232729 & -0.000010005 & -0.000422072 & 0.00220671 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0419785 & 0.00765269 & 0.0182402 & 0.00219111 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 45.9543 & 13.4295 & 38.175 & 2.44122 \\ 10.5543 & 39.3679 & 45.6701 & 4.40775 \\ 39.7119 & 45.4683 & 3.79264 & 11.0272 \\ 3.77956 & 1.73432 & 12.3623 & 82.1239 \end{bmatrix}$$

e2) *F*_{*Ho*2}:

$$L = \begin{bmatrix} 0.128738 & 0.0297415 & 0.0950428 & 0.00161236 \\ 0.0647687 & 0.0744792 & -0.120779 & 0.0257342 \\ 0.137287 & -0.0718362 & -0.0244451 & 0.013241 \\ 0.0417768 & -0.0234192 & -0.0581289 & -0.0904137 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0172927 & 0.000922941 & 0.00942513 & 2.71253 \cdot 10^{-6} \\ 0.00249021 & 0.00329288 & 0.00865946 & 0.000393123 \\ 0.015556 & 0.00425918 & 0.000493199 & 0.000144703 \\ 0.000500514 & 0.000157286 & 0.000969018 & 0.00234431 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0358395 & 0.00863228 & 0.0195468 & 0.00288485 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00164308 & 0.000166098 & -0.00193799 & -0.000011181 \\ 0.00213943 & -0.000473225 & -0.0000928674 & -0.000280045 \\ 0.0011529 & -0.000430331 & 0.000318699 & -0.0000195324 \\ 0.00120365 & -0.00024213 & 0.000405566 & -0.000382981 \end{bmatrix}$$

non - diag. = [0.00613906 - 0.000979588 - 0.0013066 - 0.000693739]

$$M diagonal + M non - diagonal = \begin{bmatrix} 0.0189358 & 0.00108904 & 0.00748714 & -8.46843 \cdot 10^{-6} \\ 0.00462965 & 0.00281965 & 0.00856659 & 0.000113078 \\ 0.0167089 & 0.00382885 & 0.000811898 & 0.00012517 \\ 0.00170416 & -0.0000848439 & 0.00137458 & 0.00196133 \end{bmatrix}$$

 $diag + non - diag = \begin{bmatrix} 0.0419785 & 0.00765269 & 0.0182402 & 0.00219111 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 45.1083 & 14.2308 & 41.0474 & -0.386491 \\ 11.0286 & 36.8452 & 46.9654 & 5.16077 \\ 39.8035 & 50.0327 & 4.45114 & 5.71265 \\ 4.0596 & -1.10868 & 7.53601 & 89.5131 \end{bmatrix}$$

$$L = \begin{bmatrix} 0.147294 & 0.0453499 & 0.0523546 & 0.000831063 \\ 0.0289589 & 0.054463 & -0.145454 & -0.00551952 \\ 0.129573 & -0.0732952 & -0.0479583 & -0.0178858 \\ 0.0259088 & -0.0451808 & -0.0540801 & 0.0906098 \end{bmatrix}$$

	0.0240352	0.00227841	0.00303661	$7.65151 \cdot 10^{-7}$
Mdiagonal –	0.000531133	0.00187864	0.0133995	0.0000192949
malagonal –	0.0124017	0.0039683	0.00169895	0.000236303
	0.000164615	0.000500589	0.000717216	0.00201337

 $diag.sum = \begin{bmatrix} 0.0371326 & 0.00862594 & 0.0188523 & 0.00226974 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00232337 & -0.000509798 & -0.000509031 & 4.51904 \cdot 10^{-6} \\ 0.0000331432 & -0.0000460523 & 0.000128518 & -7.39968 \cdot 10^{-6} \\ 0.00209365 & -0.000288157 & -0.000182277 & -0.000037675 \\ 0.000395743 & -0.000129244 & -0.0000492816 & -0.0000380705 \end{bmatrix}$$

non - diag.sum = [0.00484591 - 0.00097325 - 0.000612071 - 0.0000786262]

 $Mdiagonal + Mnon - diagonal = \begin{bmatrix} 0.0263586 & 0.00176862 & 0.00252758 & 5.28419 \cdot 10^{-6} \\ 0.000564277 & 0.00183259 & 0.013528 & 0.0000118952 \\ 0.0144953 & 0.00368014 & 0.00151668 & 0.000198628 \\ 0.000560358 & 0.000371346 & 0.000667934 & 0.0019753 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0419785 & 0.00765269 & 0.0182402 & 0.00219111 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 62.7906 & 23.111 & 13.8572 & 0.241165 \\ 1.3442 & 23.947 & 74.1659 & 0.542885 \\ 34.5303 & 48.0895 & 8.31502 & 9.06518 \\ 1.33487 & 4.85248 & 3.66188 & 90.1508 \end{bmatrix}$$

(6)
$$Cs_2NaErCl_6$$

f1) F_{Er1} :

$$L = \begin{bmatrix} 0.120828 & 0.0321695 & 0.104099 & 0.00124196 \\ 0.0667559 & 0.0876155 & -0.113228 & 0.00574084 \\ 0.141454 & -0.0528207 & -0.0199649 & -0.0392546 \\ 0.0501454 & -0.048372 & -0.0538022 & 0.0780462 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0145626 & 0.00103227 & 0.0108093 & 1.53857 \cdot 10^{-6} \\ 0.00268521 & 0.00462552 & 0.00772515 & 0.0000198587 \\ 0.0158966 & 0.00221655 & 0.000316668 & 0.0012242 \\ 0.000935963 & 0.000870933 & 0.00107745 & 0.00226726 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0340804 & 0.00874527 & 0.0199286 & 0.00351285 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00115704 & -0.0000922376 & -0.000956449 & 8.7348 \cdot 10^{-6} \\ 0.00178663 & -0.000740259 & 0.000154386 & -0.0000199693 \\ 0.00315875 & -0.000218745 & 0.00051844 & -0.000648127 \\ 0.00211071 & 0.000229543 & -0.000139902 & -0.000589952 \end{bmatrix}$$

non - diag.sum = [0.00821312 - 0.000821698 - 0.000423525 - 0.00124931]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.0157196 & 0.000940028 & 0.00985288 & 0.0000102734 \\ 0.00447184 & 0.00388526 & 0.00787953 & -1.10626 \cdot 10^{-7} \\ 0.0190553 & 0.00199781 & 0.000835109 & 0.00057607 \\ 0.00304668 & 0.00110048 & 0.000937547 & 0.00167731 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0422935 & 0.00792357 & 0.0195051 & 0.00226354 \end{bmatrix}$

	37.168	11.8637	50.5144	0.453863
תהח	10.5734	49.0342	40.3974	-0.00488729
P.E.D. =	45.055	25.2135	4.2815	25.45
	7.20365	13.8886	4.80668	74.101

$$L = \begin{bmatrix} 0.11501 & 0.0263641 & 0.111748 & 0.00792383 \\ 0.0750346 & 0.0892526 & -0.1049 & -0.0196514 \\ 0.138613 & -0.0580946 & -0.00699444 & -0.0458403 \\ 0.0571 & -0.0428999 & -0.0625306 & 0.069494 \end{bmatrix}$$

f2) F_{Er2} :

$$Mdiagonal = \begin{bmatrix} 0.0127308 & 0.000668979 & 0.0120189 & 0.0000604308 \\ 0.00340723 & 0.00482081 & 0.00665931 & 0.000233705 \\ 0.012896 & 0.00226525 & 0.0000328361 & 0.0014104 \\ 0.00165498 & 0.000934188 & 0.00198475 & 0.002455141 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.030689 & 0.00868923 & 0.0206958 & 0.00415594 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.002261 & 0.000105299 & -0.00193918 & 9.82014 \cdot 10^{-6} \\ 0.00258159 & -0.000831866 & -0.000100807 & -0.000191322 \\ 0.00351698 & 0.000127899 & 0.000129286 & -0.000727746 \\ 0.00324491 & -0.000166994 & 0.000719946 & -0.000983152 \end{bmatrix}$$

non - diag.sum = [0.0116045 - 0.000765662 - 0.00119076 - 0.0018924]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.0149918 & 0.000774278 & 0.0100797 & 0.000070251 \\ 0.00598883 & 0.00398895 & 0.0065585 & 0.0000423831 \\ 0.016413 & 0.00239315 & 0.000162122 & 0.000682649 \\ 0.00489989 & 0.000767194 & 0.0027047 & 0.00146826 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0422935 & 0.00792357 & 0.0195051 & 0.00226354 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 35.447 & 9.77183 & 51.6776 & 3.10359 \\ 14.1602 & 50.3428 & 33.6246 & 1.87243 \\ 38.8074 & 30.203 & 0.831178 & 30.1585 \\ 11.5854 & 9.68243 & 13.8666 & 64.8655 \end{bmatrix}$$

f3)
$$F_{Er3}$$
:

$$L = \begin{bmatrix} 0.147421 & 0.0310131 & 0.061269 & 0.00488745 \\ 0.0355946 & 0.079307 & -0.132578 & -0.00758159 \\ 0.12841 & -0.0649682 & -0.0574156 & -0.027063 \\ 0.0266412 & -0.0418984 & -0.0659196 & 0.0838432 \end{bmatrix}$$

$$M diagonal = \begin{bmatrix} 0.0260861 & 0.00115446 & 0.0045058 & 0.0000286718 \\ 0.000616475 & 0.00364962 & 0.0101992 & 0.0000333538 \\ 0.0120825 & 0.00309288 & 0.00241558 & 0.00053668 \\ 0.0002208034 & 0.000514542 & 0.00127366 & 0.00206045 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0389932 & 0.00841151 & 0.0183943 & 0.00265916 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00115896 & -0.000118369 & -0.000439737 & 8.87087 \cdot 10^{-6} \\ 0.000271161 & -0.000318703 & 0.000574009 & -0.0000190894 \\ 0.00139692 & -0.00008493 & 0.000449157 & -0.000186294 \\ 0.000473248 & 0.0000340739 & 0.000527366 & -0.000199105 \end{bmatrix}$$

 $non - diag.sum = \begin{bmatrix} 0.00330029 & -0.000487929 & 0.00111079 & -0.000395617 \end{bmatrix}$ $Mdiagonal + Mnon - diagonal = \begin{bmatrix} 0.0272451 & 0.00103609 & 0.00406607 & 0.0000375427 \\ 0.000887635 & 0.00333092 & 0.0107732 & 0.0000142644 \\ 0.0134795 & 0.00300795 & 0.00286474 & 0.000350386 \\ 0.000681282 & 0.000548616 & 0.00180103 & 0.00186134 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0422935 & 0.00792358 & 0.0195051 & 0.00226354 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 64.4192 & 13.0761 & 20.8462 & 1.65858 \\ 2.09875 & 42.0381 & 55.233 & 0.630183 \\ 31.8713 & 37.962 & 14.6871 & 15.4796 \\ 1.61084 & 6.92384 & 9.23365 & 82.2317 \end{bmatrix}$$

(7)
$$Cs_2NaTmCl_6$$

g1) *F*_{*Tm*1}:

$$L = \begin{bmatrix} 0.122798 & 0.0464109 & 0.095559 & 0.0096453 \\ 0.0582869 & 0.0801838 & -0.123092 & -0.00199928 \\ 0.142073 & -0.0449191 & -0.0169603 & -0.0471085 \\ 0.0523714 & -0.0550576 & -0.0580382 & 0.0685045 \end{bmatrix}$$

$$Mdiagonal = \begin{bmatrix} 0.0137564 & 0.00196501 & 0.00833041 & 0.0000848701 \\ 0.0021002 & 0.00397458 & 0.00936654 & 2.47095 \cdot 10^{-6} \\ 0.0147356 & 0.00147302 & 0.000209996 & 0.00162011 \\ 0.00129714 & 0.00143362 & 0.00159304 & 0.0022194 \end{bmatrix}$$

 $diag.sum = \begin{bmatrix} 0.0318893 & 0.00884622 & 0.0195 & 0.00392685 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00262172 & -0.000438816 & -0.00080565 & 0.00001055 \\ 0.0007925 & -0.0000466886 & 0.000457031 & -2.11843 \cdot 10^{-6} \\ 0.00435538 & 0.00014436 & 0.00020098 & -0.000848206 \\ 0.00263464 & 0.000114271 & 0.000152733 & -0.000749924 \end{bmatrix}$$

 $non - diag.sum = [0.0104042 - 0.000647071 5.09458 \cdot 10^{-6} - 0.0015897]$

 $Mdiagonal + Mnon - diagonal = \begin{bmatrix} 0.0163781 & 0.00152619 & 0.00752476 & 0.0000954201 \\ 0.0028927 & 0.0035077 & 0.00982357 & 3.5252 \cdot 10^{-7} \\ 0.019091 & 0.00161738 & 0.000410976 & 0.000771903 \\ 0.00393178 & 0.00154789 & 0.00174577 & 0.00146948 \end{bmatrix}$

 $Sum: diag + non - diag = \begin{bmatrix} 0.0422936 & 0.00819915 & 0.0195051 & 0.00233715 \end{bmatrix}$

$$P.E.D. = \begin{bmatrix} 38.7248 & 18.614 & 38.5785 & 4.08275 \\ 6.83957 & 42.7812 & 50.3642 & 0.0150833 \\ 45.1393 & 19.7262 & 2.10702 & 33.0275 \\ 9.2964 & 18.8786 & 8.95033 & 62.8747 \end{bmatrix}$$

744

g2)
$$F_{Tm2}$$
:

$$L = \begin{bmatrix} 0.097576 & 0.0164568 & 0.128441 & 0.0129941 \\ 0.0881713 & 0.097416 & -0.0873991 & 0.00893517 \\ 0.140478 & -0.0446646 & 0.00791059 & -0.054016 \\ 0.0636639 & -0.0549127 & -0.0553461 & 0.0608581 \end{bmatrix}$$

	0.00816816	0.000232342	0.0141529	0.000144855
Mdiaconal	0.00487037	0.00594523	0.00478543	0.0000500164
malagonal =	0.0137229	0.00138725	0.0000435157	0.00202896
	0.0023388	0.00174002	0.00176759	0.00213719

 $diag.sum = \begin{bmatrix} 0.0291002 & 0.00930483 & 0.0207494 & 0.00436102 \end{bmatrix}$

$$Mnon - diagonal = \begin{bmatrix} 0.00101277 & 0.0000835613 & -0.00080686 & -4.24612 \cdot 10^{-6} \\ 0.00355816 & -0.00124418 & -0.000462356 & -0.0000366516 \\ 0.00542974 & -0.000159222 & -0.000237382 & -0.001077 \\ 0.00319271 & 0.000214168 & 0.000262262 & -0.000905973 \end{bmatrix}$$

non - diag.sum = [0.0131934 - 0.00110567 - 0.00124434 - 0.00202387]

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.00918092 & 0.000315903 & 0.013346 & 0.000140608 \\ 0.00842853 & 0.00470104 & 0.00432307 & 0.0000133648 \\ 0.0191526 & 0.00122803 & -0.000193867 & 0.000951957 \\ 0.00553151 & 0.00195418 & 0.00202985 & 0.00123122 \end{bmatrix}$

 $Sum: diag + non - diag = [0.0422936 \quad 0.00819916 \quad 0.0195051 \quad 0.00233715]$

$$P.E.D. = \begin{bmatrix} 21.7076 & 3.85287 & 68.4233 & 6.01623 \\ 19.9286 & 57.3357 & 22.1639 & 0.571843 \\ 45.2849 & 14.9775 & -0.99393 & 40.7315 \\ 13.0788 & 23.834 & 10.4068 & 52.6804 \end{bmatrix}$$

g3) *F*_{*Tm*3}:

$$L = \begin{bmatrix} 0.119865 & 0.0200023 & 0.107988 & 0.00535957 \\ 0.0629369 & 0.105052 & -0.0985109 & 0.0167656 \\ 0.142153 & -0.0357843 & -0.0256093 & -0.0506505 \\ 0.0540331 & -0.0489386 & -0.0635807 & 0.0669204 \end{bmatrix}$$

	0.0145716	0.000405776	0.0118271	0.000029133
Mdiagonal -	0.00205979	0.00573884	0.0050464	0.000146168
malagonal =	0.0153856	0.000974957	0.000499341	0.0019533
	0.0015113	0.00123975	0.00209258	0.00231818

 $diag.sum = \begin{bmatrix} 0.0335283 & 0.00835932 & 0.0194654 & 0.00444678 \end{bmatrix}$

$$Mnon-diagonal = \begin{bmatrix} 0.000903223 & -0.0000140433 & -0.000833934 & 0.000023987 \\ 0.00152598 & -0.000499911 & 0.0000705852 & -0.000113642 \\ 0.00368956 & -0.0000510176 & 0.000787162 & -0.00108776 \\ 0.00264654 & 0.000404819 & 0.0000158761 & -0.000932215 \end{bmatrix}$$

 $non - diag.sum = \begin{bmatrix} 0.0087653 & -0.000160154 & 0.0000396893 & -0.00210963 \end{bmatrix}$

 $M diagonal + M non - diagonal = \begin{bmatrix} 0.0154748 & 0.000391732 & 0.0109931 & 0.0000531199 \\ 0.00358577 & 0.00523892 & 0.00511699 & 0.0000325262 \\ 0.0190751 & 0.000923939 & 0.0012865 & 0.000865537 \\ 0.00415783 & 0.00164457 & 0.00210845 & 0.00138597 \end{bmatrix}$

 $Sum: diag + non - diag = [0.0422936 \quad 0.00819916 \quad 0.0195051 \quad 0.00233715]$

$$P.E.D. = \begin{bmatrix} 36.5891 & 4.77771 & 56.3603 & 2.27285 \\ 8.47829 & 63.8959 & 26.2341 & 1.3917 \\ 45.1017 & 11.2687 & 6.59574 & 37.0338 \\ 9.83089 & 20.0577 & 10.8098 & 59.3016 \end{bmatrix}$$

Note that for the A_{1g}, E_g, T_{1g} and T_{2u} symmetry blocks, we find that: $L = \sqrt{G}$, and therefore, for all these lanthanide type elpasolites, it is found: $G_{1,1} = G_{2,2} = G_{3,3} = G_{10,10} = 0.0282064$

and then, it follows:

$$L_{1,1} = L_{2,2} = L_{3,3} = L_{10,10} = \sqrt{G_{ii}} = \sqrt{0.0282064} = 0.167947610879$$

Appendix V

Symmetrized F -matrices for each symmetry species

1.-) A_{1g} -symmetry specie:

$$F_{11} = \frac{1}{4} \{ x[1] + 4x[2] + x[3] - x[4] + 4x[5] + x[6] - 2x[7] - 8x[8] - 2x[9] \}$$

2.-) E_g -symmetry specie:

$$F_{22} = \frac{1}{4} \{ x[1] - 2x[2] + x[3] + x[4] - 2x[5] + x[6] - 2x[7] + 4x[8] - 2x[9] \}$$

3.-) T_{1g} -symmetry specie

$$F_{33} = \frac{1}{16} \begin{cases} 4\sqrt{2}x[25] - 4\sqrt{2}x[26] - 4\sqrt{2}x[28] + 4\sqrt{2}x[29] + x[30] - x[33] - x[35] + \\ x[36] + 2x[89] - 4x[91] - 2x[92] - 2x[95] + 2x[96] - 4x[97] - 4x[98] \end{cases}$$

4.-) T_{2g} -symmetry species:

$$F_{44} = \frac{1}{36} \begin{cases} -4\sqrt{2}x[25] - 4\sqrt{2}x[26] + 4\sqrt{2}x[28] + 4\sqrt{2}x[29] + x[30] - x[33] + x[35] - x[36] + 2x[36] + 2x[36] + 4x[91] - 2x[92] - 2x[95] + 2x[96] + 4x[97] - 4x[98] \end{cases}$$

$$\begin{split} F_{55} &= \frac{1}{8} \begin{cases} -4\sqrt{2}x[25] - 4\sqrt{2}x[26] + 4\sqrt{2}x[28] + 4\sqrt{2}x[29] + x[30] - x[33] + x[35] - \\ -x[36] + 2x[89] - 4x[91] - 2x[92] - 2x[95] + 2x[96] - 4x[97] - 4x[98] \end{cases} \\ F_{45} &= \frac{1}{24} \begin{cases} 4x[25] + 4x[26] - 4x[28] - 4x[29] - \sqrt{2}x[30] + \sqrt{2}x[33] - \sqrt{2}x[35] - \sqrt{2}x[36] + \\ +4x[54] + 4x[55] - 4x[56] - 4x[60] + 4x[61] + 4x[62] - 4x[63] - 4x[67] - \\ -2\sqrt{2}x[77] + 2\sqrt{2}x[78] - 2\sqrt{2}x[80] - 2\sqrt{2}x[81] \end{cases} \end{split}$$

5.-) T_{1u} -symmetry species

.

$$\begin{split} F_{66} &= \frac{1}{8} \{ x[1] - x[3] + x[4] - x[6] - 2x[7] + 2x[9] \} \\ F_{66} &= \frac{1}{8} \{ x[1] - x[3] + x[4] - x[6] - 2x[7] + 2x[9] + x[10] - x[12] + 2x[13] - 2x[14] + x[15] - x[17] + 2x[18] - 2x[19] + 2x[23] - 2x[24] + 4\sqrt{2}x[38] - 4\sqrt{2}x[40] + x[15] - x[17] + 2x[18] - 2x[19] + 2x[23] - 2x[24] + 4\sqrt{2}x[38] - 4\sqrt{2}x[40] + 4\sqrt{2}x[42] - 4\sqrt{2}x[44] - 4x[45] + 4x[46] - 4x[48] + 4x[49] + 4x[51] - 4x[53] + 2\sqrt{2}x[54] - 2\sqrt{2}x[55] - 2\sqrt{2}x[56] - 2\sqrt{2}x[57] + 2\sqrt{2}x[59] + 2\sqrt{2}x[60] + 2\sqrt{2}x[61] - 2\sqrt{2}x[62] - 2\sqrt{2}x[63] - 2\sqrt{2}x[64] - 2\sqrt{2}x[66] + 2\sqrt{2}x[67] + 4x[68] - 4x\sqrt{70} + x[89] + 2x[91] - x[92] + x[95] - 2x[97] + 2x[98] \end{split}$$

$$F_{88} = \frac{1}{4} \{x[1] - x[3] + x[4] - x[6] + 2x[7] - 2x[9]\}$$

$$F_{88} = \frac{1}{4} \{x[1] - x[3] + x[4] - x[6] - 2x[7] - 2x[9] + x[10] - x[12] + 2x[13] - 2x[14] + x[15] - x[17] + 2x[18] - 2x[19] + 2x[23] - 2x[24] - 8\sqrt{2}x[38] + x[15] - x[17] + 2x[18] - 2x[19] + 2x[23] - 2x[24] - 8\sqrt{2}x[38] + x[40] - 8\sqrt{2}x[42] + 8\sqrt{2}x[44] - 4x[45] + 4x[46] - 4x[48] + x[49] + 4x[51] - 4x[53] - 4\sqrt{2}x[54] + 4\sqrt{2}x[55] + 4\sqrt{2}x[56] + 4\sqrt{2}x[57] - 4\sqrt{2}x[59] - 4\sqrt{2}x[60] - 4\sqrt{2}x[61] + 4\sqrt{2}x[62] + 4\sqrt{2}x[63] + 4\sqrt{2}x[64] - 4\sqrt{2}x[66] - 4\sqrt{2}x[67] + 4x[68] - 4x[70] + 4x[89] + 8x[91] - 4x[92] + 4x[95] - 4x[96] - 8x[97] + 8x[98]$$

$$F_{10,10} = \frac{1}{18} \begin{cases} x[10] - x[12] - 2x[13] + 2x[14] + x[15] - x[17] - 2x[18] + 2x[19] + 2x[23] - \\ -2x[24] - 2\sqrt{2}x[54] - 2\sqrt{2}x[55] - 2\sqrt{2}x[56] + 2\sqrt{2}x[57] - 2\sqrt{2}x[59] + \\ +2\sqrt{2}x[60] + 2\sqrt{2}x[61] - 2\sqrt{2}x[62] - 2\sqrt{2}x[63] + 2\sqrt{2}x[64] - 2\sqrt{2}x[66] + \\ +2\sqrt{2}x[67] + x[89] - 2x[91] - x[92] + x[95] - x[96] - 2x[97] - 2x[98] \end{cases}$$

$$F_{67} = \frac{1}{4\sqrt{15}} \begin{cases} -x[1] + x[3] - x[4] + x[6] + 2x[7] - 2x[9] - 2\sqrt{2}x[38] + 2\sqrt{2}x[40] - \\ -2\sqrt{2}x[42] + 2\sqrt{2}x[44] + 2x[45] - 2x[46] + 2x[48] - 2x[49] - 2x[51] + \\ +2x[53] - 2x[68] + 2x[70] \end{cases}$$

$$\begin{split} F_{68} &= \frac{1}{4\sqrt{2}} \left\{ -x[1] + x[3] + x[4] - x[6] \right\} \\ F_{69} &= \frac{1}{8\sqrt{3}} \left\{ \begin{array}{l} -x[1] + x[3] - x[4] + x[6] + 2x[7] - 2x[9] + 4\sqrt{2}x[38] - 4\sqrt{2}x[40] + \\ + 4\sqrt{2}x[42] - 4\sqrt{2}x[44] + 2x[45] - 2x[46] + 2x[48] - 2x[49] - 2x[51] + \\ + 2x[53] - 2x[68] + 2x[70] \end{array} \right. \end{split}$$

$$F_{78} = \frac{1}{4\sqrt{15}} \begin{cases} \sqrt{2}x[1] - \sqrt{2}x[3] - \sqrt{2}x[4] + \sqrt{2}x[6] + 4x[38] - 4x[40] - 4x[42] + 4x[44] - \\ -2\sqrt{2}x[45] - 2\sqrt{2}x[46] - 2\sqrt{2}x[48] + 2\sqrt{2}x[49] + 2\sqrt{2}x[51] - \\ -2\sqrt{2}x[53] - 2\sqrt{2}x[68] + 2\sqrt{2}x[70] \end{cases}$$

$$F_{79} = \frac{1}{12\sqrt{5}} \begin{cases} x[1] - x[3] + x[4] - x[6] - 2x[7] + 2x[9] + x[10] - x[12] - 2x[13] - 2x[14] - x[15] + 2x[18] - 2x[19] + 2x[23] - 2x[24] - 2\sqrt{2}x[38] + 2\sqrt{2}x[40] - x[15] + 2x[18] - 2x[19] + 2x[23] - 2x[24] - 2\sqrt{2}x[38] + 2\sqrt{2}x[40] - x[15] + 2x[18] - 2x[19] + 2x[23] - 2x[24] - 2\sqrt{2}x[38] + 2\sqrt{2}x[40] - x[15] + 2x[13] - 2x[24] - 2x[24$$

Appendix VI

Values for the internal force constants X_i : i = 1,2,3,4,5,6,7,8,9,10,11**The** $Cs_2NaLnCl_6$ **systems**^(*)

Pr	cal(1)	cal(2)	cal(3)
X ₁	1,001270	0,730510	0,910960
X_2	1,818440	2,060880	2,019680
X ₃	2,788300	2,317140	2,614960
X_4	4,606740	4,378020	4,634640
X ₅	0,433173	0,433173	0,433173
X ₆	3,756110	3,912510	3,860370
X ₇	-0,850627	-0,465507	-0,774267
X_8	0,051623	0,170609	0,016261
X ₉	0,113954	0,051796	0,006163
X ₁₀	1,406180	1,547370	1,205370
X ₁₁	2,142150	2,141130	2,202190

Eu	cal(1)	cal(2)	cal(3)
X_1	1,373570	0,799870	1,069390
X_2	2,349040	2,255060	2,150310
X ₃	2,849900	2,333120	2,583230
X_4	5,198940	4,598180	4,733540
X_5	0,446980	0,446980	0,446980
X_6	3,843360	4,116680	3,914840
X ₇	-1,355580	-0,481500	-0,818700
X_8	-0,088255	0,085725	0,138860
X_9	-0,079231	-0,111433	0,223388
X_{10}	2,345750	1,146920	1,563540
X ₁₁	2,657900	2,276800	2,432090

Tb	cal(1)	cal(2)	cal(3)
X_1	1,211700	1,939750	1,237710
X_2	2,443010	3,183000	2,686290
X_3	2,908630	3,273340	2,733010
X_4	5,351740	6,456340	5,419300
X_5	0,431100	0,431100	0,431100
X_6	4,161940	3,986240	4,169760
X ₇	-1,189700	-2,470100	-1,249540
X_8	-0,101515	-0,043552	-0,036064
X_9	-0,034680	-0,088237	-0,006869
X ₁₀	1,710020	2,696070	1,851040
X ₁₁	2,649810	2,994460	2,761480

Dy	cal(1)	cal(2)	cal(3)
X ₁	1,274770	1,294940	1,164460
X_2	2,611310	2,872280	2,537600
X ₃	2,952590	2,927040	2,866600
X_4	5,563900	5,799320	5,402200
X_5	0,442580	0,442580	0,442580
X ₆	4,255560	4,353100	4,286020
X ₇	-1,308240	-1,446220	-1,118180
X_8	-0,054000	0,051043	0,206559
X ₉	-0,075540	-0,041347	0,259351
X ₁₀	2,003080	2,177550	2,158330
X ₁₁	2,652480	2,692430	2,512130

Но	cal(1)	cal(2)	cal(3)
X ₁	1,244310	1,261450	1,477020
X_2	2,633240	2,897100	2,657140
X ₃	2,953260	2,927200	3,251620
X_4	5,586500	5,824300	5,908760
X ₅	0,432667	0,432673	0,432673
X ₆	4,366600	4,468330	4,294990
X ₇	-1,219890	-1,355970	-1,613770

X ₈	-0,083565	0,019822	0,053274
X9	-0,081852	-0,049450	0,074493
X ₁₀	2,117530	2,300650	2,141510
X ₁₁	2,682820	2,719870	2,48762

Er	cal(1)	cal(2)	cal(3)
X ₁	1,200480	1,253750	1,667840
X_2	2,737670	2,463930	2,992530
X ₃	2,841130	2,728330	3,274190
X_4	5,578800	5,192260	6,266720
X ₅	0,452500	0,452500	0,452500
X ₆	4,366900	4,120360	4,243500
X ₇	-1,211900	-1,071900	-2,023220
X_8	0,032056	-0,128500	-0,001819
X ₉	0,068164	0,052380	0,041222
X ₁₀	1,724060	1,900970	2,267080
X ₁₁	2,654190	2,724850	2,692250

Tm	cal(1)	cal(2)	cal(3)
X ₁	1,094500	1,020410	1,267020
X ₂	2,237340	2,335420	2,752220
X ₃	2,871820	2,486960	2,827340
X ₄	5,109160	4,822380	5,579560
X ₅	0,445920	0,445920	0,445920
X ₆	4,251220	4,181920	4,313900
X ₇	-0,857940	-0,640460	-1,265660
X ₈	-0,033178	-0,098088	-0,042310
X ₉	0,169166	-0,014402	0,100542
X ₁₀	1,473320	1,266420	1,674100
X ₁₁	2,437940	2,540650	2,698680

(*) cal(1). using force field 1 cal(2): using force field 2 cal(3): using force field 3

Appendix VII

Internal Force Constants

(A)Diagonal interactions:

 $x[1]: \Delta r - \Delta r$ $x[4]: \Delta R - \Delta R$ $x[10]: \Delta \alpha - \Delta \alpha$ $x[15]: \Delta \beta - \Delta \beta$ $x[30]: \Delta q - \Delta q$ $x[89]: \Delta d - \Delta d$

(B)Non diagonal interactions:

 $x[2]: \Delta r - \Delta r' (90^{\circ})$ $x[3]: \Delta r - \Delta r' (180^{\circ})$ $x[5]: \Delta R - \Delta R' (90^{\circ})$ $x[6]: \Delta R - \Delta R' (180^{\circ})$ $x[7]: \Delta r - \Delta R (a Chloride ion in common)$ $x[8]: \Delta r - \Delta R (a Chloride ion in common)$ $x[9]: \Delta r - \Delta R (along, the same coordinate axis)$ $x[11]: \Delta \alpha - \Delta \alpha' (co-planar with a side in common)$ $x[12]: \Delta \alpha - \Delta \alpha' (co-planar, opposite with respect to the vertex)$ $x[13]: \Delta \alpha - \Delta \alpha' (with, a common side, 90^{\circ})$ $x[14]: \Delta \alpha - \Delta \alpha' (co-planar with a side in common)$ $x[12]: \Delta \beta - \Delta \beta' (co-planar with a side in common)$ $x[17]: \Delta \beta - \Delta \beta' (co-planar, opposite with respect to the vertex)$ $x[18]: \Delta \beta - \Delta \beta' (with a common side, 90^{\circ})$ $x[19]: \Delta \beta - \Delta \beta' (opposite with respect to the vertex, 90^{\circ})$

- $x[20]: \Delta \alpha \Delta \beta$ (co-planar with a Chloride ion in common, boat configuration)
- $x[21]: \Delta \alpha \Delta \beta$ (with a Chloride ion in common, 90°)
- $x[22]: \Delta \alpha \Delta \beta$ (no Chloride ion in common, 90°)
- $x[23]: \Delta \alpha \Delta \beta$ (co-planar, without Chloride ions in common
- $x[24]: \Delta \alpha \Delta \beta$ (co-planar with a Chloride in common, chair configuration)
- $x[25]: \Delta d \Delta q$ (in the same plane, with a Chloride ion in common)
- $x[26]: \Delta d \Delta q$ (Cartesian planes, in 90[°]. There are Chloride ions in the same planes but none of them is in common)
- $x[27]: \Delta d \Delta q$ (with, parallel planes)
- $x[28]: \Delta d \Delta q$ (in the same plane, but no Chloride ions in common)
- $x[29]: \Delta d \Delta q$ (chloride ions in different planes)
- $x[31]: \Delta q \Delta q$ (L-shape)
- $x[32]: \Delta q \Delta q$ (at 1/4 distance, 90°)
- $x[33]: \Delta q \Delta q'$ (parallel, same plane)
- $x[34]: \Delta q \Delta q'$ (parallel in different planes)
- $x[35]: \Delta q \Delta q'$ (in cross configuration)
- $x[36]: \Delta q \Delta q'$ (at 1/2 distance, 90°)
- $x[37]: \Delta r \Delta d$ (a Chloride ion in common)
- x[38]: $\Delta r \Delta d$ (Chloride ions at $\sqrt{2}/4$ distance)
- $x[39]: \Delta r \Delta d$ (Chloride ions at 1/2 distance)
- $x[40]: \Delta r \Delta d$ (Chloride ions at $\sqrt{3}/8$ distance)
- $x[41]: \Delta R \Delta d$ (a Chloride ion in common)
- $x[42]: \Delta R \Delta d$ (Chloride ions at $\sqrt{2}/4$ distance)
- $x[43]: \Delta R \Delta d$ (Chloride ions at 1/2 distance)
- $x[44]: \Delta R \Delta d$ (Chloride ions at $\sqrt{3}/8$ distance)
- $x[45]: \Delta R \Delta \alpha$ (co-planar, a Chloride ion in common)
- $x[46]: \Delta R \Delta \alpha$ (co-planar without Chloride ions in common)
- $x[47]: \Delta R \Delta \alpha \ (90^{\circ})$
- $x[48]: \Delta r \Delta \beta$ (co-planar with a Chloride ion in common)
- $x[49]: \Delta r \Delta \beta$ (co-planar, without a Chloride ion in common)
- $x[50]: \Delta r \Delta \beta (90^{\circ})$
- $x[51]: \Delta r \Delta \alpha$ (one side in common)
- $x[52]:\Delta r \Delta \alpha (90^{\circ})$
- $x[53]: \Delta r \Delta \alpha$ (co-planar)

 $x[54]: \Delta \alpha - \Delta d$ (a Chloride ion in common)

 $x[55]: \Delta \alpha - \Delta d$ (see picture)

 $x[56]: \Delta \alpha - \Delta d$ (see picture)

 $x[57]: \Delta \alpha - \Delta d$ (see picture)

 $x[58]: \Delta \alpha - \Delta d$ (see picture)

 $x[59]: \Delta \alpha - \Delta d$ (see picture)

 $x[60]: \Delta \alpha - \Delta d$ (see picture)

 $x[61]: \Delta\beta - \Delta d$ (with a Chloride ion in common)

 $x[62]: \Delta\beta - \Delta d$ (see picture)

 $x[63]: \Delta\beta - \Delta d$ (see picture)

 $x[64]: \Delta\beta - \Delta d$ (see picture)

 $x[65]: \Delta\beta - \Delta d$ (see picture)

 $x[66]: \Delta\beta - \Delta d$ (see picture)

 $x[67]: \Delta\beta - \Delta d$ (see picture)

 $x[68]: \Delta R - \Delta \beta$ (one side in common)

- $x[69]: \Delta R \Delta \beta \ (90^{\circ})$
- $x[70]: \Delta R \Delta \beta$ (co-planar)
- $x[71]: \Delta r \Delta q$ (a Chloride ion in common, 90[°])
- $x[72]: \Delta r \Delta q$ (co-planar, parallel)

$$x[73]: \Delta r - \Delta q$$
 (90°, $Ln\left(\frac{\sqrt{2}}{4}, \sqrt{6}/4\right)$ at 1/4 from the Chloride ion)

x[74]:
$$\Delta r - \Delta q$$
 (parallel with $\left(\frac{\sqrt{6}}{4}, \sqrt{6}/4\right)$

 $x[75]: \Delta r - \Delta q \quad (\text{in } 90^\circ \text{ with } \left(\frac{1}{2}, \sqrt{2}/2\right))$

x[76]: $\Delta r - \Delta q$ (in 90° with $\left(\frac{\sqrt{2}}{4}, \frac{\sqrt{6}}{4}\right)$. Ln is at $\frac{\sqrt{3}}{4}$ from the Chloride ion

 $x[77]: \Delta \alpha - \Delta q$ (same plane with Chloride ion in common)

 $x[78]: \Delta \alpha - \Delta q$ (A Chloride ion in common, 90[°])

 $x[79]: \Delta \alpha - \Delta q$ (without Chloride ions in common, 90°)

 $x[80]: \Delta\beta - \Delta q$ (in the same plane with a Chloride ion in common)

 $x[81]: \Delta\beta - \Delta q$ (a Chloride ion in common, 90°)

 $x[82]: \Delta\beta - \Delta q$ (without a Chloride ion in common, 90°)

 $x[83]: \Delta R - \Delta q$ (a Chloride ion in common, 90[°])

 $x[84]: \Delta R - \Delta q$ (parallel and co-planar)

$$x[85]: \Delta R - \Delta q \quad (90^{\circ} \text{ with respect to } \left(\frac{\sqrt{2}}{4}, \sqrt{6}\right). \quad Na \text{ at } \frac{1}{4} \text{ distance from } Cl)$$

$$x[86]: \Delta R - \Delta q \quad (\text{parallel with } \left(\sqrt{6}\right), \sqrt{6}\right))$$

$$x[87]: \Delta R - \Delta q \quad (90^{\circ} \text{ with respect to } \left(\frac{1}{2}, \sqrt{2}\right))$$

$$x[88]: \Delta R - \Delta q \quad (90^{\circ} \text{ with respect to } \left(\sqrt{2}\right), \sqrt{6}\right). \quad Na \text{ at } \frac{3}{4} \text{ distance from } Cl)$$

Apéndice 1.

J	$A_{3t}^{\Gamma\gamma}$	$A_{4t}^{\Gamma\gamma}$	$A_{6t}^{\Gamma\gamma}$
	$A_{3a}^{T_10} = 2\sqrt{2}$	$A_{4a}^{T_10} = \sqrt{2}$	$A_{6a}^{T_20} = 0$
	$A_{3b}^{T_1+1} = 2i$	$A_{4b}^{T_1+1} = i$	$A_{6b}^{T_2+1} = 0$
	$A_{3b}^{T_1-1} = 2i$	$A_{4b}^{T_1-1} = i$	$A_{6b}^{T_2-1} = 0$
	$A_{3c}^{T_1+1} = -2$	$A_{4c}^{T_1+1} = -1$	$A_{6c}^{T_2+1} = 0$
	$A_{3c}^{T_1-1} = 2$	$A_{4c}^{T_1-1} = 1$	$A_{6c}^{T_2-1} = 0$
3	$A_{3a}^{T_10} = 4\sqrt{2}$	$A_{4a}^{T_10} = -\left(\frac{3}{\sqrt{2}}\right)$	$A_{6a}^{T_20} = \left(\frac{\sqrt{30}}{2}\right)$
	$A_{3b}^{T_1+1} = 4i$	$A_{4b}^{T_1+1} = -\left(\frac{3i}{2}\right)$	$A_{6b}^{T_2+1} = \left(\frac{i\sqrt{15}}{2}\right)$
	$A_{3b}^{T_1-1} = 4i$	$A_{4b}^{T_1-1} = -\left(\frac{3i}{2}\right)$	$A_{6b}^{T_2-1} = \left(\frac{i\sqrt{15}}{2}\right)$
	$A_{3c}^{T_1+1} = -4$	$A_{4c}^{T_1+1} = \left(\frac{3}{2}\right)$	$A_{6c}^{T_2+1} = -\left(\frac{\sqrt{15}}{2}\right)$
	$A_{3c}^{T_1-1} = 4$	$A_{4c}^{T_1 - 1} = -\left(\frac{3}{2}\right)$	$A_{6c}^{T_2 - 1} = \left(\frac{\sqrt{15}}{2}\right)$
5	$A_{3a}^{T_10}(5,a) = 6\sqrt{2}$	$A_{4a}^{T_{1}0}(5,a) = \left(\frac{15}{4\sqrt{2}}\right)$	$A_{6a}^{T_{2}0}(5) = -\left(\frac{3\sqrt{70}}{4\sqrt{3}}\right)$
	$A_{3b}^{T_1+1}(5,a) = 6i$	$A_{4a}^{T_{1}0}(5,b) = \left(\frac{3\sqrt{35}}{\sqrt{32}}\right)$	$A_{6b}^{T_2+1}(5) = -\left(\frac{i\sqrt{105}}{4}\right)$
	$A_{3b}^{T_1-1}(5,b) = 6i$	$A_{4b}^{T_{1}+1}(5,a) = \left(\frac{15i}{8}\right)$	$A_{6b}^{T_2-1}(5) = -\left(\frac{i\sqrt{105}}{4}\right)$

Symmetrized crystal field coupling constants In units of $R_0^{-(J+2)}$

	$A_{3c}^{T_1+1}(5,a) = -6$	$A_{4b}^{T_{1}-1}(5,a) = \left(\frac{15i}{8}\right)$	$A_{6c}^{T_{2}+1}(5) = \left(\frac{\sqrt{105}}{4}\right)$
	$A_{3c}^{T_1-1}(5,a) = 6$	$A_{4b}^{T_1+1}(5,b) = \left(\frac{3i\sqrt{35}}{8}\right)$	$A_{6c}^{T_2-1}(5) = -\left(\frac{\sqrt{105}}{4}\right)$
		$A_{4b}^{T_{1}-1}\left(5,b\right) = \left(\frac{3i\sqrt{35}}{8}\right)$	
		$A_{4c}^{T_1+1}(5,a) = -\left(\frac{15}{8}\right)$	
		$A_{4c}^{T_{1}-1}(5,a) = \left(\frac{15}{8}\right)$	
		$A_{4c}^{T_{1}+1}(5,b) = -\left(\frac{3\sqrt{35}}{8}\right)$	
		$A_{4c}^{T_{1}-1}(5,b) = \left(\frac{3\sqrt{35}}{8}\right)$	
7	$A_{3a}^{T_10}(7,b) = 8\sqrt{2}$	$A_{4a}^{T_10}(7,a) = -\left(\frac{3\sqrt{462}}{16}\right)$	$A_{6a}^{T_20}(7,a) = \left(\frac{\sqrt{3003}}{16}\right)$
	$A_{3b}^{T_1+1}(7,b) = 8i$	$A_{4a}^{T_10}(7,b) = -\left(\frac{35}{8\sqrt{2}}\right)$	$A_{6a}^{T_20}(7,b) = \left(\frac{15\sqrt{21}}{16}\right)$
	$A_{3b}^{T_1-1}(7,b) = 8i$	$A_{4b}^{T_{1}+1}(7,a) = -\left(\frac{3i\sqrt{231}}{16}\right)$	$A_{6b}^{T_2+1}(7,a) = \left(\frac{i\sqrt{6006}}{32}\right)$
	$A_{3c}^{T_1+1}(7,b) = -8$	$A_{4b}^{T_1-1}(7,a) = -\left(\frac{3i\sqrt{231}}{16}\right)$	$A_{6b}^{T_2-1}(7,a) = \left(\frac{i\sqrt{6006}}{32}\right)$
	$A_{3c}^{T_1-1}(7,b) = 8$	$A_{4b}^{T_{1}+1}(7,b) = -\left(\frac{35i}{16}\right)$	$A_{6b}^{T_2+1}(7,b) = \left(\frac{15i\sqrt{42}}{32}\right)$

$A_{4b}^{T_{1}-1}(7,b) = -\left(\frac{35i}{16}\right)$	$A_{6b}^{T_2-1}(7,b) = \left(\frac{15i\sqrt{42}}{32}\right)$
$A_{4c}^{T_{1}+1}(7,a) = \left(\frac{3\sqrt{231}}{16}\right)$	$A_{6c}^{T_2+1}(7,a) = -\left(\frac{\sqrt{6006}}{32}\right)$
$A_{4c}^{T_{1}-1}(7,a) = -\left(\frac{3\sqrt{231}}{16}\right)$	$A_{6c}^{T_2-1}(7,a) = \left(\frac{\sqrt{6006}}{32}\right)$
$A_{4c}^{T_{1}+1}(7,b) = \left(\frac{35}{16}\right)$	$A_{6c}^{T_2+1}(7,b) = -\left(\frac{15\sqrt{42}}{32}\right)$
$A_{4c}^{T_1-1}(7,b) = -\left(\frac{35}{16}\right)$	$A_{6c}^{T_2-1}(7,b) = \left(\frac{15\sqrt{42}}{32}\right)$

The purely imaginary symmetry coordinates $S_{k(+1)}^{\Gamma}$, $S_{k(0)}^{\Gamma}$ and $S_{k(-1)}^{\Gamma}$ are defined in terms of real symmetry coordinates by means of the transformations: $S_{k(+1)}^{\Gamma} = -(i/\sqrt{2})(S_{kc}^{\Gamma} + iS_{kb}^{\Gamma}), S_{k(-1)}^{\Gamma} = (i/\sqrt{2})(S_{kc}^{\Gamma} - iS_{kb}^{\Gamma}), S_{k(0)}^{\Gamma} = (S_{ka}^{\Gamma})$ for $\Gamma = T_1, T_2$ and k = 3,4 and 6. Thus, it is straightforward to show that the symmetrized purely imaginary crystal field coupling constants can be from the relationships: $A_{k(0)}^{\Gamma\gamma} = -iA_{ka}^{\Gamma\gamma}$ $A_{k(-1)}^{\Gamma\gamma} = (1/\sqrt{2})[A_{kb}^{\Gamma\gamma}(i,\tau) + iA_{kc}^{\Gamma\gamma}(i,\tau)]$ $A_{k(-1)}^{\Gamma\gamma} = (1/\sqrt{2})[A_{kb}^{\Gamma\gamma}(i,\tau) - iA_{kc}^{\Gamma\gamma}(i,\tau)]$

Apéndice 2.

Ligand Polarisation Vibronic Coupling Constants $B_{kt}^{\Gamma\gamma,\alpha}(i,\tau)$ in units of $-\overline{\alpha}_L R_0^{-(i+3)}$

kt	i	τ	Γγ	X	Y	Z
3 a	2		Εθ	0	0	$24/\sqrt{2}$
			Εε	0	0	0
			T ₂ +1	$-4\sqrt{3}$	$-4i\sqrt{3}$	0
			T ₂ 0	0	0	0
			T ₂ -1	$-4\sqrt{3}$	$-4i\sqrt{3}$	0
	4		A ₁ a ₁	0	0	$5/\sqrt{42}$
			Eθ	0	0	0
			Εε	0	0	0
			T ₁ +1	$-3\sqrt{35}$	$3i\sqrt{35}$	0
			T ₁ 0	0	0	0
			T ₁ -1	$-3\sqrt{35}$	$-3i\sqrt{35}$	0
			T ₂ +1	$3\sqrt{5}$	$3i\sqrt{5}$	0
			T ₂ 0	0	0	0
			T ₂ -1	3\sqrt{5}	$-3i\sqrt{5}$	0
	6		A_1a_1	0	0	28
			A ₂ a ₂	0	0	0
			Εθ	0	0	$28\sqrt{7}$
			Εε	0	0	0
			T ₁ +1	$6\sqrt{7}$	$6i\sqrt{7}$	0
			T ₁ 0	0	0	0
			T ₁ -1	$6\sqrt{7}$	$6i\sqrt{7}$	0
		a	T ₂ +1	$-\sqrt{210}/2$	$-i\sqrt{210}/2$	0
			T ₂ 0	0	0	0

			T ₂ -1	$-\sqrt{210}/2$	$i\sqrt{210}/2$	0
		b	T ₂ 1	$-(3\sqrt{462}/2)$	$-i(3\sqrt{462}/2)$	0
			T ₂ 0	0	0	0
			T ₂ -1	$-3\sqrt{462}/2$	$-3i\sqrt{462}/2$	0
4 a	2		Εθ	0	0	$-9/\sqrt{2}$
			Εε	0	0	0
			T ₂ +1	$3\sqrt{3}/2$	$3i\sqrt{3}/2$	0
			T ₂ 0	0	0	0
			T ₂ -1	$3\sqrt{3}/2$	$-3i\sqrt{3}/2$	0
	4		A ₁ a ₁	0	0	$15\sqrt{42} / 6$
			Εθ	0	0	$23\sqrt{30}/8$
			Εε	0	0	0
			T ₁ +1	$-3\sqrt{35}/2$	$3i\sqrt{35}/2$	0
			T ₁ 0	0	0	0
			T ₁ -1	$-3\sqrt{35}/2$	$-3i\sqrt{35}/2$	0
			T ₂ +1	$-3\sqrt{5}$	$-3i\sqrt{5}$	0
			T ₂ 0	0	0	0
			T ₂ -1	$-3\sqrt{5}$	$3i\sqrt{5}$	0
	6		A ₁ a ₁	0	0	56
			A ₂ a ₂	0	0	0
			$E\theta$	0	0	$-43\sqrt{7}/4$
			Εε	0	0	0
			T ₁ +1	3√7	$-3i\sqrt{7}$	0
			T ₁ 0	0	0	0
			T ₁ -1	3\sqrt{7}	$3i\sqrt{7}$	0
		a	T ₂ +1	$-\sqrt{210}/4$	$-i\sqrt{210}/4$	0

			T ₂ 0	0	0	0
			T ₂ -1	$-\sqrt{210}/4$	$i\sqrt{210}/4$	0
		b	T ₂ +1	3\sqrt{462} / 4	$i\sqrt{462}/4$	0
			T ₂ 0	0	0	0
			T ₂ -1	3\sqrt{462} / 4	$-i\sqrt{462}/4$	0
6 a	2		Eθ	0	0	0
			Εε	0	0	0
			T ₂ +1	$5\sqrt{3}/2$	$-5i\sqrt{3}/2$	0
			T ₂ 0	0	0	0
			T ₂ -1	$5\sqrt{3}/2$	$5i\sqrt{3}/2$	0
	4		A ₁ a ₁	0	0	0
			Εθ	0	0	0
			Εε	0	0	$-21\sqrt{90}/12$
			T ₁ +1	$-3\sqrt{35}/2$	$-3i\sqrt{35}/2$	0
			T ₁ 0	0	0	0
			T ₁ -1	$-3\sqrt{35}/2$	$3i\sqrt{35}/2$	0
			T ₂ +1	0	0	0
			T ₂ 0	0	0	0
			T ₂ -1	0	0	0
	6		A ₁ a ₁	0	0	0
			A_2a_2	0	0	$\sqrt{1155}$ / 2
			Εθ	0	0	0
			Εε	0	0	$23\sqrt{21}/4$
			T ₁ +1	$3\sqrt{7}$	$3i\sqrt{7}$	0
			T ₁ 0	0	0	0
			T ₁ -1	3√7	$-3i\sqrt{7}$	0
		a	T ₂ +1	3\sqrt{210}/4	$-3i\sqrt{210}/4$	0

			T ₂ 0	0	0	0
			T ₂ -1	$3\sqrt{210}/4$	$3i\sqrt{210}/4$	0
		b	T ₂ +1	3\sqrt{462}/4	$-3i\sqrt{462}/4$	0
			T ₂ 0	0	0	0
			T ₂ -1	$3\sqrt{462}/4$	$3i\sqrt{462}/4$	0
3 b	2		Εθ	0	$-6\sqrt{2}$	0
			Eε	$4i\sqrt{6}$	0	0
			T ₂ +1	0	0	$-4i\sqrt{3}$
			T ₂ 0	$i8\sqrt{3}/\sqrt{2}$	0	0
			T ₂ -1	0	0	$4i\sqrt{3}$
	4		A ₁ a ₁	0	$5\sqrt{42}$	0
			Εθ	0	$5\sqrt{30}$ / 2	0
			Eε	0	$15\sqrt{10}/2$	0
			T ₁ +1	0	0	$-3i\sqrt{35}$
			T ₁ 0	$-6i\sqrt{35}/\sqrt{2}$	0	0
			T ₁ -1	0	0	$3i\sqrt{35}$
			T ₂ +1	0	0	$3i\sqrt{5}$
			T ₂ 0	$-3i\sqrt{10}$	0	0
			T ₂ -1	0	0	$-3i\sqrt{5}$
	6		A ₁ a ₁	0	28	0
			A ₂ a ₂	0	0	0
			Εθ	0	$-14\sqrt{7}$	0
			Εε	0	$-14\sqrt{21}$	0
			T ₁ +1	0	0	$6i\sqrt{7}$
			T ₁ 0	$6i\sqrt{14}$	0	0
			T ₁ -1	0	0	$-6i\sqrt{7}$

		a	T ₂ +1	0	0	$-i\sqrt{210}/2$
			T ₂ 0	$i\sqrt{105}$	0	0
			T ₂ -1	0	0	$i\sqrt{210}/2$
		b	T ₂ +1	0	0	$-3i\sqrt{462}/2$
			T ₂ 0	$3i\sqrt{231}$	0	0
			T ₂ -1	0	0	3i√462 / 2
4 b	2		Εθ	0	$9\sqrt{2}/4$	0
			Εε	$-3i\sqrt{6}/2$	0	0
			T ₂ +1	0	0	$3i\sqrt{3}/2$
			T ₂ 0	$-3i\sqrt{3}/\sqrt{2}$	0	0
			T ₂ -1	0	0	$-3i\sqrt{3}/2$
	4		A ₁ a ₁	0	5\sqrt{42}/2	0
			Εθ	0	$\sqrt{30}/8$	0
			Εε	0	$-3\sqrt{10}/4$	0
			T ₁ +1	0	0	$-3i\sqrt{35}/2$
			T ₁ 0	$-3i\sqrt{35}/2$	0	0
			T ₁ -1	0	0	$3i\sqrt{35}/2$
			T ₂ +1	0	0	$-3i\sqrt{5}$
			T ₂ 0	$3i\sqrt{10}$	0	0
			T ₂ -1	0	0	$3i\sqrt{5}$
	6		A ₁ a ₁	0	14	0
			A ₂ a ₂	0	0	0
			Εθ	0	43√7/8	0
			Eε	0	43\sqrt{21}/8	0
			T ₁ +1	0	0	$3i\sqrt{7}$
			T_10	$3i\sqrt{14}$	0	0

			T ₁ -1	0	0	$-3i\sqrt{7}$
		a	T ₂ +1	0	0	$-i\sqrt{210}/4$
			T ₂ 0	$-i\sqrt{105}/2$	0	0
			T ₂ -1	0	0	$i\sqrt{210}/4$
		b	T ₂ +1	0	0	$3i\sqrt{462}$ / 4
			T ₂ 0	$-3i\sqrt{231}/2$	0	0
			T ₂ -1	0	0	$-3i\sqrt{462}/4$
6b	2		Εθ	0	$15\sqrt{2}/4$	0
			Eε	$5i\sqrt{6}/2$	0	0
			T ₂ +1	0	0	$5i\sqrt{3}/2$
			T ₂ 0	$5i\sqrt{3}/\sqrt{2}$	0	0
			T ₂ -1	0	0	$-5i\sqrt{3}/2$
	4		A ₁ a ₁	0	0	0
			Εθ	0	$-63\sqrt{30}/8$	0
			Eε	0	$21\sqrt{10}/8$	0
			T ₁ +1	0	0	$-3i\sqrt{35}/2$
			T ₁ 0	$3i\sqrt{35}/\sqrt{2}$	0	0
			T ₁ -1	0	0	$i\sqrt{35}/2$
			T ₂ +1	0	0	0
			T ₂ 0	0	0	0
			T ₂ -1	0	0	0
	6		A ₁ a ₁	0	0	0
			A_2a_2	0	$\sqrt{1155}$ / 2	0
			Εθ	0	$69\sqrt{7}/8$	0
			Εε	0	$-23\sqrt{21}/8$	0

			T ₁ +1	0	0	$3i\sqrt{7}$
			T ₁ 0	$-3i\sqrt{14}$	0	0
			T ₁ -1	0	0	$-3i\sqrt{7}$
		a	T ₂ +1	0	0	$3i\sqrt{210}/4$
			T ₂ 0	$3i\sqrt{105}/2$	0	0
			T ₂ -1	0	0	$-3i\sqrt{210}/4$
		b	T ₂ +1	0	0	$3i\sqrt{462}/4$
			T ₂ 0	$3i\sqrt{231}/2$	0	0
			T ₂ -1	0	0	$-3i\sqrt{462}/4$
3 c	2		Εθ	$-6\sqrt{2}$	0	0
			Εε	0	$4i\sqrt{6}$	0
			T ₂ +1	0	0	$-4\sqrt{3}$
			T ₂ 0	0	$8i\sqrt{3}/\sqrt{2}$	0
			T ₂ -1	0	0	$-4\sqrt{3}$
	4		A ₁ a ₁	$5\sqrt{42}$	0	0
			Εθ	$5\sqrt{30}/2$	0	0
			Εε	$-15\sqrt{10}/2$	0	0
			T_1+1	0	0	3√35
			T ₁ 0	0	$6i\sqrt{35}/\sqrt{2}$	0
			T ₁ -1	0	0	3\sqrt{35}
			T ₂ +1	0	0	3\sqrt{5}
			T ₂ 0	0	$-3i\sqrt{10}$	0
			T ₂ -1	0	0	3\sqrt{5}
	6		A ₁ a ₁	28	0	0
			A ₂ a ₂	0	0	0

			Εθ	$-14\sqrt{7}$	0	0
			Εε	$14\sqrt{21}$	0	0
			T ₁ +1	0	0	$-6\sqrt{7}$
			T ₁ 0	0	$-6i\sqrt{14}$	0
			T ₁ -1	0	0	$-6\sqrt{7}$
		a	T ₂ +1	0	0	$-\sqrt{210}/2$
			T ₂ 0	0	$i\sqrt{105}$	0
			T ₂ -1	0	0	$-\sqrt{210}/2$
		b	T ₂ +1	0	0	$-3\sqrt{462}/2$
			T ₂ 0	0	$3i\sqrt{231}$	0
			T ₂ -1	0	0	$-3\sqrt{462}/2$
4 c	2		Εθ	$9\sqrt{2}/4$	0	0
			Eε	0	$-3i\sqrt{6}/2$	0
			T ₂ +1	0	0	$3\sqrt{3}/2$
			T ₂ 0	0	$-3i\sqrt{3}/\sqrt{2}$	0
			T ₂ -1	0	0	$3\sqrt{3}/2$
	4		A ₁ a ₁	$5\sqrt{42}/2$	0	0
			Εθ	$\sqrt{30}/8$	0	0
			Εε	$3\sqrt{10}/4$	0	0
			T ₁ +1	0	0	$3\sqrt{35}/2$
			T ₁ 0	0	$3i\sqrt{35}/\sqrt{2}$	0
			T ₁ -1	0	0	$3\sqrt{35}/2$
			T ₂ +1	0	0	$-3\sqrt{5}$
			T ₂ 0	0	$3i\sqrt{10}$	0
			T ₂ -1	0	0	$-3\sqrt{5}$

6		A ₁ a ₁	14	0	0
		A ₂ a ₂	0	0	0
		Εθ	$43\sqrt{7}/8$	0	0
		Εε	$-43\sqrt{21}/8$	0	0
		T ₁ +1	0	0	$-3\sqrt{7}$
		T ₁ 0	0	$-3i\sqrt{14}$	0
		T ₁ -1	0	0	$-3\sqrt{7}$
	a	T ₂ +1	0	0	$-\sqrt{210}/4$
		T ₂ 0	0	$i\sqrt{105}$ / 2	0
		T ₂ -1	0	0	$-\sqrt{210}/4$
	b	T ₂ +1	0	0	3\[3\]462 / 4
		T ₂ 0	0	$-3i\sqrt{231}/2$	0
		T ₂ -1	0	0	$3\sqrt{462} / 4$
2		Εθ	$-15\sqrt{2}/4$	0	0
		Εε	0	$-5i\sqrt{6}/2$	0
		T ₂ +1	0	0	$-5\sqrt{3}/2$
		T ₂ 0	0	$-5i\sqrt{3}/\sqrt{2}$	0
		T ₂ -1	0	0	$-5\sqrt{3}/2$
4		A ₁ a ₁	0	0	0
		Εθ	63\sqrt{30}/8	0	0
		Εε	$21\sqrt{10}/8$	0	0
		T ₁ +1	0	0	$-3\sqrt{35}/2$
		T ₁ 0	0	$3i\sqrt{35}/\sqrt{2}$	0
		T ₁ -1	0	0	$-3\sqrt{35}/2$
		T ₂ +1	0	0	0

1						
			T ₂ 0	0	0	0
			T ₂ -1	0	0	0
	6		T ₁ +1	0	0	$3\sqrt{7}$
			T ₁ 0	0	$-3i\sqrt{14}$	0
			T ₁ -1	0	0	$3\sqrt{7}$
		a	T ₂ +1	0	0	$-3\sqrt{210}/4$
			T ₂ 0	0	$-3i\sqrt{105}/2$	0
			T ₂ -1	0	0	$-3\sqrt{210}/4$
		b	T ₂ +1	0	0	$-3\sqrt{462}/4$
			T ₂ 0	0	$-3i\sqrt{231}/2$	0
			T ₂ -1	0	0	$-3\sqrt{462}/4$

THE CRISTAL FIELD PARAMETERS
$$P_{qk}^{\overline{\Gamma}\overline{\gamma}}(T_1 \Gamma | i, \tau)$$
 IN UNIT OF $\left[\frac{e^2 r^{(i+1)}}{\sqrt{3(2i+1)}}\right]$

I.- Case A: (1.1) $\overline{\Gamma} = A_1$, $\Gamma = T_1$ (1): $[0,0] = -\sqrt{3}$ (3): $[4,0] = -\sqrt{7}$; $[4,4] = -\left(\sqrt{\frac{5}{2}}\right)$; $[4,-4] = -\left(\sqrt{\frac{5}{2}}\right)$ (5,a): $[4,0] = -\left(\frac{35}{4\sqrt{11}}\right) \qquad ; [4,4] = -\left(\frac{5\sqrt{35}}{4\sqrt{22}}\right) \qquad ; [4,-4] = -\left(\frac{5\sqrt{35}}{4\sqrt{22}}\right)$ $[6,0] = -\left(\frac{9}{4\sqrt{11}}\right) \qquad ; [6,4] = \left(\frac{9\sqrt{7}}{4\sqrt{22}}\right) \qquad ; [6,-4] = \left(\frac{9\sqrt{7}}{4\sqrt{22}}\right)$ (5,b): $[6,0] = -\left(\frac{3\sqrt{35}}{4\sqrt{11}}\right)$; $[6,4] = -\left(\frac{21\sqrt{10}}{8\sqrt{11}}\right)$; $[6,-4] = -\left(\frac{21\sqrt{10}}{8\sqrt{11}}\right)$ (7,a): $[6,0] = \left(\frac{3\sqrt{77}}{8\sqrt{5}}\right)$; $[6,4] = -\left(\frac{21\sqrt{22}}{16\sqrt{5}}\right)$; $[6,-4] = -\left(\frac{21\sqrt{22}}{16\sqrt{5}}\right)$ $[8,0] = -\left(\frac{3\sqrt{77}}{8\sqrt{5}}\right) \qquad ; [8,4] = -\left(\frac{7\sqrt{2}}{8\sqrt{5}}\right) \qquad ; [8,-4] = -\left(\frac{7\sqrt{2}}{8\sqrt{5}}\right) \\ [8,8] = -\left(\frac{\sqrt{182}}{16}\right) \qquad ; [8,-8] = -\left(\frac{\sqrt{182}}{16}\right) \\ (7,b): \qquad [6,0] = -\left(\frac{21}{8\sqrt{15}}\right) \qquad ; [6,4] = \left(\frac{21\sqrt{14}}{16\sqrt{15}}\right) \qquad ; [6,-4] = \left(\frac{21\sqrt{14}}{16\sqrt{5}}\right) \\ \end{cases}$ $[8,0] = -\left(\frac{99}{8\sqrt{15}}\right) \qquad ; [8,4] = -\left(\frac{3\sqrt{154}}{8\sqrt{15}}\right) \qquad ; [8,-4] = -\left(\frac{3\sqrt{154}}{8\sqrt{15}}\right)$ $[8,8] = -\left(\frac{\sqrt{858}}{16}\right) \qquad ; [8,-8] = -\left(\frac{\sqrt{858}}{16}\right)$

(1.2) $\overline{\Gamma} = E$, $\Gamma = T_1$

(B)
$$\overline{\gamma} = \theta$$

(A) $\overline{\gamma} = \varepsilon$

(1):
$$[2,0] = \sqrt{6}$$

(3): $[2,2] = \frac{9}{\sqrt{14}}$
 $[4,0] = \left(\frac{5}{\sqrt{14}}\right)$; $[4,4] = -\left(\frac{\sqrt{5}}{2}\right)$; $[4,-4] = -\left(\frac{\sqrt{5}}{2}\right)$
(5,a): $[4,0] = \left(\frac{25}{4\sqrt{22}}\right)$; $[4,4] = -\left(\frac{5\sqrt{35}}{8\sqrt{11}}\right)$; $[4,-4] = -\left(\frac{5\sqrt{35}}{8\sqrt{11}}\right)$
 $[6,0] = \left(\frac{63}{4\sqrt{22}}\right)$; $[6,4] = \left(\frac{9\sqrt{7}}{8\sqrt{11}}\right)$; $[6,-4] = \left(\frac{9\sqrt{7}}{8\sqrt{11}}\right)$
$$(5,b): \quad [4,0] = -\left(\frac{3\sqrt{35}}{4\sqrt{22}}\right) \qquad ; [4,4] = \left(\frac{21}{8\sqrt{11}}\right) \qquad ; [4,-4] = \left(\frac{21}{8\sqrt{11}}\right) \\ [6,0] = \left(\frac{3\sqrt{35}}{4\sqrt{22}}\right) \qquad ; [6,4] = \left(\frac{3\sqrt{5}}{8\sqrt{11}}\right) \qquad ; [6,-4] = \left(\frac{3\sqrt{5}}{8\sqrt{11}}\right) \\ (7,a): \quad [6,0] = \left(\frac{3\sqrt{77}}{8\sqrt{10}}\right) \qquad ; [6,4] = \left(\frac{3\sqrt{11}}{16\sqrt{5}}\right) \qquad ; [6,-4] = \left(\frac{3\sqrt{11}}{16\sqrt{5}}\right) \\ [8,0] = -\left(\frac{3\sqrt{77}}{8\sqrt{10}}\right) \qquad ; [8,4] = \left(\frac{41}{8\sqrt{5}}\right) \qquad ; [8,-4] = \left(\frac{41}{8\sqrt{5}}\right) \\ [8,8] = -\left(\frac{\sqrt{91}}{16}\right) \qquad ; [6,4] = \left(\frac{21\sqrt{7}}{16\sqrt{15}}\right) \qquad ; [6,-4] = \left(\frac{21\sqrt{7}}{16\sqrt{15}}\right) \\ [8,0] = \left(\frac{93}{8\sqrt{30}}\right) \qquad ; [8,4] = -\left(\frac{3\sqrt{77}}{8\sqrt{15}}\right) \qquad ; [8,-4] = -\left(\frac{3\sqrt{77}}{8\sqrt{15}}\right) \\ [8,8] = -\left(\frac{\sqrt{429}}{16}\right) \qquad ; [8,-8] = -\left(\frac{\sqrt{429}}{16}\right) \\ \end{cases}$$

(1.3)
$$\overline{\Gamma} = \mathbf{T}_1 , \Gamma = \mathbf{T}_1$$

(A) $\overline{\gamma} = 0$

(1):
$$[k,q] = 0 \ \forall k,q$$

(3): $[4,4] = -\left(\frac{\sqrt{15}}{2}\right)$; $[4,-4] = \left(\frac{\sqrt{15}}{2}\right)$
(5,a): $[4,4] = \left(\frac{\sqrt{105}}{2\sqrt{11}}\right)$; $[4,-4] = -\left(\frac{\sqrt{105}}{2\sqrt{11}}\right)$
 $[6,4] = \left(\frac{3\sqrt{21}}{4\sqrt{11}}\right)$; $[6,-4] = -\left(\frac{3\sqrt{21}}{4\sqrt{11}}\right)$
(5,b): $[4,4] = \left(\frac{3\sqrt{3}}{2\sqrt{11}}\right)$; $[4,-4] = -\left(\frac{3\sqrt{3}}{2\sqrt{11}}\right)$
 $[6,4] = -\left(\frac{7\sqrt{15}}{4\sqrt{11}}\right)$; $[6,-4] = -\left(\frac{3\sqrt{3}}{4\sqrt{11}}\right)$
(7,a): $[6,4] = \left(\frac{3\sqrt{33}}{4\sqrt{5}}\right)$; $[6,-4] = -\left(\frac{3\sqrt{33}}{4\sqrt{5}}\right)$

$$[8,4] = -\left(\frac{7\sqrt{3}}{16\sqrt{5}}\right) \qquad ; [8,-4] = \left(\frac{7\sqrt{3}}{16\sqrt{5}}\right); \qquad [8,8] = -\left(\frac{\sqrt{273}}{16}\right) \ ; \qquad [8,-8] = \left(\frac{\sqrt{273}}{16}\right)$$
$$(7,b) : \qquad [6,4] = -\left(\frac{3\sqrt{7}}{4\sqrt{5}}\right) \qquad ; [6,-4] = \left(\frac{3\sqrt{7}}{4\sqrt{5}}\right)$$
$$[8,4] = -\left(\frac{3\sqrt{77}}{16\sqrt{5}}\right); \qquad [8,-4] = \left(\frac{3\sqrt{77}}{16\sqrt{5}}\right); \qquad [8,8] = -\left(\frac{3\sqrt{143}}{16}\right) \ ; \qquad [8,-8] = \left(\frac{3\sqrt{143}}{16}\right)$$

 $\begin{aligned} \text{(1):} \ [k,q] &= 0 \ \forall k,q \\ \text{(3):} \ [4,1] &= \left(\frac{\sqrt{105}}{4}\right) \qquad ; \ [4,-3] &= \left(\frac{\sqrt{15}}{4}\right) \\ \text{(5,a):} \ [4,1] &= -\left(\frac{7\sqrt{15}}{4\sqrt{11}}\right) \qquad ; \ [4,-3] &= -\left(\frac{\sqrt{105}}{4\sqrt{11}}\right) \\ \text{(6,1]} &= \left(\frac{9\sqrt{7}}{8\sqrt{22}}\right) \qquad ; \ [6,-3] &= -\left(\frac{9\sqrt{35}}{16\sqrt{11}}\right) \qquad ; \ [6,5] &= -\left(\frac{3\sqrt{21}}{16}\right) \\ \text{(5,b):} \ [4,1] &= -\left(\frac{3\sqrt{21}}{4\sqrt{11}}\right) \qquad ; \ [4,-3] &= -\left(\frac{21\sqrt{3}}{4\sqrt{11}}\right) \\ \text{(6,1]} &= -\left(\frac{21\sqrt{5}}{8\sqrt{22}}\right) \qquad ; \ [6,-3] &= -\left(\frac{21\sqrt{3}}{16\sqrt{11}}\right) \qquad ; \ [6,5] &= \left(\frac{7\sqrt{15}}{16}\right) \\ \text{(7,a):} \ [6,1] &= \left(\frac{9\sqrt{11}}{8\sqrt{10}}\right) \qquad ; \ [6,-3] &= -\left(\frac{9\sqrt{11}}{16}\right) \qquad ; \ [6,5] &= -\left(\frac{33\sqrt{3}}{8\sqrt{20}}\right) \\ \text{(8,1]} &= \left(\frac{9\sqrt{231}}{32\sqrt{10}}\right) \qquad ; \ [8,-3] &= \left(\frac{21}{32\sqrt{2}}\right) \qquad ; \ [8,5] &= \left(\frac{7\sqrt{39}}{32\sqrt{10}}\right) ; \ [8,-7] &= \left(\frac{\sqrt{273}}{32\sqrt{2}}\right) \\ \text{(7,b):} \ \ [6,1] &= -\left(\frac{3\sqrt{21}}{8\sqrt{10}}\right) \qquad ; \ [6,-3] &= \left(\frac{3\sqrt{21}}{16}\right) \qquad ; \ [6,5] &= \left(\frac{3\sqrt{77}}{16\sqrt{5}}\right) \\ \text{(8,1]} &= \left(\frac{297}{32\sqrt{10}}\right) \qquad ; \ [8,-3] &= \left(\frac{3\sqrt{231}}{32\sqrt{2}}\right); \quad \ [8,5] &= \left(\frac{3\sqrt{1001}}{32\sqrt{10}}\right); \ [8,-7] &= \left(\frac{3\sqrt{143}}{32\sqrt{2}}\right) \end{aligned}$

(C) $\overline{\gamma} = -1$

(B) $\overline{\gamma} = +1$

(1):
$$[k,q] = 0 \quad \forall k,q$$

(3): $[4,-1] = -\left(\frac{\sqrt{105}}{4}\right)$; $[4,3] = -\left(\frac{\sqrt{15}}{4}\right)$
(5,a): $[4,-1] = \left(\frac{7\sqrt{15}}{4\sqrt{11}}\right)$; $[4,3] = \left(\frac{\sqrt{105}}{4\sqrt{11}}\right)$
 $[6,-1] = -\left(\frac{9\sqrt{7}}{8\sqrt{22}}\right)$; $[6,3] = \left(\frac{9\sqrt{35}}{16\sqrt{11}}\right)$; $[6,-5] = \left(\frac{3\sqrt{21}}{16}\right)$
(5,b): $[4,-1] = \left(\frac{3\sqrt{21}}{4\sqrt{11}}\right)$; $[4,3] = \left(\frac{3\sqrt{3}}{4\sqrt{11}}\right)$
 $[6,-1] = \left(\frac{21\sqrt{5}}{8\sqrt{22}}\right)$; $[6,3] = -\left(\frac{105}{16\sqrt{11}}\right)$; $[6,-5] = -\left(\frac{7\sqrt{15}}{16}\right)$
(7,a): $[6,-1] = -\left(\frac{9\sqrt{11}}{8\sqrt{10}}\right)$; $[6,3] = \left(\frac{9\sqrt{11}}{16}\right)$; $[6,-5] = -\left(\frac{7\sqrt{39}}{16\sqrt{5}}\right)$
 $[8,-1] = -\left(\frac{9\sqrt{231}}{32\sqrt{10}}\right)$; $[8,3] = -\left(\frac{21}{32\sqrt{2}}\right)$; $[8,-5] = -\left(\frac{7\sqrt{39}}{32\sqrt{10}}\right)$; $[8,7] = -\left(\frac{\sqrt{273}}{32\sqrt{2}}\right)$
 $[8,-1] = -\left(\frac{297}{32\sqrt{10}}\right)$; $[8,3] = -\left(\frac{3\sqrt{231}}{32\sqrt{2}}\right)$; $[8,-5] = -\left(\frac{3\sqrt{1001}}{32\sqrt{10}}\right)$; $[8,7]$
 $= -\left(\frac{3\sqrt{143}}{32\sqrt{2}}\right)$

(1.4)
$$\overline{\Gamma} = T_2$$
, $\Gamma = T_1$
(A) $\overline{\gamma} = 0$
(1): $[2,2] = \sqrt{3}$; $[2,-2] = -\sqrt{3}$
(3): $[2,2] = -\left(\frac{3}{\sqrt{7}}\right)$; $[2,-2] = \left(\frac{3}{\sqrt{7}}\right)$

$$[4,2] = -\left(\frac{\sqrt{15}}{2\sqrt{7}}\right) \qquad ; [4,-2] = \left(\frac{\sqrt{15}}{2\sqrt{7}}\right)$$

$$(5,a): \quad [4,2] = \left(\frac{\sqrt{15}}{2\sqrt{11}}\right) \qquad ; [4,-2] = -\left(\frac{\sqrt{15}}{2\sqrt{11}}\right)$$

$$[6,2] = \left(\frac{3\sqrt{35}}{8\sqrt{22}}\right) \qquad ; [6,-2] = -\left(\frac{3\sqrt{35}}{8\sqrt{22}}\right); \quad [6,6] = \left(\frac{9\sqrt{7}}{8\sqrt{2}}\right); [6,-6] = -\left(\frac{9\sqrt{7}}{8\sqrt{2}}\right)$$

$$(5,b): \quad [4,2] = -\left(\frac{3\sqrt{21}}{4\sqrt{11}}\right) \qquad ; [4,-2] = \left(\frac{3\sqrt{21}}{4\sqrt{11}}\right)$$

$$[6,2] = \left(\frac{69}{8\sqrt{22}}\right) \qquad ; [6,-2] = -\left(\frac{69}{8\sqrt{22}}\right); \quad [6,6] = \left(\frac{9\sqrt{5}}{8\sqrt{2}}\right); [6,-6] = -\left(\frac{9\sqrt{5}}{8\sqrt{2}}\right)$$

$$(7,a): \quad [6,2] = \left(\frac{3\sqrt{11}}{8\sqrt{2}}\right) \qquad ; [6,-2] = -\left(\frac{3\sqrt{11}}{8\sqrt{2}}\right); [6,6] = -\left(\frac{29}{8\sqrt{10}}\right); \quad [6,-6] = \left(\frac{29}{8\sqrt{10}}\right)$$

$$[8,6] = \left(\frac{13\sqrt{91}}{16\sqrt{10}}\right) \qquad ; [8,-6] = -\left(\frac{13\sqrt{91}}{16\sqrt{10}}\right); [8,2] = -\left(\frac{5\sqrt{33}}{16\sqrt{2}}\right); [8,-2] = \left(\frac{5\sqrt{33}}{16\sqrt{2}}\right)$$

$$(7,b): \quad [6,2] = -\left(\frac{\sqrt{21}}{8\sqrt{2}}\right) \qquad ; [6,-2] = \left(\frac{\sqrt{21}}{8\sqrt{2}}\right) \qquad ; [6,6] = -\left(\frac{3\sqrt{231}}{8\sqrt{10}}\right); [6,-6] = \left(\frac{3\sqrt{231}}{8\sqrt{10}}\right)$$

$$[8,2] = -\left(\frac{3\sqrt{7}}{16\sqrt{2}}\right) \qquad ; [8,-2] = -\left(\frac{3\sqrt{7}}{16\sqrt{2}}\right); [8,6] = -\left(\frac{3\sqrt{429}}{16\sqrt{10}}\right); [8,-6] = \left(\frac{3\sqrt{429}}{16\sqrt{10}}\right)$$

(B) $\overline{\gamma} = +1$

(1):
$$[2,-1] = \sqrt{6}$$

(3): $[2,-1] = -\left(\frac{6}{\sqrt{14}}\right)$
 $[4,-1] = \left(\frac{\sqrt{15}}{4\sqrt{7}}\right)$; $[4,3] = -\left(\frac{\sqrt{15}}{4}\right)$
(5,a): $[4,-1] = -\left(\frac{\sqrt{15}}{4\sqrt{11}}\right)$; $[4,3] = \left(\frac{\sqrt{105}}{4\sqrt{11}}\right)$
 $[6,-1] = \left(\frac{39\sqrt{7}}{3\sqrt{22}}\right)$; $[6,3] = \left(\frac{9\sqrt{35}}{16\sqrt{11}}\right)$; $[6,-5] = \left(\frac{3\sqrt{21}}{16}\right)$

$$(5,b): [4,-1] = \left(\frac{3\sqrt{21}}{4\sqrt{11}}\right) ; [4,3] = -\left(\frac{21\sqrt{3}}{4\sqrt{11}}\right)
[6,-1] = \left(\frac{21\sqrt{5}}{8\sqrt{22}}\right) ; [6,3] = -\left(\frac{57}{16\sqrt{11}}\right) ; [6,-5] = \left(\frac{9\sqrt{15}}{16}\right)
(7,a): [6,-1] = -\left(\frac{9\sqrt{11}}{8\sqrt{10}}\right) ; [6,3] = -\left(\frac{7\sqrt{21}}{16}\right) ; [6,-5] = \left(\frac{17\sqrt{3}}{16\sqrt{5}}\right)
[8,3] = \left(\frac{43}{32\sqrt{2}}\right) ; [8,-1] = -\left(\frac{9\sqrt{231}}{32\sqrt{10}}\right) ; [8,-5] = \left(\frac{57\sqrt{39}}{32\sqrt{10}}\right) ; [8,7] = -\left(\frac{\sqrt{273}}{32\sqrt{2}}\right)
(7,b): [6,-1] = -\left(\frac{13\sqrt{21}}{8\sqrt{10}}\right) ; [6,3] = -\left(\frac{3\sqrt{21}}{16}\right) ; [6,-5] = -\left(\frac{3\sqrt{77}}{16\sqrt{5}}\right)
[8,-1] = \left(\frac{87}{32\sqrt{10}}\right) ; [8,3] = -\left(\frac{3\sqrt{231}}{36\sqrt{2}}\right) ; [8,-5] = -\left(\frac{3\sqrt{1001}}{32\sqrt{5}}\right) ; [8,7] = -\left(\frac{3\sqrt{143}}{32\sqrt{2}}\right)$$

(C)
$$\overline{\gamma} = -1$$

$$(1): [2,1] = -\sqrt{6}$$

$$(3): [2,1] = \left(\frac{6}{\sqrt{14}}\right)$$

$$[4,1] = -\left(\frac{\sqrt{15}}{4\sqrt{7}}\right) ; [4,-3] = \left(\frac{\sqrt{15}}{4}\right)$$

$$(5,a): [4,1] = \left(\frac{\sqrt{15}}{4\sqrt{11}}\right) ; [4,-3] = -\left(\frac{\sqrt{105}}{4\sqrt{11}}\right)$$

$$[6,1] = -\left(\frac{39\sqrt{7}}{3\sqrt{22}}\right) ; [6,-3] = -\left(\frac{9\sqrt{35}}{16\sqrt{11}}\right) ; [6,5] = -\left(\frac{3\sqrt{21}}{16}\right)$$

$$(5,b): [4,1] = -\left(\frac{3\sqrt{21}}{4\sqrt{11}}\right) ; [4,-3] = \left(\frac{21\sqrt{3}}{4\sqrt{11}}\right)$$

$$[6,1] = -\left(\frac{21\sqrt{5}}{8\sqrt{22}}\right) ; [6,-3] = \left(\frac{57}{16\sqrt{11}}\right) ; [6,5] = -\left(\frac{9\sqrt{15}}{16}\right)$$

$$(7,a): [6,1] = \left(\frac{9\sqrt{11}}{8\sqrt{10}}\right) ; [6,-3] = \left(\frac{7\sqrt{21}}{16}\right) ; [6,5] = -\left(\frac{17\sqrt{3}}{16\sqrt{5}}\right)$$

$$[8,1] = \left(\frac{9\sqrt{231}}{32\sqrt{10}}\right) \qquad ; [8,-3] = -\left(\frac{43}{32\sqrt{2}}\right); \quad [8,5] = -\left(\frac{57\sqrt{39}}{32\sqrt{10}}\right); \\ [8,-7] = \left(\frac{\sqrt{273}}{32\sqrt{2}}\right) \\ (7,b): \quad [6,1] = \left(\frac{13\sqrt{21}}{8\sqrt{10}}\right) \qquad ; [6,-3] = \left(\frac{3\sqrt{21}}{16}\right) \qquad ; [6,5] = \left(\frac{3\sqrt{77}}{16\sqrt{5}}\right) \\ [8,1] = -\left(\frac{87}{32\sqrt{10}}\right) \qquad ; [8,-3] = \left(\frac{3\sqrt{231}}{36\sqrt{2}}\right); \quad [8,5] = \left(\frac{3\sqrt{1001}}{32\sqrt{10}}\right); \quad [8,-7] = \left(\frac{3\sqrt{143}}{32\sqrt{2}}\right) \\ \end{array}$$

II.- Case B:

$$(2.1) \quad \overline{\Gamma} = A_2, \ \Gamma = T_2$$

$$(1): \quad [k,q] = 0 \quad \forall k,q$$

$$(3): \quad [k,q] = 0 \quad \forall k,q$$

$$(5): \quad [6,2] = -\left(\frac{33}{4\sqrt{11}}\right) \quad ; [6,-2] = -\left(\frac{33}{4\sqrt{11}}\right) \quad ; \quad [6,6] = \left(\frac{3\sqrt{5}}{4}\right); \quad [6,-6] = \left(\frac{3\sqrt{5}}{4}\right)$$

$$(7,a): \quad [6,2] = \left(\frac{3\sqrt{143}}{16\sqrt{6}}\right) \quad ; [6,-2] = \left(\frac{3\sqrt{143}}{16\sqrt{6}}\right); \quad [6,6] = -\left(\frac{15\sqrt{13}}{16\sqrt{10}}\right); \quad [6,-6] = -\left(\frac{15\sqrt{13}}{16\sqrt{10}}\right)$$

$$(7,b): \quad [6,2] = -\left(\frac{99}{16\sqrt{2}}\right) \quad ; [6,-2] = -\left(\frac{99}{16\sqrt{2}}\right); \quad [6,6] = \left(\frac{45\sqrt{11}}{16\sqrt{30}}\right) \quad ; \quad [6,-6] = \left(\frac{45\sqrt{11}}{16\sqrt{30}}\right)$$

(2.2)
$$\overline{\Gamma} = E$$
, $\Gamma = T_2$

(A) $\overline{\gamma} = \theta$

(1):
$$[k,q] = 0 \ \forall k,q$$

(3): $[2,0] = -\left(\frac{3\sqrt{5}}{\sqrt{14}}\right)$
 $[4,0] = \left(\frac{3\sqrt{5}}{14}\right)$; $[4,4] = -\left(\frac{3}{2}\right)$; $[4,-4] = -\left(\frac{3}{2}\right)$
(5): $[4,0] = \left(\frac{3\sqrt{35}}{2\sqrt{22}}\right)$; $[4,4] = -\left(\frac{21}{4\sqrt{11}}\right)$; $[4,-4] = -\left(\frac{21}{4\sqrt{11}}\right)$
 $[6,0] = -\left(\frac{3\sqrt{35}}{2\sqrt{22}}\right)$; $[6,4] = -\left(\frac{3\sqrt{5}}{4\sqrt{11}}\right)$; $[6,-4] = -\left(\frac{3\sqrt{5}}{4\sqrt{11}}\right)$

$$(7,a): [6,0] = -\left(\frac{\sqrt{3003}}{16\sqrt{5}}\right) ; [6,4] = -\left(\frac{\sqrt{429}}{16\sqrt{10}}\right) ; [6,-4] = -\left(\frac{\sqrt{429}}{16\sqrt{10}}\right)$$
$$[8,0] = \left(\frac{\sqrt{3003}}{16\sqrt{5}}\right) ; [8,4] = -\left(\frac{7\sqrt{39}}{8\sqrt{10}}\right) ; [8,-4] = -\left(\frac{7\sqrt{39}}{8\sqrt{10}}\right)$$
$$[8,8] = -\left(\frac{\sqrt{21}}{16\sqrt{2}}\right) ; [8,-8] = -\left(\frac{\sqrt{21}}{16\sqrt{2}}\right)$$
$$(7,b): [6,0] = -\left(\frac{15\sqrt{21}}{16\sqrt{5}}\right) ; [6,6] = -\left(\frac{15\sqrt{3}}{16\sqrt{10}}\right) ; [6,-6] = -\left(\frac{15\sqrt{3}}{16\sqrt{10}}\right)$$
$$[8,0] = \left(\frac{15\sqrt{21}}{16\sqrt{5}}\right) ; [8,4] = \left(\frac{5\sqrt{33}}{8\sqrt{10}}\right) ; [8,-4] = \left(\frac{5\sqrt{33}}{8\sqrt{10}}\right)$$
$$[8,8] = -\left(\frac{\sqrt{3003}}{16\sqrt{2}}\right) ; [8,-8] = -\left(\frac{\sqrt{3003}}{16\sqrt{2}}\right)$$

(B)
$$\overline{\gamma} = \varepsilon$$

(1):
$$[k,q] = 0 \quad \forall k,q$$

(3): $[2,2] = -\left(\frac{3\sqrt{5}}{2\sqrt{7}}\right); \quad [2,-2] = -\left(\frac{3\sqrt{5}}{2\sqrt{7}}\right)$
 $[4,2] = -\left(\frac{9}{\sqrt{21}}\right); \quad [4,-2] = -\left(\frac{9}{\sqrt{21}}\right)$
(5): $[4,2] = -\left(\frac{9\sqrt{7}}{2\sqrt{33}}\right); \quad [4,-2] = -\left(\frac{9\sqrt{7}}{2\sqrt{33}}\right)$
 $[6,2] = -\left(\frac{15}{4\sqrt{22}}\right); \quad [6,-2] = -\left(\frac{15}{4\sqrt{22}}\right); \quad [6,6] = -\left(\frac{3\sqrt{5}}{4\sqrt{2}}\right) ; \quad [6,-6] = -\left(\frac{3\sqrt{5}}{4\sqrt{2}}\right)$
(7,a): $[6,2] = -\left(\frac{3\sqrt{143}}{32\sqrt{3}}\right); \quad [6,-2] = -\left(\frac{3\sqrt{143}}{32\sqrt{3}}\right); \quad [6,6] = -\left(\frac{33\sqrt{13}}{32\sqrt{15}}\right); \quad [6,-6] = -\left(\frac{33\sqrt{13}}{32\sqrt{15}}\right)$
 $[8,6] = -\left(\frac{\sqrt{42}}{\sqrt{10}}\right); \quad [8,-6] = -\left(\frac{\sqrt{42}}{\sqrt{10}}\right)$
(7,b): $[6,2] = -\left(\frac{45}{32\sqrt{3}}\right); \quad [6,-2] = -\left(\frac{45}{32\sqrt{3}}\right); \quad [6,6] = -\left(\frac{45\sqrt{11}}{32\sqrt{15}}\right); \quad [6,-6] = -\left(\frac{45\sqrt{11}}{32\sqrt{15}}\right)$
 $[8,2] = -3 ; \quad [8,-2] = -3$

$$\begin{aligned} \text{(A)} \qquad \overline{\gamma} &= 0 \\ \text{(1):} \qquad [k,q] &= 0 \quad \forall \, k,q \\ \text{(3):} \qquad [4,4] &= -\left(\frac{3}{2}\right) \qquad ; [4,-4] &= \left(\frac{3}{2}\right) \\ \text{(5):} \qquad [4,4] &= \left(\frac{6}{\sqrt{11}}\right) \qquad ; [4,-4] &= -\left(\frac{6}{\sqrt{11}}\right) \\ \qquad [6,4] &= -\left(\frac{3\sqrt{5}}{2\sqrt{11}}\right) \qquad ; [6,-4] &= \left(\frac{3\sqrt{5}}{2\sqrt{11}}\right) \\ \text{(7,a):} \qquad [6,4] &= \left(\frac{\sqrt{429}}{4\sqrt{10}}\right) \qquad ; [6,-4] &= -\left(\frac{\sqrt{429}}{4\sqrt{10}}\right) \\ \qquad [8,4] &= -\left(\frac{19\sqrt{39}}{16\sqrt{10}}\right); \qquad [8,-4] &= \left(\frac{19\sqrt{39}}{16\sqrt{10}}\right); \qquad [8,8] &= -\left(\frac{\sqrt{21}}{16\sqrt{2}}\right) \ ; [8,-8] &= \left(\frac{\sqrt{21}}{16\sqrt{2}}\right) \\ \text{(7,b):} \qquad [6,4] &= -\left(\frac{\sqrt{3}}{4\sqrt{10}}\right); \qquad [6,-4] &= \left(\frac{\sqrt{3}}{4\sqrt{10}}\right) \\ \qquad [8,4] &= \left(\frac{9\sqrt{33}}{16\sqrt{10}}\right); \qquad [8,-4] &= -\left(\frac{9\sqrt{33}}{16\sqrt{10}}\right); \qquad [8,8] &= -\left(\frac{\sqrt{3003}}{16\sqrt{2}}\right); \qquad [8,-8] &= \left(\frac{\sqrt{3003}}{16\sqrt{2}}\right) \end{aligned}$$

(B)
$$\overline{\gamma} = +1$$

 $\overline{\Gamma}=T_{\!_1}$, $\Gamma=T_{\!_2}$

(2.3)

(1):
$$[k,q] = 0 \ \forall k,q$$

(3): $[4,1] = \left(\frac{21}{4\sqrt{7}}\right)$; $[4,-3] = \left(\frac{3}{4}\right)$
(5): $[4,1] = -\left(\frac{3\sqrt{7}}{\sqrt{11}}\right)$; $[4,-3] = -\left(\frac{3}{\sqrt{11}}\right)$
 $[6,1] = -\left(\frac{3\sqrt{5}}{4\sqrt{22}}\right)$; $[6,3] = \left(\frac{15\sqrt{3}}{8\sqrt{11}}\right)$; $[6,5] = \left(\frac{3\sqrt{5}}{8}\right)$
(7,a): $[6,1] = \left(\frac{3\sqrt{143}}{16\sqrt{5}}\right)$; $[6,-3] = -\left(\frac{3\sqrt{143}}{16\sqrt{2}}\right)$; $[6,5] = -\left(\frac{11\sqrt{39}}{16\sqrt{10}}\right)$

780

$$[8,1] = \left(\frac{3\sqrt{3003}}{64\sqrt{5}}\right) \quad ; [8,-3] = -\left(\frac{33\sqrt{13}}{64}\right) \quad ; [8,5] = \left(\frac{97\sqrt{3}}{62\sqrt{5}}\right); \ [8,-7] = \left(\frac{31\sqrt{21}}{64}\right)$$

(7,b):
$$[6,1] = -\left(\frac{3}{16\sqrt{5}}\right) \quad ; [6,-3] = \left(\frac{3}{16\sqrt{5}}\right) \quad ; [6,5] = -\left(\frac{\sqrt{33}}{16\sqrt{10}}\right)$$

$$[8,1] = \left(\frac{77\sqrt{21}}{64\sqrt{5}}\right) \quad ; [8,-3] = \left(\frac{51\sqrt{11}}{64}\right); \quad [8,5] = \left(\frac{\sqrt{429}}{62\sqrt{5}}\right); \ [8,-7] = -\left(\frac{\sqrt{3003}}{64}\right)$$

(C)
$$\overline{\gamma} = -1$$

(1):
$$[k,q] = 0 \ \forall k,q$$

(3): $[4,-1] = -\left(\frac{21}{4\sqrt{7}}\right)$; $[4,3] = -\left(\frac{3}{4}\right)$
(5): $[4,-1] = \left(\frac{3\sqrt{7}}{\sqrt{11}}\right)$; $[4,3] = \left(\frac{3}{\sqrt{11}}\right)$
 $[6,-1] = \left(\frac{3\sqrt{15}}{4\sqrt{22}}\right)$; $[6,3] = -\left(\frac{15\sqrt{3}}{8\sqrt{11}}\right)$; $[6,-5] = -\left(\frac{3\sqrt{5}}{8}\right)$
(7,a): $[6,-1] = -\left(\frac{3\sqrt{143}}{16\sqrt{5}}\right)$; $[6,3] = \left(\frac{3\sqrt{143}}{16\sqrt{2}}\right)$; $[6,-5] = \left(\frac{11\sqrt{39}}{16\sqrt{10}}\right)$
 $[8,-1] = -\left(\frac{3\sqrt{3003}}{64\sqrt{5}}\right)$; $[8,3] = \left(\frac{33\sqrt{13}}{64}\right)$; $[8,-5] = -\left(\frac{97\sqrt{3}}{64\sqrt{5}}\right)$; $[8,7] = -\left(\frac{31\sqrt{21}}{64}\right)$
(7,b): $[6,-1] = \left(\frac{3}{16\sqrt{5}}\right)$; $[6,3] = -\left(\frac{3}{16\sqrt{2}}\right)$; $[6,-5] = -\left(\frac{\sqrt{33}}{16\sqrt{10}}\right)$
 $[8,-1] = -\left(\frac{77\sqrt{21}}{64\sqrt{5}}\right)$; $[8,3] = -\left(\frac{51\sqrt{11}}{64}\right)$; $[8,-5] = -\left(\frac{\sqrt{429}}{64\sqrt{5}}\right)$; $[8,7] = \left(\frac{\sqrt{3003}}{64}\right)$

(2.4)
$$\overline{\Gamma} = \mathbf{T}_2$$
, $\Gamma = \mathbf{T}_2$

(A) $\overline{\gamma} = 0$

(1):
$$[k,q] = 0 \quad \forall k,q$$

(3): $[2,2] = -\left(\frac{\sqrt{15}}{\sqrt{7}}\right); \quad [2,-2] = \left(\frac{\sqrt{15}}{\sqrt{7}}\right)$

$$[4,2] = \left(\frac{9}{2\sqrt{7}}\right); \quad [4,-2] = -\left(\frac{9}{2\sqrt{7}}\right)$$

$$(5): \quad [6,2] = -\left(\frac{\sqrt{33}}{4\sqrt{2}}\right); \quad [6,-2] = \left(\frac{\sqrt{33}}{4\sqrt{2}}\right); \quad [6,6] = \left(\frac{3\sqrt{15}}{4\sqrt{2}}\right) \quad ; [6,-6] = -\left(\frac{3\sqrt{15}}{4\sqrt{2}}\right)$$

$$(7,a): \quad [6,2] = -\left(\frac{3\sqrt{143}}{16}\right); \quad [6,-2] = \left(\frac{3\sqrt{143}}{16}\right); \quad [6,6] = \left(\frac{3\sqrt{13}}{16\sqrt{5}}\right) \quad ; [6,-6] = -\left(\frac{3\sqrt{13}}{16\sqrt{5}}\right)$$

$$[8,2] = \left(\frac{3\sqrt{429}}{32}\right); \quad [8,-2] = -\left(\frac{3\sqrt{429}}{32}\right); \quad [8,6] = \left(\frac{33\sqrt{7}}{32\sqrt{5}}\right) \quad ; [8,-6] = -\left(\frac{33\sqrt{7}}{32\sqrt{5}}\right)$$

$$(7,b): \quad [6,6] = -\left(\frac{4\sqrt{11}}{16\sqrt{5}}\right); \quad [6,-6] = \left(\frac{4\sqrt{11}}{16\sqrt{5}}\right)$$

$$[8,2] = \left(\frac{3}{16}\right) \quad ; \quad [8,-2] = -\left(\frac{3}{16}\right) \quad ; \quad [8,6] = \left(\frac{\sqrt{1001}}{32\sqrt{5}}\right) \quad ; [8,-6] = -\left(\frac{\sqrt{1001}}{32\sqrt{5}}\right)$$

(B)
$$\overline{\gamma} = +1$$

(1):
$$[k,q] = 0 \ \forall k,q$$

(3): $[2,-1] = -\left(\frac{2\sqrt{15}}{\sqrt{14}}\right)$; $[4,-1] = \left(\frac{9}{4\sqrt{7}}\right)$; $[4,3] = \left(\frac{9}{4}\right)$
(5): $[6,-1] = \left(\frac{\sqrt{165}}{4\sqrt{22}}\right)$; $[6,3] = \left(\frac{3\sqrt{33}}{8}\right)$; $[6,-5] = -\left(\frac{3\sqrt{5}}{8}\right)$
(7,a): $[6,-1] = -\left(\frac{3\sqrt{143}}{16\sqrt{5}}\right)$; $[6,3] = \left(\frac{3\sqrt{143}}{16\sqrt{2}}\right)$; $[6,-5] = -\left(\frac{21\sqrt{39}}{16\sqrt{5}}\right)$
 $[8,-1] = -\left(\frac{3\sqrt{3003}}{64\sqrt{5}}\right)$; $[8,3] = \left(\frac{33\sqrt{13}}{64}\right)$; $[8,-5] = -\left(\frac{33\sqrt{3}}{64\sqrt{5}}\right)$; $[8,7] = \left(\frac{33\sqrt{21}}{64}\right)$
(7,b): $[6,-1] = -\left(\frac{93}{16\sqrt{5}}\right)$; $[6,3] = -\left(\frac{35}{16\sqrt{2}}\right)$; $[6,-5] = -\left(\frac{\sqrt{33}}{32\sqrt{5}}\right)$
 $[8,-1] = -\left(\frac{13\sqrt{21}}{64\sqrt{5}}\right)$; $[8,3] = \left(\frac{13\sqrt{11}}{64}\right)$; $[8,-5] = -\left(\frac{\sqrt{429}}{64\sqrt{5}}\right)$; $[8,7] = \left(\frac{\sqrt{3003}}{64}\right)$

(C) $\overline{\gamma} = -1$

These coefficients are listed according to the notation (i, τ) : $[k_1, q_1]$

Apéndice 4.

Elementos de matriz reducido no nulos para transiciones electrónicas $\,f \to f$.

$$\langle 3 \| T^{0(1)} \| 3 \rangle = -(\sqrt{7}/\sqrt{3})e^{2} \langle r^{2} \rangle \langle 3 \| T^{2(1)} \| 3 \rangle = -(2\sqrt{14}/3\sqrt{5})e^{2} \langle r^{2} \rangle \langle 3 \| T^{2(3)} \| 3 \rangle = (2/\sqrt{5})e^{2} \langle r^{4} \rangle \langle 3 \| T^{4(3)} \| 3 \rangle = (2\sqrt{2}/\sqrt{11})e^{2} \langle r^{4} \rangle \langle 3 \| T^{4(5)} \| 3 \rangle = -(\sqrt{70}/11)e^{2} \langle r^{6} \rangle \langle 3 \| T^{6(5)} \| 3 \rangle = -(10\sqrt{14}/11\sqrt{13})e^{2} \langle r^{6} \rangle \langle 3 \| T^{6(7)} \| 3 \rangle = (70\sqrt{11}/33\sqrt{65})e^{2} \langle r^{8} \rangle$$